花生四烯酸及其代谢物的生物学作用
- 格式:doc
- 大小:42.00 KB
- 文档页数:9
15-脂氧合酶途径的主要花生四烯酸代谢产物。
体内和体外的各种药理作用。
脂氧合酶途径的主要花生四烯酸代谢产物及其体内和体外的各种药理作用花生四烯酸是一种重要的多不饱和脂肪酸,它在生物体内通过脂氧合酶途径代谢产生多种活性代谢产物。
这些代谢产物在体内和体外表现出各种药理作用,包括炎症反应、细胞增殖、血小板聚集、血管收缩等。
本文将探讨脂氧合酶途径的主要花生四烯酸代谢产物以及它们的药理作用。
一、5-HPETE (羟基过氧基花生四烯酸)5-HPETE是花生四烯酸通过脂氧合酶途径产生的第一个代谢产物。
它具有促炎作用,能够引发炎症反应,并促进细胞趋化和黏附。
此外,5-HPETE还能够增强白细胞的活性,在机体抵抗外界病原体上起到重要的作用。
二、LTA4 (白三烯A4)LTA4是5-HPETE的代谢产物,它是一种非常活性的中间产物,可以进一步代谢为多种具有生物活性的产物。
LTA4具有多种药理作用,包括促炎、调节免疫反应以及参与细胞凋亡等。
三、LTC4、LTD4、LTE4 (白三烯C4、D4、E4)LTC4、LTD4、LTE4是LTA4进一步代谢的产物,也被称为白三烯C4、D4、E4。
它们属于白三烯类,具有明显的血管收缩和平滑肌收缩作用,是维持呼吸道平滑肌张力的重要调节因子。
同时,它们也参与过敏反应和血液凝固,通过激活血小板聚集和释放组胺等机制。
四、PGG2、PGH2 (过氧化物和过氧化羟基花生四烯酸)PGG2和PGH2是花生四烯酸代谢的重要产物,它们是前列腺素的前体物质。
PGG2和PGH2作为中间产物,可以进一步代谢为多种不同类型的前列腺素,包括PGE2、PGD2、PGF2α等。
这些前列腺素在体内具有广泛的生理和药理作用,包括调节炎症反应、细胞增殖、血小板聚集、肌肉收缩等。
五、TXA2 (血栓素A2)TXA2是花生四烯酸代谢的产物之一,它是一种强烈的血小板聚集活性物质,具有促血栓形成的作用。
TXA2能够通过激活血小板的G 蛋白偶联受体,引发血小板聚集和血栓形成反应,对于保护机体免受血管损伤至关重要。
txb2花生四烯酸代谢产物【实用版】目录1.花生四烯酸代谢产物简介2.花生四烯酸代谢产物的作用3.花生四烯酸代谢产物的来源和生产方法4.花生四烯酸代谢产物的应用领域5.花生四烯酸代谢产物的发展前景正文一、花生四烯酸代谢产物简介花生四烯酸代谢产物是指花生四烯酸在生物体内经过代谢后生成的一类物质。
花生四烯酸(ARA)是一种重要的多不饱和脂肪酸,广泛存在于植物油、坚果等食物中,对人体具有多种生理功能。
二、花生四烯酸代谢产物的作用花生四烯酸代谢产物具有多种生物活性,包括抗炎、抗肿瘤、免疫调节等作用。
其中,花生四烯酸的代谢产物如白三烯、前列腺素等,在生物体内参与多种生理过程的调控,对维持人体健康具有重要作用。
三、花生四烯酸代谢产物的来源和生产方法1.来源:花生四烯酸代谢产物主要存在于植物油、坚果等食物中,尤其是亚麻籽油、核桃油等。
2.生产方法:目前,工业生产花生四烯酸代谢产物主要采用微生物发酵法,通过特定微生物将花生四烯酸转化为白三烯等代谢产物。
此外,也有研究采用酶促转化等方法生产花生四烯酸代谢产物。
四、花生四烯酸代谢产物的应用领域花生四烯酸代谢产物在医药、食品、保健品等领域具有广泛应用。
例如,白三烯类药物在临床上用于治疗哮喘、过敏性鼻炎等疾病;花生四烯酸代谢产物在食品中可作为功能性食品添加剂,提高食品的营养价值和保健功能。
五、花生四烯酸代谢产物的发展前景随着对花生四烯酸代谢产物研究的深入,其在医药、食品等领域的应用将不断拓展,预计未来市场规模将持续扩大。
同时,随着生产技术的不断进步,花生四烯酸代谢产物的生产成本有望降低,从而推动产业的可持续发展。
花生四烯酸及其代谢物的生物学作用
袁成凌;姚建铭;余增亮
【期刊名称】《中国药物化学杂志》
【年(卷),期】2000(010)001
【摘要】花生四烯酸 (AA)是人体的一种必需脂肪酸 .本文阐述它的存在与分布及生化代谢途径 ,并就AA及其代谢物的生理功能进行综述 .同时探讨它们与多种疾病的关系 ,说明应用药物影响AA的释放及代谢具有重要的临床意义 .
【总页数】4页(P75-78)
【作者】袁成凌;姚建铭;余增亮
【作者单位】不详;不详
【正文语种】中文
【中图分类】R151.2
【相关文献】
1.环氧花生四烯酸和羟基花生四烯酸的生物学作用及与子痫前期关系的研究进展[J], 龙安雄;谭龙益
2.花生四烯酸及其代谢物的第二信使作用 [J], 包建新
3.花生四烯酸代谢物在炎症中的作用 [J], 陈龙;朱祖康;王丙云;毛鑫智
4.肝片形吸虫及其培养液内花生四烯酸代谢物水平和作用探讨 [J], 陈龙;王丙云;Award Daugschies;毛鑫智
5.花生四烯酸代谢物对呼吸道感受器的作用 [J], 林树新;於峻
因版权原因,仅展示原文概要,查看原文内容请购买。
花生四烯酸及其代谢产物花生四烯酸(Arachidonic Acid,AA)是一种重要的多不饱和脂肪酸,它在人体内起着重要的生理功能。
花生四烯酸主要存在于动物脂肪中,如肉类、蛋黄、乳制品等,也存在于某些植物油中,如花生油、玉米油等。
花生四烯酸在人体内经过一系列代谢反应,形成多种重要的生物活性物质,如前列腺素、白三烯、血栓素等。
这些代谢产物在调节炎症反应、血小板聚集、血管收缩等方面发挥着重要的作用。
花生四烯酸可以通过环氧合酶(COX)途径代谢成前列腺素。
前列腺素是一类具有广泛生物活性的物质,包括前列腺素E2(PGE2)、前列腺素D2(PGD2)、前列腺素F2α(PGF2α)等。
它们在炎症反应中发挥重要的调节作用,参与疼痛传导、体温调节、免疫调节等过程。
此外,前列腺素还参与了肾脏调节血压的过程。
花生四烯酸可以通过白三烯途径代谢成白三烯。
白三烯也是一类具有重要生物活性的物质,包括白三烯B4(LTB4)、白三烯C4(LTC4)、白三烯D4(LTD4)等。
白三烯在炎症反应中起到重要的作用,参与炎症细胞的趋化、吞噬细胞的激活等过程。
此外,白三烯还参与了过敏反应和哮喘等疾病的发生发展。
花生四烯酸还可以通过血栓素途径代谢成血栓素。
血栓素是一类参与血小板聚集和血管收缩的物质,主要包括血栓素A2(TXA2)和血栓素B2(TXB2)。
血栓素在血管损伤和血小板激活过程中发挥重要的作用,参与了血液凝固和血栓形成的过程。
除了上述代谢产物外,花生四烯酸还可以通过一些其他途径代谢成其他一些生物活性物质,如花生四烯酸醇(20-HETE)、花生四烯酸酮(20-HK)等。
这些物质在调节血管张力、肾脏功能等方面发挥着重要的作用。
