高分子物理 高分子的溶液性质
- 格式:ppt
- 大小:23.58 MB
- 文档页数:55
第3章高分子的溶液性质1.高分子的溶解过程与小分子相比,有什么不同?答:高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,溶剂分子能比较快的渗透进入高聚物,而高分子向溶剂的扩散却非常慢。
(1)聚合物的溶解过程要经过两个阶段,先是溶剂分子渗入聚合物内部,使聚合物体积膨胀,称为溶胀;然后才是高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。
对于交联的聚合物,在与溶剂接触时也会发生溶胀,但因有交联的化学键束缚,不能再进一步使交联的分子拆散,只能停留在溶胀阶段,不会溶解。
(2)溶解度与聚合物分子量有关,分子量越大,溶解度越大。
对交联聚合物来说,交联度大的溶胀度小,交联度小的溶胀度大。
(3)非晶态聚合物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入聚合物内部使之溶胀和溶解。
晶态聚合物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入聚合物内部非常困难,因此晶态化合物的溶解比非晶态聚合物要困难得多。
(4)对于非极性聚合物与溶剂的相互混合,溶解过程一般是吸热的,故只有在升高温度或减小混合热才能使体系自发溶解。
恒温恒压时,混合热可表示:可见二者的溶度参数δ1,δ2越接近,ΔH M越小,越能相互溶解。
对于极性聚合物与溶剂的相互混合,由于高分子与溶剂分子的强烈相互作用,溶解时放热,使体系的自由能降低,溶解过程能自发进行。
而溶解时,不但要求聚合物与溶剂的溶度参数中非极性部分相近,还要求极性部分也相近,才能溶解。
(5)结晶性非极性聚合物的溶解分为两个过程:其一是结晶部分的熔融,其二是高分子与溶剂的混合。
结晶性极性聚合物,若能与溶剂形成氢键,即使温度很低也能溶解。
2.什么是高分子的“理想溶液”?它应符合哪些条件?答:高分子溶液的化学位由理想部分和非理想部分组成,对于高分子溶液即使浓度很稀也不能看作是理想溶液,但是可以通过选择溶剂和温度来满足10Eμ∆=的条件,使高分子溶液符合理想溶液的条件,称其为θ条件,这时的相互作用参数χ=1/2。
溶液中有机高分子的相互作用及其物理化学性质溶液是指将溶质溶解在溶剂中所得到的一种混合物,其中溶质可以是无机化合物、有机化合物、离子或分子等。
相对于无机化合物,有机高分子由于其独特的结构、性质和功能,在溶液中的相互作用和物理化学性质方面具有一定的特殊性。
一、有机高分子在溶液中的相互作用溶液中,有机高分子分子间的相互作用会引起溶液的物理化学性质的变化。
如溶解度、粘度、折射率、电导率等均会受到影响。
有机高分子的分子间作用主要包括弱键、浓聚、缩合、交联等。
1.弱键:溶液中,有机高分子会通过氢键、范德华力、π-π堆积等弱键与自身或其他分子相互作用。
例如,蛋白质、核酸等生物高分子的稳定性和生化反应也依赖于多种氢键、离子键的相互作用,以及范德华力和疏水性等因素。
2.浓聚:溶液中,当有机高分子浓度达到一定标准后,它们之间会形成浓聚体,引起溶液的浑浊。
浓聚通常由于电荷、极性、氢键、疏水性、静电相互作用等因素驱动。
浓聚体可以是单片、微粒、有序方阵等。
例如,聚合物在溶液中的自组装形态的变化经常伴随着物理化学性质的改变,从而具有丰富的应用前景。
3.缩合:溶液中,有机高分子物质往往存在部分脱溶或浮游于溶液中。
当这些不稳定的物质相互接触时,它们可能发生缩合反应,从而形成高分子分子量更大的化合物。
其实现机理可由标架、过渡态、缩合等多个反应过程组成。
缩合反应不仅反映高分子的运动性、疏水性、氧化还原性等特性,而且可能为高分子的控制合成提供新的策略。
4.交联:溶液中,有机高分子可以形成交联网状结构,从而改变和增强物理性质,如弹性、刚度、引伸强度等。
