第三章 非线性回归分析(江南大学 张荷观)
- 格式:ppt
- 大小:932.50 KB
- 文档页数:48
存在自相关时检验和估计方法的改进——基于自回归分布滞后模型的自相关检验和参数估计
张荷观
【期刊名称】《统计与信息论坛》
【年(卷),期】2012(027)004
【摘要】存在自相关时的自相关检验和参数估计是基础计量经济学的一个重要内容,并且存在自相关时的原模型已转化为自回归分布滞后模型.讨论存在自相关时的自相关检验和参数估计问题,提出了一种基于自回归分布滞后模型的自相关检验法,并同时给出了相应的参数估计.
【总页数】6页(P44-49)
【作者】张荷观
【作者单位】江南大学商学院,江苏无锡214122
【正文语种】中文
【中图分类】F224.0
【相关文献】
1.基于相关变量检验时最优检验下限的确定 [J], 安伟光;马景骏
2.参数估计与假设检验的最小二乘估计--相关系数检验方法 [J], 徐安
3.自相关问题检验和参数估计方法研究 [J], 贾诺诺;李慧芳;钟秋海
4.拟合优度检验的回归分析方法及在参数估计中的应用 [J], 杨振海
5.遗传参数估计原理探讨——亲本间亲缘相关时的参数估计方法 [J], 陈瑶生
因版权原因,仅展示原文概要,查看原文内容请购买。
非线性回归分析(教案)第一章:非线性回归分析简介1.1 非线性回归的定义与意义1.2 非线性回归与线性回归的比较1.3 非线性回归分析的应用领域1.4 本章小结第二章:非线性回归模型建立2.1 非线性回归模型的形式2.2 非线性回归模型的建立方法2.3 非线性回归模型的参数估计2.4 模型检验与优化2.5 本章小结第三章:非线性回归分析软件介绍3.1 非线性回归分析软件的选择3.2 非线性回归分析软件的操作步骤3.3 非线性回归分析软件的应用案例3.4 本章小结第四章:非线性回归在实际问题中的应用4.1 非线性回归在生物医学领域的应用4.2 非线性回归在经济学领域的应用4.3 非线性回归在环境科学领域的应用4.4 本章小结第五章:非线性回归分析的扩展与改进5.1 非线性回归模型的扩展5.2 非线性回归分析方法的改进5.3 非线性回归分析的发展趋势5.4 本章小结第六章:非线性回归模型的选择与评估6.1 模型选择的原则与方法6.2 模型评估指标6.3 模型选择的实际案例6.4 本章小结第七章:非线性回归分析的编程实现7.1 非线性回归分析的编程基础7.2 常见非线性回归模型的编程实现7.3 非线性回归分析的编程实践7.4 本章小结第八章:非线性回归分析在数据挖掘中的应用8.1 数据挖掘与非线性回归分析8.2 非线性回归分析在数据挖掘中的案例分析8.3 非线性回归分析在数据挖掘中的挑战与应对8.4 本章小结第九章:非线性回归分析在多变量分析中的应用9.1 多变量分析与非线性回归分析9.2 非线性回归分析在多变量数据分析中的方法与应用9.3 非线性回归分析在多变量分析中的案例研究9.4 本章小结第十章:非线性回归分析的未来展望10.1 非线性回归分析的发展趋势10.2 非线性回归分析在科学研究中的潜在应用10.3 非线性回归分析的教育与培训10.4 本章小结重点和难点解析一、非线性回归的定义与意义:理解非线性回归的基本概念,掌握非线性回归与线性回归的本质区别,以及非线性回归在实际问题中的应用场景。
非线性回归分析(常见曲线及方程)预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制非线性回归分析回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。
此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。
通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S型曲线(Logistic) 对数曲线、指数曲线等,以这些变量之间的曲线相关关系,拟合相应的回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析常见非线性规划曲线1.双曲线1bay x =+2.二次曲线3.三次曲线4.幂函数曲线5.指数函数曲线(Gompertz)6.倒指数曲线y=a/e b x其中a>0,7.S型曲线(Logistic)1e x ya b-=+8.对数曲线y=a+b log x,x>09.指数曲线y=a e bx其中参数a>01.