需要注意的是,花生四烯酸及其代谢产物在适当的量下对人体是有益的,但过量摄入或异常代谢可能导致一些疾病的发生。
例如,花生四烯酸过多会导致炎症反应过度激活,引发关节炎、哮喘等疾病。
另外,花生四烯酸代谢异常也与一些心血管疾病和肿瘤的发生发展相关。
花生四烯酸及其代谢物的生物学作用花生四烯酸(arachidonic acid)简称AA,是5,8,11,14-二十碳四烯酸.它是人体的一种必需脂肪酸.该脂肪酸含有20个碳原子,4个双键,其中第一个双键起始于甲基端起第6个碳原子(其结构见图1),故属于n-6系列的多不饱和脂肪酸,简记为20∶4(n-6).The molecular structural formula1 AA的存在与分布AA广泛分布于动物的中性脂肪中,牛乳脂、猪脂肪、牛脂肪、血液磷脂、肝磷脂和脑磷脂中含量较少(约为1%),肾上腺磷脂混合脂肪酸中也含有该成分(15%).在油料种子中的分布也比人们原先估计的要广泛一些,是花生油中的一种主要成分.Sohlek等人〔1〕从几种苔藓和蕨类植物中检测到了AA.另外,在日本沙丁鱼油中,也分析出一定数量的花生四烯酸.AA也是人体中含量最高,分布最广的一种多不饱和脂肪酸(PUFA).尤其是在脑和神经组织中,AA含量一般占总PUFAs的40%~50%.在神经末梢甚至高达70%.在正常人的血浆中的含量也高达400 mg/L,而DH-γ-亚油酸(DHLG)含量为100 mg/L,γ-亚麻酸仅为25 mg/L.母乳中,存在着丰富的AA.授乳第一周后母乳中AA的含量约占类脂物总量的0.4%〔2〕.真菌中,AA主要分布在原始的几个纲中,如丝壶菌纲(Hyphochytrimycete)、壶菌纲(Hytridiomycetes)、卵菌纲(Oomycetes)以及被孢霉属(Mortierella)等〔3〕.2 AA的生化代谢途径AA是多种生物活性物质的前体,在人体内由油酸转化而来〔4〕.它在生物体内主要是以磷脂的形式存在于细胞膜上,在磷脂酶A2和磷脂酶C的作用下分解成游离的的释放受磷脂酶A2和磷脂酶C的调节.虽然游离的AA在正常的生理状态下水平很低,但当细胞膜受到各种刺激时,AA便从细胞膜的磷脂池中释放出来,并转变为具有生物活性的代谢产物.目前知道至少有三类酶参与AA 的代谢,形成具有生物活性的二十碳衍生物(eicosanoids)〔5〕.游离的AA在环加氧酶(CO)的作用下,先形成不稳定的环内过氧化物(PGG2和PGH2),然后进一步形成前列腺素(PG),前列环素(PGI2)和血栓烷素(TXA2).TXA2在水溶液中不稳定,很快降解为的性质不稳定,在中性溶液中可水解成6-k-PGF1α,然后在肝脏中进一步代谢为经脂加氧酶(LPO)作用生成羟基二十碳四烯酸(HETEs),白三烯(LTs)以及脂氧素(LXs).CO和LPO都是双氧化酶,还有一类酶是单氧化酶,叫细胞色素P-450单氧化酶,也叫环氧化酶(EPO).它分解AA生成多种环氧化物(epoxides),同时也产生HETEs等.其代谢途径示意图见图2.The metabolism passes of AA1990年Morrow等〔6〕发现,在氧自由基催化下AA形成内过氧化中间产物,并最终生成一类结构与前列腺素类似的物质,称为异构前列腺素(iso-PGs).AA及其代谢衍生物具有很强的生物活性,并在许多疾病的病理生理过程中起着重要的作用.下面就有关的研究现状加以综述.3 AA及其代谢物的生理功效第二信使作用细胞内产生的AA及其代谢物在细胞内可发挥第二信使作用.D.Piomelli等〔7〕发现AA活性代谢物二十碳酸类是海生软体动物海兔感觉神经元突触前抑制作用的第二信使.LPO代谢物在海兔神经节细胞中能引起双向反应中的迟发成分——超级化,介导由组胺等引起的效应,发挥第二信使作用.AA及其代谢物亦能促进或放大其他第二信使系统,如cAMP 和cGMP.另外PG(E1,E2,I2,D2)也能使腺苷酸环化酶活化,致使细胞内cAMP浓度增高〔8〕.细胞内形成的AA及其代谢物亦可释放至细胞外,作为第一信使作用于产生它们的细胞或邻近细胞,通过另外的第二信使产生效应.如在成纤维细胞、激素促进细胞内PGs合成,而形成的PGs则作用于细胞表面的受体促进cAMP的形成〔9〕.参与造血和免疫调节〔10〕PGs对免疫活性细胞能产生不同作用,即双向功能.主要表现为:对M吞噬作用的促进与抑制;巨噬细胞抗肿瘤作用的抑制与恢复;对抗体产生的抑制与促进作用;对Tc细胞活性的抑制与增强;对NK细胞活性的抑制与增强.PGs对红系造血干细胞增殖分化都有明显的促进作用.AA的LPO代谢产物(HETEs及其前体HPETEs和LTs)对免疫细胞和免疫反应有抑制作用,外源性HPETEs有直接损伤细胞的作用,而其在体内还抑制淋巴因子产生.LTB4,LTD4和LTE4在浓度非常低时就可抑制免疫功能,抑制淋巴细胞对有丝分裂源刺激的反应及抗体产生.LTB4可诱导抑制性T细胞和NK细胞活性增强.对心血管系统的影响研究表明,AA及其代谢物能引起血管舒张,某些血管含有EPO,AA需经EPO代谢后发挥作用.离体和整体实验都发现5,6-环氧化物具有扩张血管作用.血小板中CO的活性很高,当血小板受胶原、血栓素等激活时,能释放ADP和5-HT,增加TXs合成,从而引起聚集作用.而EPO代谢物则能抑制血小板CO活性,减少TXs产生,从而抑制血小板聚集.这样EPO代谢物可能与其它抗血小板聚集因子如PGD2和PGI2有协同作用,而与促血小板聚集因子(ADP,5-HT,TXs)达成平衡〔5〕.TXA2是血小板中AA的一种主要代谢产物,具有促进血小板聚集和诱发血栓形成的作用.TXA2能促使致密管系统中Ca2+的游离,引起致密体收缩,并释放出ADP和5-HT,使附近的血小板发生聚集.PGI2是血管壁中AA代谢的主要产物,是一种对血小板聚集最有效的内源性抑制剂〔11〕.在正常的生理状态下,循环血中TXA2和PGI2的水平处于相对平衡状态,这是维持血液循环畅通的重要因素之一.TXA2-PGI2失衡可导致血栓形成和组织缺血的一系列生理机能的改变.血栓形成时,通常都有TXA2产生增多或/PGI2产生减少.尽管TXA2-PGI2失衡只能部分解释血栓栓塞倾向,但TXA2-PGI2这对相互作用的因子为有关的药理学研究提供了重要的指标.LTs可刺激TXA2合成,PGI2能抑制LTs的合成.实验证明,LTC4和LTD4可引起明显的血管收缩,它们是强效冠脉血管收缩剂,能降低冠脉血流,且LTC4>和LTD4可致灌注心脏的收缩力下降,心输出量减少,特别当发生速发型过敏反应时,白三烯对心脏的抑制作用更加明显,有时可致各种传导阻滞,因此可诱发或加重心肌梗塞和心绞痛〔12〕.对肝、胆器官的影响〔13〕PG,TXA2和LT均参与肝、胆多种生理功能的调节并与某些肝胆疾病有关.