交联的形成可以通过化学交联、物理交联等方式实现。
例如,聚丙烯酸和聚丙烯酰胺等聚合物在交联状态下表现出较高的吸水性、柔韧性和渗透性,广泛应用于纤维和医学等领域。
二、有机高分子在溶液中的物理化学性质1.溶解度:有机高分子在溶液中的溶解度与分子间的相互作用密切相关。
促进高分子分子间交流的因素,如分子量、极性、非极性区域和亲水性和疏水性,通常会促进其溶解度。
第三章高分子的溶液性质高聚物以分子状态分散在溶剂中所形成的均相混合物称为高分子溶液,它是人们在生产实践和科学研究中经常碰到的对象。
高分子溶液的性质随浓度的不同有很大的变化。
就以溶液的粘性和稳定性而言,浓度在 1%以下的稀溶液,粘度很小而且很稳定,在没有化学变化的条件下其性质不随时间而变。
纺丝所用的溶液一般在15%以上,属于浓溶液范畴,其粘度较大,稳定性也较差,油漆或胶浆的浓度高达 60%,粘度更大。
当溶液浓度变大时高分子链相互接近甚至相互贯穿而使链与链之间产生物理交联点,使体系产生冻胶或凝胶,呈半固体状态而不能流动。
如果在高聚物中加入增塑剂,则是一种更浓的溶液,呈固体状,而且有—定的机械强度。
此外能相容的高聚物共混体系也可看作是一种高分子溶液。
高分子的溶液性质包括很多内容:热力学性质:溶解过程中体系的焓、熵、体积的变化,高分子溶液的渗透压,高分子在溶液中的分子形态与尺寸,高分子与溶剂的相互作用,高分子溶液的相分离等;流体力学性质:高分子溶液的粘度、高分子在溶液中的扩散和沉降等;光学和电学性质:高分子溶液的光散射,折光指数,透明性,偶极矩,介电常数等。
本章将着重讨论高分子溶液的热力学性质和流体力学性质。
第一节高聚物的溶解3.1.1 高聚物溶解过程的特点※高聚物的溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”;然后才是高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。
对于交联的高聚,只能停留在溶胀阶段,不会溶解。
※溶解度与高聚物的分子量有关,分子量大的溶解度小,对交联高聚物来说,交联度大的溶胀度小,交联度小的溶胀度大。
※晶态高聚物的溶解比非晶态高聚物要困难得多:非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。
晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难。
高分子溶液特点高分子溶液是指由高分子聚合物和溶剂组成的混合物。
高分子溶液具有以下特点:1. 高分子溶液具有高粘度。
由于高分子聚合物分子量大,溶液中高分子链的数量较多,因此高分子溶液的粘度较高。
这使得高分子溶液在流动时阻力较大,流动性较差。
2. 高分子溶液具有高浓度。
高分子溶液中高分子聚合物的含量较高,溶液的浓度较大。
高浓度的高分子溶液在溶剂中形成较为稠密的网络结构,使得溶液的物理性质发生明显变化。
3. 高分子溶液具有非牛顿流动性质。
高分子溶液的流动性质不符合牛顿流体的流动规律,即剪切应力与剪切速率成正比。
高分子溶液的流动性质受到溶液浓度、分子量、分子形态等因素的影响,其流动性质随剪切速率的变化而变化。
4. 高分子溶液具有渗透压效应。
高分子溶液中高分子聚合物的存在会导致溶液的渗透压增加。
渗透压是溶液中溶质分子浓度的一种表现形式,高分子聚合物的溶液具有较高的渗透压,可以引起溶剂分子的流动,产生渗透现象。
5. 高分子溶液具有胶溶性。
高分子聚合物在溶剂中可以形成胶体溶液,即高分子溶液中高分子链相互交织形成三维网络结构。
高分子溶液的胶溶性使得其具有一定的黏弹性和凝胶特性。
6. 高分子溶液的性质受溶剂的选择影响较大。
不同的溶剂对高分子溶液的物理性质和溶解度有着显著影响。
溶剂的选择可以改变高分子溶液的粘度、流动性、溶解度等性质。
7. 高分子溶液的性质可通过调控溶液中高分子聚合物的分子量、浓度和分子结构来改变。