回归:(1)确定回归系数的命令[beta,r,J]=nlinfit(x,y,’model’,beta0)(2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha)2.预测和预测误差估计:[Y,DELTA]=nlpredci(’model’, x,beta,r,J)求nlinfit 或lintool所得的回归函数在x处的预测值Y及预测值的显著性水平为1-alpha的置信区间Y,DELTA.例2 观测物体降落的距离s与时间t的关系,得到数据如下表,求s2解:1. 对将要拟合的非线性模型y=a/e b x,建立M文件volum.m如下:function yhat=volum(beta,x)yhat=beta(1)*exp(beta(2)./x);2.输入数据:x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];beta0=[8 2]';3.求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0);beta即得回归模型为:1.064111.6036e x y-=4.预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J);plot(x,y,'k+',x,YY,'r')2.非线性函数的线性化。
1.3非线性回归问题,知识目标:通过典型案例的探究,进一步学习非线性回归模型的回归分析。
能力目标:会将非线性回归模型通过降次和换元的方法转化成线性化回归模型。
情感目标:体会数学知识变化无穷的魅力。
教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法.教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学方式:合作探究 教学过程:一、复习准备:对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块《数学1》中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决. 二、讲授新课:1. 探究非线性回归方程的确定:1. 给出例1:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的/y 个2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系.① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模.② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量.③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y=,则21ln z c x c =+,可以用线性回归方程来拟合.④ 利用计算器算得 3.843,0.272ab =-=,z 与x 间的线性回归方程为0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e -=.⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行.其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探究例 2.:炼钢厂出钢时所用的盛钢水的钢包,在使用过程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请根据表格中的数据找出使用次数x 与增大的容积y 之间的关系.【解】先根据试验数据作散点图,如图所示:z =a ′+bt ,t 、z 的数值对应表为:【题后点评】作出散点图,由散点图选择合适的回归模型是解决本题的关键,在这里线性回归模型起了转化的作用.例2:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的回归方程./y 个 2、讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量呈非线性相关关系,所以不能直接....用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型.......来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量.z =a ′+bt ,t 、z 的数值对应表为:从图中可以看出x 与y 之间不存在线性相关关系. 