胆汁中存在较大量的各种PG和LT.前列腺素类化合物可改变肝胆汁流量,并可能与某些促胆汁分泌的激素的释放与作用有关.它还参与胆囊收缩,吸收水分,与胆囊炎及胆结石的发生密切相关.PG对各种类型的实验性肝损伤有保护作用,而LT则可损伤肝细胞及胆道组织.在炎症中的作用LTA4为不稳定的环氧化物,可被转变为其他为致炎症介质,其中LTB4是重要的白细胞活化物质,使白细胞趋化、聚集、粘附于血管内皮细胞、脱颗粒、释放氧自由基及溶酶体酶,还可增加血管通透性,刺激支气管粘液分泌.LTC4及LTD4可收缩小动脉、支气管及胃肠道平滑肌,收缩肾小球毛细血管及系膜细胞,增加血管壁通透性,而LTB4无收缩血管及系膜细胞的作用〔14〕.LXs作用基本与LT相反,可拮抗LT的致炎症作用.LXs活化细胞的PKC,使细胞内Ca2+升高,刺激吞噬细胞合成磷脂酸,使膜磷脂再塑而促进PMN释放AA〔15〕.与神经内分泌组织的关系〔5〕AA还参与神经内分泌,AA能刺激垂体前叶、胎盘和肥大细胞的分泌,在多种神经内分泌组织中AA参与调节多种激素和神经肽,如ACTH,LH及催产素、加压素、胰岛素、胰高血糖素等的分泌.促细胞分裂作用PGF2α,TXB2能启动DNA复制,并促进细胞增生,TX和肝细胞增生、黑色素增长以及白细胞增殖都有关〔8〕.另外HETEs在平滑肌细胞、成纤维细胞、淋巴细胞等中也具有此作用〔5〕.4 AA及其代谢物与疾病AA与脑缺血〔16〕脑缺血再灌流后,Ca2+大量进入细胞内,激活磷脂酶A2和C,使膜磷脂降解,生成AA,后者转化为PGI2,PGI2在血栓素合成酶作用下形成TXA2,结果TXA2和PGI2失衡,引起血小板粘附、聚集、阻塞血管,同时血管痉挛,侧支循环血流量降低,脑组织损伤加重.细胞内Na+贮留,细胞膜系统被破坏,因而缺血再灌流后脑组织含水量增加,引起脑水肿.在TXA2生成过程中,生成大量自由基,自由基又进一步激活磷脂酶A2,同时破坏细胞膜系统,形成恶性循环.AA与皮肤病〔17〕AA在许多皮肤病的病理生理过程中起重要作用.如在银屑病、痤疮、荨麻疹、掌脓疱病及接触性皮炎、异位性皮炎中,AA 及其衍生物(尤其是LTs)都发挥着重要的作用.这提示人们,干预AA代谢的物质对皮肤病具有极大的治疗潜能.AA与糖尿病肾病的关系李耀等人〔18〕发现糖尿病患者血浆中的TXB2明显升高,6-k-PGF1α明显降低.同时他们还发现糖尿病肾病患者的肾小球滤过率(GFR)显著升高,动物试验证实,早期糖尿病鼠的肾脏和肾单位的GFR较正常鼠增加40%.这种早期高滤状态可能与肾小球产生的具有舒张性的PGE2及PGI2增多有关.研究发现,高血糖时Δ-5与Δ-6去饱和酶活性降低,导致AA增加,刺激TXA2合成增加,血浆TXB2升高,这是构成糖尿病肾病的重要因素之一.AA与呼吸道疾病的关系〔12〕LTC4,LTD4是引起支气管痉挛最强的介质,二者对支气管作用相等,人们还发现LTD4是人肺慢反应物质(SRS-A)的主要成分.Holroyde给两名正常志愿者雾化吸入合成的LTC4和LTD4,导致支气管收缩,出现咳嗽等症状.如用SRS-A对抗剂(FPL-55712)能取消咳嗽反应,部分抑制支气管痉挛.这可能是白三烯直接作用于其受体的结果.Tleisch等(1981)证明,豚鼠平滑肌有多种白三烯受体,肺脏白三烯受体与回肠不同.LTD4可产生浓度依赖性的收缩回肠、肺及气管平滑肌,其强度顺序为:回肠>肺>气管.此外,LTC4可促进麻醉猫气管粘蛋白分泌,故白三烯被认为是炎症呼吸道分泌的介质.同时有报告证明,囊性纤维化病人痰中含有LTB4和LTD4,也含有少量的LTC4和LTE4,这些白三烯类物质可刺激支气管平滑肌收缩,使气道狭窄甚至阻塞.其他研究发现白三烯能诱发哮喘,并能引起新生儿持续性肺动脉高压的症状,如肺血管收缩、支气管收缩、肺顺应性下降、肺水肿等.LTC4和LTD4能促进血浆外渗,并会收缩血管、降低冠脉血流,加重缺血缺氧,加剧心绞痛与心肌梗塞.LTB4不仅是血管通透性介质,也是痛风病人炎症介质,有报道在类风湿性关节炎患者的膝关节滑液内LTB4浓度较非炎症关节病患者显著增高〔12〕.另外,PGs还有抗癌活性.在日本,癌症研究的一分支就是以PGD2(PGJ2)的抗癌效果为基础,寻求PGs系列的抗癌剂〔8〕.对AA及其代谢物的深入研究,不仅有助于阐明它们与多种疾病的病理生理学基础,也为治疗这些疾病开拓了新的道路.应用药物影响AA的释放及代谢,或膳食干预体内AA含量具有重要的临床意义.目前,欧美、日本等国开展了用发酵法生产花生四烯酸的发酵产品(Sun-TGA),并投放市场.国内有关花生四烯酸研制的报道不多.从1995年起,本研究组开展了离子注入诱变筛选花生四烯酸高产菌株及其发酵方面的研究工作.对此,我们将作进一步的报道.■。
肠道菌群花生四烯酸代谢
肠道菌群是人体肠道内存在的一系列微生物的总称,其中包括细菌、真菌和病毒等。
这些微生物在肠道中起着重要的生理功能,并与宿主的健康密切相关。
花生四烯酸是一种多不饱和脂肪酸,也被称为ω-6脂肪酸,它在人体内的代谢与肠道菌群密切相关。
肠道菌群中的某些细菌可以通过代谢花生四烯酸来产生一系列的代谢产物,这些代谢产物在人体中具有重要的生理功能。
例如,肠道菌群中的某些细菌可以将花生四烯酸代谢为前列腺素和白三烯等物质,这些物质在炎症反应、免疫调节、血管收缩等生理过程中发挥着重要的作用。
肠道菌群中的某些细菌还可以将花生四烯酸代谢为一些具有抗氧化和抗炎作用的物质,如一氧化氮和硫化物等。
这些物质可以调节肠道黏膜的生理功能,维护肠道的正常生理状态。
然而,肠道菌群的失调可能会导致花生四烯酸代谢异常,进而影响人体的健康。
例如,肠道菌群失调可能导致花生四烯酸代谢产物的紊乱,进而引发炎症反应和免疫异常。
此外,肠道菌群失调还可能导致花生四烯酸代谢产物的积累,进而导致肠道黏膜的损伤和疾病的发生。
因此,维持肠道菌群的平衡对于花生四烯酸代谢的正常进行至关重要。
为了保持肠道菌群的平衡,我们可以通过合理饮食、适当运动
和规律作息等方式来改善肠道菌群的组成和功能。
此外,一些益生菌和益生元也可以作为辅助治疗的手段,帮助调节肠道菌群的平衡。
肠道菌群与花生四烯酸代谢之间存在着密切的关系。
了解肠道菌群对花生四烯酸的代谢作用,有助于我们更好地维护肠道健康,促进人体的整体健康。
通过调节肠道菌群的平衡,我们可以进一步探索肠道菌群与花生四烯酸代谢之间的关系,并为相关疾病的治疗和预防提供新的思路和方法。
