23极限的四则运算法则
- 格式:ppt
- 大小:443.00 KB
- 文档页数:8
极限的四则运算法则§1.3介绍了极限的概念,并用观察法求出了一些简单函数的极限。
但对于较复杂的函数的极限就很难用观察法求得,因此,还需研究极限的运算。
本节主要是建立极限的四则运算法则,并利用该法则求一些常见类型极限。
1.5.1极限的四则运算法则定理1.5.1 设A x f x =→)(lim ?,B x g x =→)(lim ?,则(1)B A x g x f x g x f x x x ±=±=±→→→)(lim )(lim )]()([lim ???(2)B A x g x f x g x f x x x ⋅=⋅=⋅→→→)(lim )(lim )()(lim ???(3)BA x g x f x g x f x x x ==→→→)(lim )(lim )()(lim ???(0≠B )证明略。
注:(1)定理中,记号“?lim →x ”表示该定理对于自变量各种变化趋势的极限均成立。
(2)法则(2)中,若C x g =)((C 为常数),则有)(lim )(lim ??x f C x Cf x x →→=(3)法则(1)、(2)均可推广到有限个函数的情形:设函数)()()(21x f x f x f n ,,, 当?→x 时的极限均存在,则有 )(lim )(lim )(lim )]()()([lim ?2?1?21?x f x f x f x f x f x f n x x x n x →→→→±±±=±±±)(lim )(lim )(lim )]()()([lim ?2?1?21?x f x f x f x f x f x f n x x x n x →→→→⋅⋅⋅=⋅⋅⋅特殊地,当)()()()(21x f x f x f x f n ==== 时,个个n x x x n x x f x f x f x f x f x f )(lim )(lim )(lim ])()()([lim ????→→→→⋅⋅⋅=⋅⋅⋅ 即n x n x x f x f )](lim [)]([lim ??→→=另注:(1)该定理给求极限带来了极大方便,但应注意,运用该定理的前提是被运算的各个变量的极限必须存在,并且,在除法运算中,还要求分母的极限不为零。