但仔细分析一下,知道钢包开始使用时侵蚀速度快, 然后逐渐减慢.显然,钢包容积不会无限增大,它必 有一条平行于x 轴的渐近线.于是根据这一特点,我们试设指数型函数曲线y =a e bx.对它两边取对数得ln y =ln a +bx .令z =ln y ,t =1x,a ′=ln a ,则上式可写为线性方程:③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,而z 与x 间的关系如下:观察z 与x以用线性回归方程来拟合.④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e -=.⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 2. 小结:用回归方程探究非线性回归问题的方法、步骤. 3、常见的非线性回归模型 ⑴ 幂函数曲线 y=ax b处理方法:两边取自然对数得:lny=lna+blnx; 再设{yy x x ln ln ,,==则原方程变成 y ′=lna+bx ′,再根据一次线性回归模型的方法得出lna 和b ⑵ 指数曲线 y=ae bx处理方法: 两边取自然对数得:lny=lna+bx; 再设{yy x x ln ,,==则原方程变成 y ′=lna+bx ′,再根据一次线性回归模型的方法得出lna 和b⑶ 倒指数曲线 xb ae y =处理方法:两边取自然对数得:lny=lna+x b; 再设⎩⎨⎧==y y xx ln 1,,则原方程变成 y ′=lna+bx ′,再根据一次线性回归模型的方法得出lna 和b ⑷ 对数曲线 y=a+blnx 处理方法:设{yy xx ==,,ln 则原方程变成 y ′=a+bx ′,再根据一次线性回归模型的方法得出a 和b三、巩固练习:为了研究某种细菌随时间x 变化,繁殖的个数,收集数据如下: 1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图;2)试求出预报变量对解释变量的回归方程.(答案:所求非线性回归方程为0.69 1.112ˆy=e x +.) 四、作业布置:课本第13页的练习题。
非线性回归分析简介在统计学和机器学习领域,回归分析是一种重要的数据分析方法,用于研究自变量和因变量之间的关系。
在实际问题中,很多情况下自变量和因变量之间的关系并不是简单的线性关系,而是呈现出一种复杂的非线性关系。
因此,非线性回归分析应运而生,用于描述和预测这种非线性关系。
本文将介绍非线性回归分析的基本概念、方法和应用。
一、非线性回归分析概述1.1 非线性回归模型在回归分析中,最简单的模型是线性回归模型,即因变量和自变量之间的关系可以用一个线性方程来描述。
但是在实际问题中,很多情况下因变量和自变量之间的关系并不是线性的,而是呈现出曲线、指数、对数等非线性形式。
这时就需要使用非线性回归模型来拟合数据,通常非线性回归模型可以表示为:$$y = f(x, \beta) + \varepsilon$$其中,$y$为因变量,$x$为自变量,$f(x, \beta)$为非线性函数,$\beta$为参数向量,$\varepsilon$为误差项。
1.2 非线性回归分析的优势与线性回归相比,非线性回归分析具有更强的灵活性和适用性。
通过使用适当的非线性函数,可以更好地拟合实际数据,提高模型的预测能力。
非线性回归分析还可以揭示数据中潜在的复杂关系,帮助研究人员更好地理解数据背后的规律。
1.3 非线性回归分析的挑战然而,非线性回归分析也面临一些挑战。
首先,选择合适的非线性函数是一个关键问题,需要根据实际问题和数据特点进行合理选择。
其次,非线性回归模型的参数估计通常比线性回归模型更复杂,需要使用更为复杂的优化算法进行求解。
因此,在进行非线性回归分析时,需要谨慎选择模型和方法,以确保结果的准确性和可靠性。
二、非线性回归分析方法2.1 常见的非线性回归模型在实际应用中,有许多常见的非线性回归模型,常用的包括多项式回归模型、指数回归模型、对数回归模型、幂函数回归模型等。
这些模型可以根据实际问题的特点进行选择,用于描述和预测自变量和因变量之间的非线性关系。
非线性回归分析简介非线性回归分析是一种用于建立非线性关系模型的统计方法。
与线性回归不同,非线性回归可以更好地拟合非线性数据,提供更准确的预测结果。
在许多实际问题中,数据往往呈现出非线性的趋势,因此非线性回归分析在实际应用中具有广泛的应用价值。