花生四烯酸及其代物的生物学作用花生四烯酸(arachidonic acid)简称AA,是5,8,11,14-二十碳四烯酸.它是人体的一种必需脂肪酸.该脂肪酸含有20个碳原子,4个双键,其中第一个双键起始于甲基端起第6个碳原子(其结构见图1),故属于n-6系列的多不饱和脂肪酸,简记为20∶4(n-6).Fig.1 The molecular structural formula1 AA的存在与分布AA广泛分布于动物的中性脂肪中,牛乳脂、猪脂肪、牛脂肪、血液磷脂、肝磷脂和脑磷脂中含量较少(约为1%),肾上腺磷脂混合脂肪酸中也含有该成分(15%).在油料种子中的分布也比人们原先估计的要广泛一些,是花生油中的一种主要成分.Sohlek等人〔1〕从几种苔藓和蕨类植物中检测到了AA.另外,在日本沙丁鱼油中,也分析出一定数量的花生四烯酸.AA也是人体中含量最高,分布最广的一种多不饱和脂肪酸(PUFA).尤其是在脑和神经组织中,AA含量一般占总PUFAs的40%~50%.在神经末梢甚至高达70%.在正常人的血浆中的含量也高达400 mg/L,而DH-γ-亚油酸(DHLG)含量为100 mg/L,γ-亚麻酸仅为25 mg/L.母乳中,存在着丰富的AA.授乳第一周后母乳中AA的含量约占类脂物总量的0.4%〔2〕.真菌中,AA主要分布在原始的几个纲中,如丝壶菌纲(Hyphochytrimycete)、壶菌纲(Hytridiomycetes)、卵菌纲(Oomycetes)以及被孢霉属(Mortierella)等〔3〕.2 AA的生化代途径AA是多种生物活性物质的前体,在人体由油酸转化而来〔4〕.它在生物体主要是以磷脂的形式存在于细胞膜上,在磷脂酶A2和磷脂酶C的作用下分解成游离的AA.AA的释放受磷脂酶A2和磷脂酶C的调节.虽然游离的AA在正常的生理状态下水平很低,但当细胞膜受到各种刺激时,AA便从细胞膜的磷脂池中释放出来,并转变为具有生物活性的代产物.目前知道至少有三类酶参与AA 的代,形成具有生物活性的二十碳衍生物(eicosanoids)〔5〕.游离的AA在环加氧酶(CO)的作用下,先形成不稳定的环过氧化物(PGG2和PGH2),然后进一步形成前列腺素(PG),前列环素(PGI2)和血栓烷素(TXA2).TXA2在水溶液中不稳定,很快降解为TXB2.PGI2的性质不稳定,在中性溶液中可水解成6-k-PGF1α,然后在肝脏中进一步代为6-k-PGE1.AA经脂加氧酶(LPO)作用生成羟基二十碳四烯酸(HETEs),白三烯(LTs)以及脂氧素(LXs).CO 和LPO都是双氧化酶,还有一类酶是单氧化酶,叫细胞色素P-450单氧化酶,也叫环氧化酶(EPO).它分解AA生成多种环氧化物(epoxides),同时也产生HETEs等.其代途径示意图见图2.Fig.2 The metabolism passes of AA1990年Morrow等〔6〕发现,在氧自由基催化下AA形成过氧化中间产物,并最终生成一类结构与前列腺素类似的物质,称为异构前列腺素(iso-PGs).AA及其代衍生物具有很强的生物活性,并在许多疾病的病理生理过程中起着重要的作用.下面就有关的研究现状加以综述.3 AA及其代物的生理功效3.1 第二信使作用细胞产生的AA及其代物在细胞可发挥第二信使作用.D.Piomelli等〔7〕发现AA活性代物二十碳酸类是海生软体动物海兔感觉神经元突触前抑制作用的第二信使.LPO代物在海兔神经节细胞中能引起双向反应中的迟发成分——超级化,介导由组胺等引起的效应,发挥第二信使作用.AA及其代物亦能促进或放大其他第二信使系统,如cAMP和cGMP.另外PG(E1,E2,I2,D2)也能使腺苷酸环化酶活化,致使细胞cAMP浓度增高〔8〕.细胞形成的AA及其代物亦可释放至细胞外,作为第一信使作用于产生它们的细胞或邻近细胞,通过另外的第二信使产生效应.如在成纤维细胞、激素促进细胞PGs合成,而形成的PGs则作用于细胞表面的受体促进cAMP的形成〔9〕.3.2 参与造血和免疫调节〔10〕PGs对免疫活性细胞能产生不同作用,即双向功能.主要表现为:对M?吞噬作用的促进与抑制;巨噬细胞抗肿瘤作用的抑制与恢复;对抗体产生的抑制与促进作用;对Tc细胞活性的抑制与增强;对NK细胞活性的抑制与增强.PGs对红系造血干细胞增殖分化都有明显的促进作用.AA的LPO代产物(HETEs及其前体HPETEs和LTs)对免疫细胞和免疫反应有抑制作用,外源性HPETEs有直接损伤细胞的作用,而其在体还抑制淋巴因子产生.LTB4,LTD4和LTE4在浓度非常低时就可抑制免疫功能,抑制淋巴细胞对有丝分裂源刺激的反应及抗体产生.LTB4可诱导抑制性T细胞和NK细胞活性增强.3.3 对心血管系统的影响研究表明,AA及其代物能引起血管舒,某些血管含有EPO,AA需经EPO代后发挥作用.离体和整体实验都发现5,6-环氧化物具有扩血管作用.血小板中CO的活性很高,当血小板受胶原、血栓素等激活时,能释放ADP和5-HT,增加TXs合成,从而引起聚集作用.而EPO代物则能抑制血小板CO活性,减少TXs产生,从而抑制血小板聚集.这样EPO代物可能与其它抗血小板聚集因子如PGD2和PGI2有协同作用,而与促血小板聚集因子(ADP,5-HT,TXs)达成平衡〔5〕.TXA2是血小板中AA的一种主要代产物,具有促进血小板聚集和诱发血栓形成的作用.TXA2能促使致密管系统中Ca2+的游离,引起致密体收缩,并释放出ADP和5-HT,使附近的血小板发生聚集.PGI2是血管壁中AA代的主要产物,是一种对血小板聚集最有效的源性抑制剂〔11〕.在正常的生理状态下,循环血中TXA2和PGI2的水平处于相对平衡状态,这是维持血液循环畅通的重要因素之一.TXA2-PGI2失衡可导致血栓形成和组织缺血的一系列生理机能的改变.血栓形成时,通常都有TXA2产生增多或/PGI2产生减少.尽管TXA2-PGI2失衡只能部分解释血栓栓塞倾向,但TXA2-PGI2这对相互作用的因子为有关的药理学研究提供了重要的指标.LTs可刺激TXA2合成,PGI2能抑制LTs的合成.实验证明,LTC4和LTD4可引起明显的血管收缩,它们是强效冠脉血管收缩剂,能降低冠脉血流,且LTC4>LTD4.LTC4和LTD4可致灌注心脏的收缩力下降,心输出量减少,特别当发生速发型过敏反应时,白三烯对心脏的抑制作用更加明显,有时可致各种传导阻滞,因此可诱发或加重心肌梗塞和心绞痛〔12〕.3.4 对肝、胆器官的影响〔13〕PG,TXA2和LT均参与肝、胆多种生理功能的调节并与某些肝胆疾病有关.胆汁中存在较大量的各种PG和LT.前列腺素类化合物可改变肝胆汁流量,并可能与某些促胆汁分泌的激素的释放与作用有关.