三年级奥数第01讲数数图形(教师版)
- 格式:docx
- 大小:120.94 KB
- 文档页数:8
三年级奥数第01讲数数图形(教师版)x认识了解线段、角、三角形、长方形等基本图形;学会数基本图形的个数;掌握数图形的规律。
一、学会数图形同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
当我们识了线段、角、三角形、长方形等基本图形后,这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。
要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。
二、解题策略要准确、迅速地计数图形必须注意以下几点:1.弄清被数图形的特征和变化规律。
2.要按一定的顺序数,做到不重复,不遗漏。
考点一:基本图形例1、数出下图中有多少条线段?【解析】方法一:我们可以采用以线段左端点分类数的方法。
以A点为左端点的线段有:AB、AC、AD 3条;以B点为左端点的线段有:BC、BD 2条;以C点为左端点的线段有:CD 1条。
所以,图中共有线段3+2+1=6(条)。
方法二:把图中线段AB、BC、CD看做基本线段来数,那么,由1条基本线段构成的线段有:AB、BC、CD 3条;由2条基本线段构成的线段有:AC、BD 2条;由3条基本线段构成的线段有:AD 1条。
所以,图中一共有3+2+1=6(条)线段。
例2、数出图中有几个角?【解析】数角的个数可以采用与数线段相同的方法来数。
方法一:以OA为一边的角有:∠AOB、∠AOC、∠AOD 3个;以OB为一边的角还有:∠BOC、∠BOD 2个;以OC为一边的角还有:∠COD 1个。
所以,图中共有角3+2+1=6(个)。
方法二:把图中∠AOB、∠BOC、∠COD看做基本角来数,那么,由1个基本角构成的角有:∠AOB、∠BOC、∠COD 3个;由2个基本角构成的角有: ∠AOC、∠BOD 2个;由3个基本角构成的角有:∠AOD 1个。
图形计数知识要点(n m++-数线段【例1】请数出下图中线段的总条数。
【分析】法1:我们规定:把相邻两点间的线段叫做基本线段,我们可以这样分类数:由1条基本线段构成的线段有:AB、BC、CD、DE、EF5条.由2条基本线段构成的线段有:AC、BD、CE、DF4条.由3条基本线段构成的线段有:AD、BE、CF3条.由4条基本线段构成的线段有:AE、BF2条.由5条基本线段构成的线段有:AF1条.总数5432115++++=条.法2:按线段的起点分类(注意保持方向的一致),如右图以A点为共同左端点的线段有:AB、AC、AD、AE、AF5条.以B点为共同左端点的线段有:BC、BD、BE、BF4条.以C点为共同左端点的线段有:CD、CE、CF3条.以D点为共同左端点的线段有:DE、DF2条.以E点为共同左端点的线段有:EF1条.总数5432115++++=条.法3:线段AF上共有6个点,那么应该共有65215⨯÷=条线段。
【小结】两点确定一条线段,假设某条线段上有n个点(包含线段的两个端点),那么这条线段共包含的线段数为(1)2n n-÷条。
【例2】数一数,下图中共有多少条线段?【分析】水平方向,有(12)39+⨯=(条),两条对角线上有(12)26+⨯=+⨯=(条),竖直方向有(12)39(条)线段,所以共有99624++=(条)线段。
【例3】请问下图有多少条线段?【分析】五角星每条边上都有6条线段,那么除去相接的那条线段,两个五角星各24条线段,而两个五角星相接的那条线段上有76221⨯÷=(条),由此可得此图共有线段++=(条)。
24242169【例4】数一数下图一共有多少条线段?【分析】横向线段:1(21)(321)(4321)(54321)(654321)56++++++++++++++++++++=(条);同样的,斜向左与斜向右的线段条数也均为56条,那么此图形线段总数为:563168⨯=(条)。
三年级奥数第01讲数数图形(教师版)x
认识了解线段、角、三角形、长方形等基本图形;
学会数基本图形的个数;
掌握数图形的规律。
一、学会数图形
同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
当我们识了线段、角、三角形、长方形等基本图形后,这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。
要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。
二、解题策略
要准确、迅速地计数图形必须注意以下几点:
1.弄清被数图形的特征和变化规律。
2.要按一定的顺序数,做到不重复,不遗漏。
考点一:基本图形
例1、数出下图中有多少条线段?
【解析】方法一:我们可以采用以线段左端点分类数的方法。
以A点为左端点
的线段有:AB、AC、AD 3条;以B点为左端点的线段有:BC、BD 2条;以C点为左端点的线段有:CD 1条。
所以,图中共有线段3+2+1=6(条)。
方法二:把图中线段AB、BC、CD看做基本线段来数,那么,由1条基本线段构成的线段有:AB、BC、CD 3条;由2条基本线段构成的线段有:AC、BD 2条;由3条基本线段构成的线段有:AD 1条。
所以,图中一共有3+2+1=6(条)线段。
例2、数出图中有几个角?
【解析】数角的个数可以采用与数线段相同的方法来数。
方法一:以OA为一边的角有:∠AOB、∠AOC、∠AOD 3个;以OB为一边的角还有:
∠BOC、∠BOD 2个;以OC为一边的角还有:∠COD 1个。
所以,图中共有角3+2+1=6(个)。
方法二:把图中∠AOB、∠BOC、∠COD看做基本角来数,那么,由1个基本角构成的角有:∠AOB、∠BOC、∠COD 3个;由2个基本角构成的角有: ∠AOC、∠BOD 2个;由3个基本角构成的角有:∠AOD 1个。
所以,图中一共有3+2+1=6(个)角。
例3、数出右图中共有多少个三角形?