一、非线性回归模型的基本形式非线性回归模型的基本形式可以表示为:y = f(x, β) + ε其中,y是因变量,x是自变量,β是模型参数,f(x, β)是非线性函数,ε是误差项。
非线性函数可以是任意形式的函数,如指数函数、对数函数、幂函数等。
二、非线性回归模型的参数估计与线性回归不同,非线性回归模型的参数估计不能直接使用最小二乘法。
常见的非线性回归参数估计方法有以下几种:1. 非线性最小二乘法(NLS)非线性最小二乘法是一种常用的参数估计方法,它通过最小化残差平方和来估计模型参数。
具体而言,通过迭代的方式不断调整参数,使得残差平方和最小化。
2. 非线性广义最小二乘法(GNLS)非线性广义最小二乘法是对非线性最小二乘法的改进,它在最小化残差平方和的同时,还考虑了误差项的方差结构。
通过引入权重矩阵,可以更好地处理异方差性的数据。
3. 非线性加权最小二乘法(WNLS)非线性加权最小二乘法是对非线性广义最小二乘法的进一步改进,它通过引入加权矩阵,对不同数据点赋予不同的权重。
可以根据数据的特点,调整权重矩阵,提高模型的拟合效果。
三、非线性回归模型的评估指标在进行非线性回归分析时,需要对模型进行评估,以确定模型的拟合效果。
常见的评估指标有以下几种:1. 残差分析残差分析是一种常用的评估方法,通过分析残差的分布情况,判断模型是否符合数据的分布特征。
如果残差呈现随机分布,说明模型拟合效果较好;如果残差呈现一定的规律性,说明模型存在一定的问题。
2. 决定系数(R-squared)决定系数是衡量模型拟合优度的指标,其取值范围为0到1。
决定系数越接近1,说明模型对数据的解释能力越强;决定系数越接近0,说明模型对数据的解释能力越弱。
非线性回归分析1.问题描述在熔盐泵模化试验中,根据模化方案,采用水作为试验介质,对输送介质密度ρp =1938kg/m3,粘度μp=0.00729Pa⋅s,转速n p=1450r/min,颗粒直径1mm,密度1938kg/m3,叶轮直径D p=250mm的原型泵进行模化试验,取x=0,得模型泵的转速n m=386.2r/min,叶轮直径D m=250mm。
颗粒1mm,直径密度1103.8kg/m3。
在不同的流量工况下,分别对这两台泵进行数值模拟,然后将流量、扬程和轴功率全部转换成无量纲的比流量、比扬程和比功率。
对其中的效率,比能量数值曲线进行拟合,实验数据结果如下,其中效率为a,比能量为b。
试求效率y对比能量x的回归方程。
方法一:2. 用STATISTICA进行非线性回归分析根据y与x的对应数据,EXCEL绘图可以看出来,他们之间满足指数关系(如下图所示),所以设回归方程为a=A b-Bb2+Cb3。
用STATISTICA做试验分析时采用自定义回归方程模块。
建立如图所示的数据表:3.回归过程详解输入自定义回归方程:采用Levenberg-Marquardt估计方法求解结果显示对话框:分析结果显示:方差分析结果如下:观测值,预测值,残差值如下:残差直方图:残差散点图:观测值与回归曲线对比图:结果分析:从上面的分析结果里我们可以看到系数a=18.0639,b=-91.9099,c=147.391,d=-0.42801即y=18.0639x3-91.9099x2+147.391x-0.42801。
我们可以看出拟合曲线和散点之间的相关度是0.99984089。
从残差直方图可以看出图像近似满足正态分布规律。
从残差散点图可以看出残差点没有明显的规律可寻,即说明残差基本满足随机分布。
综合以上分析可以说明,预测的回归曲线方程的参数与解析解非常的接近。
关系曲线方程为y=18.0639x3-91.9099x2+147.391x-0.42801。
非线性回归模型概述在统计学和机器学习领域,回归分析是一种重要的建模技术,用于研究自变量和因变量之间的关系。
在实际问题中,很多情况下自变量和因变量之间的关系并不是简单的线性关系,而是呈现出复杂的非线性关系。
为了更准确地描述和预测这种非线性关系,非线性回归模型应运而生。
一、非线性回归模型的基本概念非线性回归模型是指因变量和自变量之间的关系不是线性的数学模型。
在非线性回归模型中,因变量的取值不仅仅是自变量的线性组合,还可能包括自变量的非线性函数,如平方、指数、对数等。
因此,非线性回归模型的形式更加灵活,能够更好地拟合实际数据。
二、常见的非线性回归模型1. 多项式回归模型:多项式回归是一种最简单的非线性回归模型,通过增加自变量的高次项来拟合非线性关系。
例如,二次多项式回归模型可以表示为:Y = β0 + β1X + β2X^2 + ε,其中X^2为自变量X 的平方项。
2. 对数回归模型:对数回归模型适用于因变量和自变量之间呈现出对数关系的情况。