它还参与胆囊收缩,吸收水分,与胆囊炎及胆结石的发生密切相关.PG对各种类型的实验性肝损伤有保护作用,而LT则可损伤肝细胞及胆道组织.3.5 在炎症中的作用LTA4为不稳定的环氧化物,可被转变为其他LT.LT为致炎症介质,其中LTB4是重要的白细胞活化物质,使白细胞趋化、聚集、粘附于血管皮细胞、脱颗粒、释放氧自由基及溶酶体酶,还可增加血管通透性,刺激支气管粘液分泌.LTC4及LTD4可收缩小动脉、支气管及胃肠道平滑肌,收缩肾小球毛细血管及系膜细胞,增加血管壁通透性,而LTB4无收缩血管及系膜细胞的作用〔14〕.LXs作用基本与LT相反,可拮抗LT的致炎症作用.LXs活化细胞的PKC,使细胞Ca2+升高,刺激吞噬细胞合成磷脂酸,使膜磷脂再塑而促进PMN释放AA〔15〕.3.6 与神经分泌组织的关系〔5〕AA还参与神经分泌,AA能刺激垂体前叶、胎盘和肥大细胞的分泌,在多种神经分泌组织中AA参与调节多种激素和神经肽,如ACTH,LH及催产素、加压素、胰岛素、胰高血糖素等的分泌.3.7 促细胞分裂作用PGF2α,TXB2能启动DNA复制,并促进细胞增生,TX和肝细胞增生、黑色素增长以及白细胞增殖都有关〔8〕.另外HETEs在平滑肌细胞、成纤维细胞、淋巴细胞等中也具有此作用〔5〕.4 AA及其代物与疾病4.1 AA与脑缺血〔16〕脑缺血再灌流后,Ca2+大量进入细胞,激活磷脂酶A2和C,使膜磷脂降解,生成AA,后者转化为PGI2,PGI2在血栓素合成酶作用下形成TXA2,结果TXA2和PGI2失衡,引起血小板粘附、聚集、阻塞血管,同时血管痉挛,侧支循环血流量降低,脑组织损伤加重.细胞Na+贮留,细胞膜系统被破坏,因而缺血再灌流后脑组织含水量增加,引起脑水肿.在TXA2生成过程中,生成大量自由基,自由基又进一步激活磷脂酶A2,同时破坏细胞膜系统,形成恶性循环.4.2 AA与皮肤病〔17〕AA在许多皮肤病的病理生理过程中起重要作用.如在银屑病、痤疮、荨麻疹、掌?脓疱病及接触性皮炎、异位性皮炎中,AA及其衍生物(尤其是LTs)都发挥着重要的作用.这提示人们,干预AA代的物质对皮肤病具有极大的治疗潜能.4.3 AA与糖尿病肾病的关系耀等人〔18〕发现糖尿病患者血浆中的TXB2明显升高,6-k-PGF1α明显降低.同时他们还发现糖尿病肾病患者的肾小球滤过率(GFR)显著升高,动物试验证实,早期糖尿病鼠的肾脏和肾单位的GFR较正常鼠增加40%.这种早期高滤状态可能与肾小球产生的具有舒性的PGE2及PGI2增多有关.研究发现,高血糖时Δ-5与Δ-6去饱和酶活性降低,导致AA增加,刺激TXA2合成增加,血浆TXB2升高,这是构成糖尿病肾病的重要因素之一.4.4 AA与呼吸道疾病的关系〔12〕LTC4,LTD4是引起支气管痉挛最强的介质,二者对支气管作用相等,人们还发现LTD4是人肺慢反应物质(SRS-A)的主要成分.Holroyde给两名正常志愿者雾化吸入合成的LTC4和LTD4,导致支气管收缩,出现咳嗽等症状.如用SRS-A对抗剂(FPL-55712)能取消咳嗽反应,部分抑制支气管痉挛.这可能是白三烯直接作用于其受体的结果.Tleisch等(1981)证明,豚鼠平滑肌有多种白三烯受体,肺脏白三烯受体与回肠不同.LTD4可产生浓度依赖性的收缩回肠、肺及气管平滑肌,其强度顺序为:回肠>肺>气管.此外,LTC4可促进麻醉猫气管粘蛋白分泌,故白三烯被认为是炎症呼吸道分泌的介质.同时有报告证明,囊性纤维化病人痰中含有LTB4和LTD4,也含有少量的LTC4和LTE4,这些白三烯类物质可刺激支气管平滑肌收缩,使气道狭窄甚至阻塞.4.5 其他研究发现白三烯能诱发哮喘,并能引起新生儿持续性肺动脉高压的症状,如肺血管收缩、支气管收缩、肺顺应性下降、肺水肿等.LTC4和LTD4能促进血浆外渗,并会收缩血管、降低冠脉血流,加重缺血缺氧,加剧心绞痛与心肌梗塞.LTB4不仅是血管通透性介质,也是痛风病人炎症介质,有报道在类风湿性关节炎患者的膝关节滑液LTB4浓度较非炎症关节病患者显著增高〔12〕.另外,PGs还有抗癌活性.在日本,癌症研究的一分支就是以PGD2(PGJ2)的抗癌效果为基础,寻求PGs系列的抗癌剂〔8〕.对AA及其代物的深入研究,不仅有助于阐明它们与多种疾病的病理生理学基础,也为治疗这些疾病开拓了新的道路.应用药物影响AA的释放及代,或膳食干预体AA含量具有重要的临床意义.目前,欧美、日本等国开展了用发酵法生产花生四烯酸的发酵产品(Sun-TGA),并投放市场.国有关花生四烯酸研制的报道不多.从1995年起,本研究组开展了离子注入诱变筛选花生四烯酸高产菌株及其发酵方面的研究工作.对此,我们将作进一步的报道.■。
试析新常态下国企改革与发展的战略方向国企改革与发展的战略方向应强化市场化改革。
市场化改革是国企改革的核心要义,也是国企能够适应新常态的关键。
国企应进一步深化产权制度改革,加大公司治理和内部管理改革力度,通过引入现代企业制度和运作机制,提高企业管理效益和绩效,增强国企的市场竞争力。
国企应逐步放开市场准入,引入竞争机制,通过市场化的手段激发企业内生动力,推动企业持续创新和发展。
国企改革与发展的战略方向应注重创新驱动发展。
当前,世界经济正处于新一轮科技革命和产业变革的前夜,只有通过创新能够赢得未来竞争的主动权。
国企应加大科技创新投入,加强技术创新能力建设,激发创新意识和创新活力,通过技术创新和业务模式创新,提高企业核心竞争力。
国企还应加强与科研院所、高校等科研机构的合作,加强人才引进和培养,打造创新型企业。
国企改革与发展的战略方向应推动绿色发展。
新常态下,绿色发展已成为全球共识,国企应积极响应国家号召,加大绿色投资力度,加强环境保护和资源利用效率,推动企业转型升级。
国企可以通过技术改造,推广节能环保技术,降低资源消耗和环境污染,实现绿色低碳发展。
国企还应加强对员工的环境保护教育和培训,提高员工的环保意识,形成企业和员工共同推动绿色发展的氛围。
国企改革与发展的战略方向应促进国际化发展。
新常态下,国内市场环境变化剧烈,国企应积极拓展国际市场,实现资源的国际化配置和市场的国际化营销。
国企可以通过参与国际竞争、开展跨国并购等方式,提高自身的国际化经营能力和竞争力,并逐步构建全球化经营体系。
国企还应加强与外国企业的合作,学习先进管理经验和技术,提高自身的技术水平和管理水平,推动国企走向世界舞台。
新常态下国企改革与发展的战略方向主要包括强化市场化改革、注重创新驱动发展、推动绿色发展和促进国际化发展。
只有在这些方向上持续努力,国企才能适应新常态的要求,实现可持续发展。
花生四烯酸及其保健功效花生四烯酸花生四烯酸是一种长链欧米茄-6脂肪酸,具有多种重要的生物学作用,对于维持身体健康和预防疾病都具有重要的意义。
一、发现史花生四烯酸最初是在19世纪晚期由研究者Bull和Tsujimoto 在鱼油中发现,当时他们并没有详细描述这些多不饱和脂肪酸的化学特征,只是声明它们属于CnH2n-8O2系列,属花生酸系。