【解析】方法一:我们可以采用按边分类数的方法。
以PA为边的三角形有:△PAB、△PAC、△PAD、3个;以PB为边的三角形还有:△PBC、△PBD 2
个;以PC为边的三角形还有:△PCD 1个。
所以,图中共有三角形3+2+1=6(个)。
方法二:把图中三角形△PAB、△PBC、△PCD看做基本三角形来数,那么,由1个基本三角形构成的三角形有:△PAB、△PBC、△PCD 3个;由2个基本三角形构成的三角形有: △PAC、△PBD 2个;由3个基本三角形构成的三角形有:△PAD 1个。
所以,图中一共有3+2+1=6(个)三角形。
方法三:我们发现,要数出图中三角形的个数,只需数出线段AD中包含几条线段就可以了,即3+2+1=6(个)。
所以图中共有6个三角形。
考点二:较复杂的问题
例1、数出下图中有多少个长方形?
【解析】数图中有多少个长方形和数三角形的方法一样,长方形是由长、宽两对线段围成,线段CD上有3+2+1=6(条)线段,其中每一条与AC中一条线段对应,分别作为长方形的长和宽,这里共有6×1=6(个)长方形,而AC上共有2+1=3(条)线段也就有6×3=18(个)长方形。
它的计算公式为:
长方形的总数=长边线段的总数×宽边线段的总数:
(3+2+1)×(2+1)=18(个)
例2、下图中共有多少个三角形?
【解析】为了保证不漏数又不重复,我们可以分类来数三角形,然后再把数出的各类三角形的个数相加。
(1)图中共有6个小三角形;
(2)由两个小三角形组合的三角形有3个;
(3)由三个小三角形组合的三角形有4个;
(4)由六个小三角形组合的三角形有1个。
所以共有6+3+4+1=14个三角形。
例3、有5个同学,每两个人握手一次,一共要握手多少次?
【解析】这道题可以用数线段的方法来解答。
根据题意,画出线段图,每一个端点代表一个同学。
从图上可以看出,第1个同学要与其余4个同学握手共握手4次;第2个同学还要与其余3个同学握手共握手3次,第3个同学要与其余2个同学握手共握手2次;第4个同学还要与最后1个同学握手共握手1次。
所以,一共要握手4+3+2+1=10(次)
例4、从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?
【解析】这道题是数线段的方法在实际生活中的应用,连同广州、北京在内,这条铁路上共有10个站,共有1+2+3+…+9=45条线段,因此要准备45种不同的车票。
由于这些车站之间的距离各不相等,因此,有多少种不同的车票,就有多少种不同的票价,所以共有45种不同的票价。
➢课堂狙击
1、数出下图中有多少条线段?
【解析】我们可以采用以线段左端点分类数的方法。
以A点为左端点的线段有4条;以B点为左端点的线段有3条;以C点为左端点的线段有2条, 以D点为左端点的线段有1条。
所以图中共有线段4+3+2+1=10(条)。
2、数出图中有几个角?
【解析】以OA为一边的角有2个;以OB为一边的角还有1个;以OC为一边的角还有:∠COD 1个。
所以,图中共有角2+1=3(个)。
3、数出图中共有多少个三角形?
【解析】我们可以采用按边分类数的方法。
以BA为边的三角形有4个;以AC 为边的三角形还有3个;以AD为边的三角形还有2个,以AE为边的三角形还有1个。
所以,图中共有三角形4+3+2+1=10(个)。
4、数出下图中有多少个长方形?
【解析】长方形的总数=长边线段的总数×宽边线段的总数:
(4+3+2+1)×(3+2+1)=60(个)
5、银海学校三年级有9个班,每两个班要比赛拔河一次,这样一共要拔河几次? 【解析】第一个班要和其余8个班比赛一次,第二个班又要和剩下7个班比赛一次,依次下去,总数是:8+7+6+5+4+3+2+1=36场。
6、从上海到武汉的航运线途中,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?
【解析】算上上海、武汉一共有11个码头,一共有10+9+8+7+6+5+4+3+2+1=55条线段,那么算上往返的船票,一共是110种。
➢课后反击
1、数出下图中有几个长方形?
【解析】一共5+4+3+2+1=15个。
2、数出图中有几个角?
【解析】一共4+3+2+1=10个。
3、数出图中共有多少个三角形?
【解析】一共有(4+3+2+1)+(4+3+2+1)=20个。
4、数出下图中有多少个正方形?
【解析】一共有:1+4+9+16=30个。
5、数出下图中有多少个长方形?
【解析】一共有:4+1+1+1=7个。
6、有1,2,3,4,5,6,7,8等8个数字各用一次,能组成多少个不同的两位数? 【解析】个位为8,十位可以有7种;个位为7,十位也可以有7种;依次推,最后一共有:56种。
7、从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?
【解析】一共有8个站,那么一共有:7+6+5+4+3+2+1=28条线段,那么一共有28种票价。
1、下边三个图中都有一些三角形,在图A中,有个;在图B中,有__ _个;在图C中,有______个。
(第一届小学“希望杯”全国数学邀请赛四年级第1试)
【解析】5;8;5
2、数一数:图中共有________ 个正方形。
(第一届小学“希望杯”全国数学邀请赛四年级第2试)
【解析】一共有17+9+4+1=31个。
(1)认识了解线段、角、三角形、长方形等基本图形;
(2)学会数基本图形的个数;
(3)掌握数图形的规律。
重点和难点突破:
要准确、迅速地计数图形必须注意以下几点:
1.弄清被数图形的特征和变化规律。
2.要按一定的顺序数,做到不重复,不遗漏。
➢本节课我学到了
➢我需要努力的地方是。