高分子聚合物的分子量越大,溶液的粘度越高;溶液中高分子聚合物的浓度越大,溶液的黏弹性越明显;高分子聚合物的分子结构不同,溶液的流动性质和凝胶特性也会有所不同。
总结起来,高分子溶液具有高粘度、高浓度、非牛顿流动性质、渗透压效应、胶溶性等特点。
这些特点使得高分子溶液在许多领域具有广泛应用,如涂料、胶黏剂、医药、食品等。
通过合理调控高分子聚合物的性质和溶液条件,可以实现高分子溶液的特定应用需求。
第三章高分子的溶液性质高聚物以分子状态分散在溶剂中所形成的均相混合物称为高分子溶液,它是人们在生产实践和科学研究中经常碰到的对象。
高分子溶液的性质随浓度的不同有很大的变化。
就以溶液的粘性和稳定性而言,浓度在1%以下的稀溶液,粘度很小而且很稳定,在没有化学变化的条件下其性质不随时间而变。
纺丝所用的溶液一般在15%以上,属于浓溶液范畴,其粘度较大,稳定性也较差,油漆或胶浆的浓度高达60%,粘度更大。
当溶液浓度变大时高分子链相互接近甚至相互贯穿而使链与链之间产生物理交联点,使体系产生冻胶或凝胶,呈半固体状态而不能流动。
如果在高聚物中加入增塑剂,则是一种更浓的溶液,呈固体状,而且有—定的机械强度。
此外能相容的高聚物共混体系也可看作是一种高分子溶液。
高分子的溶液性质包括很多内容:热力学性质:溶解过程中体系的焓、熵、体积的变化,高分子溶液的渗透压,高分子在溶液中的分子形态与尺寸,高分子与溶剂的相互作用,高分子溶液的相分离等;流体力学性质:高分子溶液的粘度、高分子在溶液中的扩散和沉降等;光学和电学性质:高分子溶液的光散射,折光指数,透明性,偶极矩,介电常数等。
本章将着重讨论高分子溶液的热力学性质和流体力学性质。
第一节高聚物的溶解3.1.1高聚物溶解过程的特点※高聚物的溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”;然后才是高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。
对于交联的高聚,只能停留在溶胀阶段,不会溶解。
※溶解度与高聚物的分子量有关,分子量大的溶解度小,对交联高聚物来说,交联度大的溶胀度小,交联度小的溶胀度大。
※晶态高聚物的溶解比非晶态高聚物要困难得多:非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。
晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难。
3.1.2 高聚物溶解过程的热力学解释溶解过程是溶质分子和溶剂分子互相混合的过程,在恒温恒压下,这种过程能自发进行的必要条件是Gibbs自由能的变化△F<0。
高分子化学与物理基础知识点
1. 高分子的定义和分类
高分子是由许多重复单元通过共价键连接而成的大分子。
根据来源,高分子可分为天然高分子和合成高分子;根据性能和用途,高分子可分为塑料、橡胶、纤维、涂料、胶粘剂等。
2. 高分子的结构
高分子的结构包括一级结构(近程结构)和二级结构(远程结构)。
一级结构指的是高分子链中原子的化学组成和排列方式,如头尾结构、顺反异构等;二级结构指的是高分子链的形态,如伸直链、螺旋链、折叠链等。
3. 高分子的合成
高分子的合成方法包括加聚反应、缩聚反应、开环聚合等。
其中,加聚反应是通过单体分子间的加成反应形成高分子的方法;缩聚反应是通过单体分子间的缩合反应形成高分子的方法。
4. 高分子的物理性能
高分子的物理性能包括力学性能、热性能、电性能、光学性能等。
其中,力学性能是高分子材料最重要的性能之一,包括拉伸强度、弯曲强度、冲击强度等。
5. 高分子的溶液性质
高分子在溶液中的性质包括溶解过程、溶剂选择、分子量测定等。
高分子的溶解过程一般分为溶胀和溶解两个阶段;溶剂选择要考虑高分子的极性、分子量、溶液的黏度等因素。
以上是高分子化学与物理的一些基础知识点,希望对你有所帮助。