然而,真正被正式分离并研究的是在1979年,当时Penicillium cyaneu菌体内富含这种物质,研究者对其进行了分离和研究。
二、花生四烯酸的功能和作用1.调节免疫系统:花生四烯酸可以调节免疫系统的功能,增强人体的抵抗力,预防感染和其他免疫相关疾病。
2.改善预防全身的多种病症:花生四烯酸可以改善预防全身的多种病症,如关节炎、哮喘、糖尿病等。
3.保护肝细胞:花生四烯酸可以保护肝细胞免受损伤,预防肝病和其他肝脏相关疾病。
4.促进消化道运动:花生四烯酸可以促进消化道运动,有助于消化和排泄食物。
5.促进生长发育:花生四烯酸是胎儿和婴儿生长发育所必需的营养物质,有助于促进胎儿和婴儿的神经系统发育。
6.花生四烯酸是人体内重要的多不饱和脂肪酸,可以参与细胞信号的传递,并起到血管扩张剂的作用,能够放松血管和降低血压。
7.花生四烯酸对于维持脂质蛋白代谢、血液流变学、血管弹性、白细胞功能和血小板激活都起到重要的调节作用。
它能够增强脂质蛋白代谢,维持血管弹性,激活血细胞功能,增强免疫机能。
同时,它也可以降低心脑血管相关疾病发病率。
三、花生四烯酸的主要食物来源花生四烯酸的主要食物来源包括鱼、鸟类和哺乳动物。
其中,在某些鱼类(如鲑鱼、鲑鱼肝等)中含量尤为丰富。
此外,红花油、葵花籽油、玉米油、胡桃、棉籽油、花生油、大豆油、芝麻油等食物中也含有一定比例的花生四烯酸。
四、花生四烯酸过量危害1.肥胖:花生四烯酸是脂肪的代谢产物,如果花生四烯酸偏高,可能会导致体内的脂肪无法正常代谢,从而导致身体肥胖。
花生四烯酸乙醇胺代谢
花生四烯酸乙醇胺,也简称为PEA,是一种内源性的脂肪酸和神经递质,它在人体中的代谢具有很重要的生物学功能。
首先,PEA的代谢可以参与人体的炎症反应,它本身就可以抑制炎症
的发生,同时也能够调节炎症反应的强度和持续时间。
在炎症反应中,PEA可以通过影响细胞膜的构成,调节炎症细胞的活性和迁移,从而
减轻炎症的症状。
其次,PEA的代谢还可以影响神经传递和感觉神经的功能。
PEA作为
神经递质时,可以通过与神经元膜上的受体结合,调节神经元的活动
和兴奋性。
此外,PEA也可以通过诱导N-乙酰转移酶的活性,促进去甲肾上腺素的代谢和生成,从而调节人体的应激反应和心理状态。
最后,PEA的代谢与人体抗氧化系统的活性密切相关。
PEA可以通过
抑制氧化应激和自由基的产生,保护细胞膜的完整性和稳定性,从而
减轻身体的氧化损伤。
PEA的这种抗氧化作用对于预防心血管疾病、
神经系统疾病和癌症等慢性疾病具有重要的保健意义。
总的来看,花生四烯酸乙醇胺的代谢在人体中具有重要的生物学功能,
涉及到多个生理和病理过程,这些作用使PEA成为一个有前途的保健和医疗研究领域。
花生四烯酸结构式引言花生四烯酸是一种重要的多不饱和脂肪酸,属于ω-6系列脂肪酸。
它在人体内具有多种生理功能,并且对人体健康具有重要的影响。
本文将介绍花生四烯酸的结构式、生理功能及其在人体健康中的作用。
花生四烯酸的结构式花生四烯酸的化学名为5,8,11,14-二十碳四烯酸,化学式为C20H32O2。
它是一种含有四个双键的脂肪酸,其结构式如下所示:CH3(CH2)4(CH=CHCH2)4(CH2)3COOH花生四烯酸的结构中,有四个相邻的双键,分别位于碳5、8、11和14的位置。
这种多不饱和结构使得花生四烯酸具有特殊的生理功能和代谢途径。
花生四烯酸的生理功能花生四烯酸在人体内具有多种生理功能,包括细胞膜结构的维持、炎症调节、血小板聚集和血压调节等。
细胞膜结构的维持花生四烯酸是细胞膜的重要组成部分,它能够调节细胞膜的流动性和稳定性。
在细胞膜中,花生四烯酸的双键可以通过调节膜的流动性和弹性来维持细胞功能的正常运作。
炎症调节花生四烯酸可以通过代谢产物前列腺素E2(PGE2)和白三烯B4(LTB4)等调节炎症反应。
PGE2具有抗炎作用,可以抑制炎症反应的发生和发展。
而LTB4则具有促炎作用,可以引起炎症反应的加剧。
花生四烯酸通过调节这些炎症介质的产生,对炎症反应起到平衡作用。
血小板聚集花生四烯酸可以通过代谢产物前列腺素I2(PGI2)和血栓素A2(TXA2)等调节血小板聚集。
PGI2具有抗血小板聚集作用,可以防止血栓的形成。
而TXA2则具有促血小板聚集作用,可以促使血小板聚集形成血栓。
花生四烯酸通过调节这些血小板聚集介质的产生,对血液流变学起到重要作用。
血压调节花生四烯酸可以通过代谢产物前列腺素F2α(PGF2α)和前列腺素E2(PGE2)等调节血压。
PGF2α具有升高血压的作用,而PGE2则具有降低血压的作用。
花生四烯酸通过调节这些前列腺素的产生,对血压的调节起到重要作用。
花生四烯酸在人体健康中的作用花生四烯酸在人体健康中起到了重要的作用。
txb2花生四烯酸代谢产物题目:[txb2花生四烯酸代谢产物]代谢途径及对健康的影响引言:花生四烯酸(arachidonic acid,AA)是一种长链不饱和脂肪酸,是一类重要的代谢物,在机体中参与多种生物学过程,并通过代谢生成多种产物。
其中,TXB2(thromboxane B2)作为AA代谢的关键产物之一,对整体健康有着重要影响。
本文将分步介绍TXB2的代谢途径,并探讨其对健康的影响。
第一部分:TXB2的生物活性及代谢途径(800-1000字)1. TXB2概述- TXB2是一种重要的血栓形成物质,属于前列腺素(prostaglandin)家族的衍生物。
- 它主要由血小板和内皮细胞中的AA代谢生成,具有强烈的血小板聚集和收缩血管的活性。
- TXB2在机体内具有多种生物学功能,如调节血流、炎症反应和免疫系统等。
2. TXB2的合成途径- AA首先通过磷脂酶A2的作用,从细胞膜磷脂中释放出来。
- 释放的AA可以被环氧酶(一种酶)代谢为前列腺环内酮(PGH2)。
- PGH2可以被血小板特异性腺苷酸环化酶(thromboxane synthase)转化为TXB2。
3. 调控TXB2合成的因素- 多种生理和病理因素可以影响TXB2的合成,例如炎症、创伤、血栓形成和某些药物等。
- 这些因素通过调控相关酶的活性或基因表达来影响TXB2的合成。
第二部分:TXB2与心血管健康的关系(800-1000字)1. 血栓形成和循环系统- TXB2的合成与血小板聚集和血管收缩密切相关,这些过程在血栓形成中具有重要作用。
- 过量的TXB2合成可能导致血栓形成异常,增加心血管疾病的风险,如心脏病和中风。
2. TXB2与血压调节- TXB2能够引起血管收缩,进而影响血压的调节。
- 高水平的TXB2合成可能导致血压升高,而血压升高是心血管疾病的一个重要风险因素。
3. TXB2与炎症反应- TXB2在炎症反应中发挥重要作用,可引起炎性细胞的活化和炎症介质的产生。
15-脂氧合酶途径的主要花生四烯酸代谢产物。