例如,对数线性模型可以表示为:Y = β0 + β1ln(X) + ε,其中ln(X)为自变量X的对数项。
3. 指数回归模型:指数回归模型适用于因变量和自变量之间呈现出指数关系的情况。
例如,指数回归模型可以表示为:Y = β0e^(β1X) + ε,其中e^(β1X)为自变量X的指数项。
4. 幂函数回归模型:幂函数回归模型适用于因变量和自变量之间呈现出幂函数关系的情况。
例如,幂函数回归模型可以表示为:Y =β0X^β1 + ε,其中X^β1为自变量X的幂函数项。
三、非线性回归模型的参数估计与线性回归模型类似,非线性回归模型的参数估计也可以通过最小二乘法来进行。
最小二乘法的核心思想是使模型预测值与实际观测值之间的残差平方和最小化,从而得到最优的参数估计值。
在非线性回归模型中,由于模型的非线性特性,参数估计通常需要通过迭代算法来求解。
四、非线性回归模型的评估在建立非线性回归模型后,需要对模型进行评估以验证其拟合效果和预测能力。
非线性回归分析(教案)第一章:非线性回归分析简介1.1 非线性回归的定义与意义1.2 非线性回归与线性回归的比较1.3 非线性回归分析的应用领域1.4 本章内容安排第二章:非线性模型的选择2.1 常见非线性模型介绍2.2 模型选择的依据与方法2.3 利用统计软件进行模型选择2.4 案例分析:选择合适的非线性模型第三章:非线性回归的参数估计3.1 非线性回归参数估计的基本方法3.2 初值的选择与影响3.3 参数估计的算法与优化3.4 案例分析:利用非线性回归估计参数第四章:非线性模型的检验与评估4.1 非线性模型的拟合度评估4.2 模型诊断与改进4.3 模型参数的显著性检验4.4 案例分析:评估非线性模型的性能第五章:非线性回归在实际应用中的案例分析5.1 非线性回归在生物学领域的应用5.2 非线性回归在经济学领域的应用5.3 非线性回归在环境科学领域的应用5.4 非线性回归在其他领域的应用第六章:多变量非线性回归分析6.1 多变量非线性回归的定义与特点6.2 多变量非线性回归模型的建立6.3 多变量非线性回归的参数估计与检验6.4 案例分析:多变量非线性回归在实际应用中的应用第七章:非线性回归的软件实现7.1 非线性回归软件的选择与使用7.2 常见非线性回归软件的比较与评价7.3 利用非线性回归软件进行数据分析实例7.4 案例分析:非线性回归软件在实际研究中的应用第八章:非线性回归分析的扩展与应用8.1 非线性回归分析在时间序列数据中的应用8.2 非线性回归分析在图像处理中的应用8.3 非线性回归分析在机器学习中的应用8.4 案例分析:非线性回归分析在交叉学科领域的应用第九章:非线性回归分析的局限性与改进9.1 非线性回归分析的局限性9.2 非线性回归分析的改进方法9.3 非线性回归分析的发展趋势9.4 案例分析:克服非线性回归分析局限性的实践方法第十章:非线性回归分析在科学研究中的应用案例精选10.1 非线性回归分析在物理学中的应用案例10.2 非线性回归分析在化学领域的应用案例10.3 非线性回归分析在生物学领域的应用案例10.4 非线性回归分析在其他科学领域中的应用案例第十一章:非线性回归分析在社会科学中的应用11.1 非线性回归分析在社会学中的应用11.2 非线性回归分析在心理学中的应用11.3 非线性回归分析在教育学中的应用11.4 案例分析:非线性回归分析在社会科学研究中的应用第十二章:非线性回归分析在医学与健康领域的应用12.1 非线性回归分析在医学研究中的应用12.2 非线性回归分析在公共卫生领域中的应用12.3 非线性回归分析在生物医学工程中的应用12.4 案例分析:非线性回归分析在医学与健康研究中的应用第十三章:非线性回归分析在工程领域的应用13.1 非线性回归分析在土木工程中的应用13.2 非线性回归分析在机械工程中的应用13.3 非线性回归分析在电子工程中的应用13.4 案例分析:非线性回归分析在工程领域的应用实例第十四章:非线性回归分析在金融与经济领域的应用14.1 非线性回归分析在金融市场预测中的应用14.2 非线性回归分析在宏观经济分析中的应用14.3 非线性回归分析在企业财务分析中的应用14.4 案例分析:非线性回归分析在金融与经济领域的应用第十五章:非线性回归分析的的未来与发展趋势15.1 非线性回归分析在数据科学中的应用与发展15.2 与非线性回归分析的结合与发展15.3 非线性回归分析在新兴领域的应用前景15.4 案例分析:非线性回归分析在未来发展趋势中的机遇与挑战重点和难点解析重点:1. 非线性回归的定义与意义,以及与线性回归的比较。