体内和体外的各种药理作用。
15-脂氧合酶途径的主要花生四烯酸代谢产物及其体内和体外的各种药理作用脂氧合酶途径是一种重要的生物合成途径,参与调节多种生理过程。
在这个途径中,花生四烯酸是一个重要的底物,它可以通过不同的代谢途径产生多种化合物。
本文将介绍脂氧合酶途径的主要花生四烯酸代谢产物,并详细讨论它们在体内和体外的各种药理作用。
一、主要花生四烯酸代谢产物1. 白三烯系列代谢物脂氧合酶途径通过花生四烯酸产生白三烯系列代谢物,包括白三烯B4(LTB4)、白三烯C4(LTC4)、白三烯D4(LTD4)和白三烯E4(LTE4)。
其中,白三烯B4是一个强效的炎症介质,能够通过刺激中性粒细胞聚集和激活引起炎症反应。
白三烯C4、白三烯D4和白三烯E4则是强效的血管活性物质,能够引起血管收缩和气道平滑肌收缩。
2. 环氧前列腺素代谢物脂氧合酶途径还可使花生四烯酸产生环氧前列腺素代谢物,如环氧前列腺素E2(PGE2)、环氧前列腺素F2a(PGF2a)等。
这些化合物在体内具有广泛的生物活性,包括调节炎症反应、促进血管扩张和抗血小板聚集等。
3. 衍生物除了白三烯系列代谢物和环氧前列腺素代谢物外,脂氧合酶途径还可生成其他衍生物,如17-羟二十四烷酸(17-HC)、16-巯基二十二烷酸(16-DMTA)、20-羟二十四烷酸(20-HC)等。
这些化合物在调节免疫反应、促进组织修复和抑制肿瘤生长等方面发挥重要作用。
二、体内药理作用1. 炎症反应调节脂氧合酶途径产生的白三烯B4和环氧前列腺素E2等化合物在炎症反应中发挥重要作用。
白三烯B4能够通过介导炎症介质的释放、中性粒细胞的聚集和激活等方式来促进炎症反应的发生。
而环氧前列腺素E2则能够通过调节炎症细胞的活性、促进炎症介质的清除和抑制炎症细胞的增殖等方式来抑制炎症反应。
2. 血管调节脂氧合酶途径产生的白三烯C4、白三烯D4和白三烯E4能够引起血管收缩,从而影响血管的生理功能。
花生四烯酸及其代谢物的生物学作用花生四烯酸(arachidonic acid)简称AA,是5,8,11,14-二十碳四烯酸.它是人体的一种必需脂肪酸.该脂肪酸含有20个碳原子,4个双键,其中第一个双键起始于甲基端起第6个碳原子(其结构见图1),故属于n-6系列的多不饱和脂肪酸,简记为20∶4(n-6).Fig.1 The molecular structural formula1 AA的存在与分布AA广泛分布于动物的中性脂肪中,牛乳脂、猪脂肪、牛脂肪、血液磷脂、肝磷脂和脑磷脂中含量较少(约为1%),肾上腺磷脂混合脂肪酸中也含有该成分(15%).在油料种子中的分布也比人们原先估计的要广泛一些,是花生油中的一种主要成分.Sohlek等人〔1〕从几种苔藓和蕨类植物中检测到了AA.另外,在日本沙丁鱼油中,也分析出一定数量的花生四烯酸.AA也是人体中含量最高,分布最广的一种多不饱和脂肪酸(PUFA).尤其是在脑和神经组织中,AA含量一般占总PUFAs的40%~50%.在神经末梢甚至高达70%.在正常人的血浆中的含量也高达400 mg/L,而DH-γ-亚油酸(DHLG)含量为100 mg/L,γ-亚麻酸仅为25 mg/L.母乳中,存在着丰富的AA.授乳第一周后母乳中AA的含量约占类脂物总量的0.4%〔2〕.真菌中,AA主要分布在原始的几个纲中,如丝壶菌纲(Hyphochytrimycete)、壶菌纲(Hytridiomycetes)、卵菌纲(Oomycetes)以及被孢霉属(Mortierella)等〔3〕.2 AA的生化代谢途径AA是多种生物活性物质的前体,在人体内由油酸转化而来〔4〕.它在生物体内主要是以磷脂的形式存在于细胞膜上,在磷脂酶A2和磷脂酶C的作用下分解成游离的AA.AA的释放受磷脂酶A2和磷脂酶C的调节.虽然游离的AA在正常的生理状态下水平很低,但当细胞膜受到各种刺激时,AA便从细胞膜的磷脂池中释放出来,并转变为具有生物活性的代谢产物.目前知道至少有三类酶参与AA的代谢,形成具有生物活性的二十碳衍生物(eicosanoids)〔5〕.游离的AA在环加氧酶(CO)的作用下,先形成不稳定的环内过氧化物(PGG2和PGH2),然后进一步形成前列腺素(PG),前列环素(PGI2)和血栓烷素(TXA2).TXA2在水溶液中不稳定,很快降解为TXB2.PGI2的性质不稳定,在中性溶液中可水解成6-k-PGF1α,然后在肝脏中进一步代谢为6-k-PGE1.AA经脂加氧酶(LPO)作用生成羟基二十碳四烯酸(HETEs),白三烯(LTs)以及脂氧素(LXs).CO和LPO都是双氧化酶,还有一类酶是单氧化酶,叫细胞色素P-450单氧化酶,也叫环氧化酶(EPO).它分解AA生成多种环氧化物(epoxides),同时也产生HETEs等.其代谢途径示意图见图2.Fig.2 The metabolism passes of AA1990年Morrow等〔6〕发现,在氧自由基催化下AA形成内过氧化中间产物,并最终生成一类结构与前列腺素类似的物质,称为异构前列腺素(iso-PGs).AA及其代谢衍生物具有很强的生物活性,并在许多疾病的病理生理过程中起着重要的作用.下面就有关的研究现状加以综述.3 AA及其代谢物的生理功效3.1 第二信使作用细胞内产生的AA及其代谢物在细胞内可发挥第二信使作用.D.Piomelli等〔7〕发现AA活性代谢物二十碳酸类是海生软体动物海兔感觉神经元突触前抑制作用的第二信使.LPO代谢物在海兔神经节细胞中能引起双向反应中的迟发成分——超级化,介导由组胺等引起的效应,发挥第二信使作用.AA及其代谢物亦能促进或放大其他第二信使系统,如cAMP和cGMP.另外PG(E1,E2,I2,D2)也能使腺苷酸环化酶活化,致使细胞内cAMP浓度增高〔8〕.细胞内形成的AA及其代谢物亦可释放至细胞外,作为第一信使作用于产生它们的细胞或邻近细胞,通过另外的第二信使产生效应.如在成纤维细胞、激素促进细胞内PGs合成,而形成的PGs则作用于细胞表面的受体促进cAMP的形成〔9〕.3.2 参与造血和免疫调节〔10〕PGs对免疫活性细胞能产生不同作用,即双向功能.主要表现为:对M?吞噬作用的促进与抑制;巨噬细胞抗肿瘤作用的抑制与恢复;对抗体产生的抑制与促进作用;对Tc细胞活性的抑制与增强;对NK细胞活性的抑制与增强.PGs对红系造血干细胞增殖分化都有明显的促进作用.AA的LPO代谢产物(HETEs及其前体HPETEs和LTs)对免疫细胞和免疫反应有抑制作用,外源性HPETEs有直接损伤细胞的作用,而其在体内还抑制淋巴因子产生.LTB4,LTD4和LTE4在浓度非常低时就可抑制免疫功能,抑制淋巴细胞对有丝分裂源刺激的反应及抗体产生.LTB4可诱导抑制性T细胞和NK 细胞活性增强.3.3 对心血管系统的影响研究表明,AA及其代谢物能引起血管舒张,某些血管含有EPO,AA需经EPO代谢后发挥作用.离体和整体实验都发现5,6-环氧化物具有扩张血管作用.血小板中CO的活性很高,当血小板受胶原、血栓素等激活时,能释放ADP和5-HT,增加TXs 合成,从而引起聚集作用.而EPO代谢物则能抑制血小板CO活性,减少TXs产生,从而抑制血小板聚集.这样EPO代谢物可能与其它抗血小板聚集因子如PGD2和PGI2有协同作用,而与促血小板聚集因子(ADP,5-HT,TXs)达成平衡〔5〕.TXA2是血小板中AA的一种主要代谢产物,具有促进血小板聚集和诱发血栓形成的作用.TXA2能促使致密管系统中Ca2+的游离,引起致密体收缩,并释放出ADP和5-HT,使附近的血小板发生聚集.PGI2是血管壁中AA代谢的主要产物,是一种对血小板聚集最有效的内源性抑制剂〔11〕.在正常的生理状态下,循环血中TXA2和PGI2的水平处于相对平衡状态,这是维持血液循环畅通的重要因素之一.TXA2-PGI2失衡可导致血栓形成和组织缺血的一系列生理机能的改变.血栓形成时,通常都有TXA2产生增多或/PGI2产生减少.尽管TXA2-PGI2失衡只能部分解释血栓栓塞倾向,但TXA2-PGI2这对相互作用的因子为有关的药理学研究提供了重要的指标.LTs可刺激TXA2合成,PGI2能抑制LTs的合成.实验证明,LTC4和LTD4可引起明显的血管收缩,它们是强效冠脉血管收缩剂,能降低冠脉血流,且LTC4>LTD4.LTC4和LTD4可致灌注心脏的收缩力下降,心输出量减少,特别当发生速发型过敏反应时,白三烯对心脏的抑制作用更加明显,有时可致各种传导阻滞,因此可诱发或加重心肌梗塞和心绞痛〔12〕.3.4 对肝、胆器官的影响〔13〕PG,TXA2和LT均参与肝、胆多种生理功能的调节并与某些肝胆疾病有关.胆汁中存在较大量的各种PG和LT.前列腺素类化合物可改变肝胆汁流量,并可能与某些促胆汁分泌的激素的释放与作用有关.它还参与胆囊收缩,吸收水分,与胆囊炎及胆结石的发生密切相关.PG对各种类型的实验性肝损伤有保护作用,而LT则可损伤肝细胞及胆道组织.3.5 在炎症中的作用LTA4为不稳定的环氧化物,可被转变为其他LT.LT为致炎症介质,其中LTB4是重要的白细胞活化物质,使白细胞趋化、聚集、粘附于血管内皮细胞、脱颗粒、释放氧自由基及溶酶体酶,还可增加血管通透性,刺激支气管粘液分泌.LTC4及LTD4可收缩小动脉、支气管及胃肠道平滑肌,收缩肾小球毛细血管及系膜细胞,增加血管壁通透性,而LTB4无收缩血管及系膜细胞的作用〔14〕.LXs作用基本与LT相反,可拮抗LT的致炎症作用.LXs活化细胞的PKC,使细胞内Ca2+升高,刺激吞噬细胞合成磷脂酸,使膜磷脂再塑而促进PMN释放AA〔15〕.3.6 与神经内分泌组织的关系〔5〕AA还参与神经内分泌,AA能刺激垂体前叶、胎盘和肥大细胞的分泌,在多种神经内分泌组织中AA参与调节多种激素和神经肽,如ACTH,LH及催产素、加压素、胰岛素、胰高血糖素等的分泌.3.7 促细胞分裂作用PGF2α,TXB2能启动DNA复制,并促进细胞增生,TX和肝细胞增生、黑色素增长以及白细胞增殖都有关〔8〕.另外HETEs 在平滑肌细胞、成纤维细胞、淋巴细胞等中也具有此作用〔5〕.4 AA及其代谢物与疾病4.1 AA与脑缺血〔16〕脑缺血再灌流后,Ca2+大量进入细胞内,激活磷脂酶A2和C,使膜磷脂降解,生成AA,后者转化为PGI2,PGI2在血栓素合成酶作用下形成TXA2,结果TXA2和PGI2失衡,引起血小板粘附、聚集、阻塞血管,同时血管痉挛,侧支循环血流量降低,脑组织损伤加重.细胞内Na+贮留,细胞膜系统被破坏,因而缺血再灌流后脑组织含水量增加,引起脑水肿.在TXA2生成过程中,生成大量自由基,自由基又进一步激活磷脂酶A2,同时破坏细胞膜系统,形成恶性循环.4.2 AA与皮肤病〔17〕AA在许多皮肤病的病理生理过程中起重要作用.如在银屑病、痤疮、荨麻疹、掌?脓疱病及接触性皮炎、异位性皮炎中,AA及其衍生物(尤其是LTs)都发挥着重要的作用.这提示人们,干预AA代谢的物质对皮肤病具有极大的治疗潜能.4.3 AA与糖尿病肾病的关系李耀等人〔18〕发现糖尿病患者血浆中的TXB2明显升高,6-k-PGF1α明显降低.同时他们还发现糖尿病肾病患者的肾小球滤过率(GFR)显著升高,动物试验证实,早期糖尿病鼠的肾脏和肾单位的GFR较正常鼠增加40%.这种早期高滤状态可能与肾小球产生的具有舒张性的PGE2及PGI2增多有关.研究发现,高血糖时Δ-5与Δ-6去饱和酶活性降低,导致AA增加,刺激TXA2合成增加,血浆TXB2升高,这是构成糖尿病肾病的重要因素之一.4.4 AA与呼吸道疾病的关系〔12〕LTC4,LTD4是引起支气管痉挛最强的介质,二者对支气管作用相等,人们还发现LTD4是人肺慢反应物质(SRS-A)的主要成分.Holroyde给两名正常志愿者雾化吸入合成的LTC4和LTD4,导致支气管收缩,出现咳嗽等症状.如用SRS-A对抗剂(FPL-55712)能取消咳嗽反应,部分抑制支气管痉挛.这可能是白三烯直接作用于其受体的结果.Tleisch等(1981)证明,豚鼠平滑肌有多种白三烯受体,肺脏白三烯受体与回肠不同.LTD4可产生浓度依赖性的收缩回肠、肺及气管平滑肌,其强度顺序为:回肠>肺>气管.此外,LTC4可促进麻醉猫气管粘蛋白分泌,故白三烯被认为是炎症呼吸道分泌的介质.同时有报告证明,囊性纤维化病人痰中含有LTB4和LTD4,也含有少量的LTC4和LTE4,这些白三烯类物质可刺激支气管平滑肌收缩,使气道狭窄甚至阻塞.4.5 其他研究发现白三烯能诱发哮喘,并能引起新生儿持续性肺动脉高压的症状,如肺血管收缩、支气管收缩、肺顺应性下降、肺水肿等.LTC4和LTD4能促进血浆外渗,并会收缩血管、降低冠脉血流,加重缺血缺氧,加剧心绞痛与心肌梗塞.LTB4不仅是血管通透性介质,也是痛风病人炎症介质,有报道在类风湿性关节炎患者的膝关节滑液内LTB4浓度较非炎症关节病患者显著增高〔12〕.另外,PGs还有抗癌活性.在日本,癌症研究的一分支就是以PGD2(PGJ2)的抗癌效果为基础,寻求PGs系列的抗癌剂〔8〕.对AA及其代谢物的深入研究,不仅有助于阐明它们与多种疾病的病理生理学基础,也为治疗这些疾病开拓了新的道路.应用药物影响AA的释放及代谢,或膳食干预体内AA含量具有重要的临床意义.目前,欧美、日本等国开展了用发酵法生产花生四烯酸的发酵产品(Sun-TGA),并投放市场.国内有关花生四烯酸研制的报道不多.从1995年起,本研究组开展了离子注入诱变筛选花生四烯酸高产菌株及其发酵方面的研究工作.对此,我们将作进一步的报道.■。