概率解答题答案
- 格式:doc
- 大小:1.99 MB
- 文档页数:32
高考概率大题及答案1.某市高中毕业生中有80%选择进入大学,20%选择就业。
已知选择就业的学生中,70%在第一年获得满意的工作,而选择进入大学的学生中,80%在第一年获得满意的工作。
现从该市高中毕业生中任选一人,问他第一年获得满意工作的概率是多少?解答:由全概率公式可知,某毕业生获得满意工作的概率可以分为两种情况:1)选择就业的情况下获得满意工作的概率:0.2 × 0.7 = 0.14 2)选择进入大学的情况下获得满意工作的概率:0.8 × 0.8 = 0.64因此,获得满意工作的总概率为:0.14 + 0.64 = 0.78所以,任选一人的第一年获得满意工作的概率为0.78。
2.一批产品某种型号有20%的不合格品。
现从中任意抽取2个进行检查,问两个都是合格品的概率是多少?解答:抽取两个产品都是合格品的概率可以通过计算来得到。
首先,第一次抽取的产品是合格品的概率为80%(不合格品的概率为20%)。
而第二次抽取的产品也是合格品的概率会受到第一次抽取的影响。
因为第一次抽取合格品后,剩下的产品中合格品的比例会减少。
假设第一次抽取合格品后,剩下的产品中有a个合格品和b个不合格品,则第二次抽取的产品也是合格品的概率为a/(a+b)。
因此,两个都是合格品的概率为:0.8 × (a/(a+b))具体数值需要根据实际情况来计算。
3.某门考试的通过率为60%,现已知通过考试的学生中,有70%是靠自己的努力而没有借助辅导班;而未通过考试的学生中,有30%是通过辅导班的帮助提高的。
现从所有参加考试的学生中任意选取一人,问他通过考试并没有借助辅导班的概率是多少?解答:通过考试并没有借助辅导班的概率可以分为两种情况:1)通过考试的学生中靠自己的努力的概率:0.6 × 0.7 = 0.42 2)通过辅导班帮助提高通过考试的概率:0.4 × 0.3 = 0.12因此,通过考试并没有借助辅导班的总概率为:0.42 + 0.12 = 0.54所以,任选一人通过考试并没有借助辅导班的概率为0.54。
【经典例题】【例 1】( 2012 湖北) 如图,在圆心角为直角的扇形 OAB 中,分别以 OA , OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是21 121 A .1- πB . 2 - πC . πD . π【答案】 A【解析】 令 OA=1,扇形 OAB 为对称图形, ACBD 围成面积为 S 1,围成 OC 为 S 2,作对称轴 OD ,则过 C 点. S 2 即为以 OA2 π 1 2 111 π -2 S2(2)-2×2×2=1为直径的半圆面积减去三角形OAC 的面积, S =8 .在扇形 OAD 中 2 为扇形面积减去三角S 2 S 1 1 21 S 2π -2 π -2π形 OAC 面积和 2 , 2 = 8 π×1 - 8 - 2 =16 , S 1+S 2= 4 ,扇形 OAB 面积 S= 4 ,选 A .【例 2】( 2013 湖北) 如图所示,将一个各面都涂了油漆的正方体,切割为 125 个同样大小的小正方体,经过搅拌后, 从中随机取一个小正方体,记它的涂漆面数为X ,则 X 的均值 E(X) = ( )1266 1687 A. 125B. 5C.125D. 5【答案】 B27 54 36 8 27【解析】 X 的取值为 0,1, 2,3 且 P(X = 0) =125,P(X = 1) =125,P(X = 2) = 125,P(X = 3) = 125,故 E(X) =0× 125+1× 54 36 8 6+2× +3× =,选B.125 125 125 5【例 3】( 2012 四川) 节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通 电后的 4 秒内任一时刻等可能发生,然后每串彩灯以 4 秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过 2 秒的概率是 ()1 1 3 7 A. 4B. 2C. 4D. 8【答案】 C【解析】 设第一串彩灯在通电后第 x 秒闪亮, 第二串彩灯在通电后第 y 秒闪亮,由题意 0≤ x ≤ 4,满足条件的关系式0≤y ≤4,根据几何概型可知, 事件全体的测度 ( 面积 ) 为 16 平方单位,而满足条件的事件测度( 阴影部分面积 ) 为 12 平方单位,123故概率为 16= 4.【例 4】( 2009 江苏) 现有 5 根竹竿,它们的长度(单位: m )分别为 2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2 根竹竿,则它们的长度恰好相差 0.3m 的概率为 .【答案】 0.2 【解析】 从 5 根竹竿中一次随机抽取 2 根的可能的事件总数为 10,它们的长度恰好相差 0.3m 的事件数为 2,分别是:2.5 和 2.8 , 2.6 和 2.9 ,所求概率为 0.2【例 5】( 2013 江苏) 现有某类病毒记作 X m Y n ,其中正整数 m , n(m ≤7, n ≤ 9)可以任意选取,则 m , n 都取到奇数的概率为 ________.20【答案】【解析】 基本事件共有 7×9= 63 种, m 可以取 1, 3, 5,7, n 可以取 1, 3,5, 7, 9. 所以 m ,n 都取到奇数共有 2020种,故所求概率为63.【例 6】( 2013 山东) 在区间 [- 3,3] 上随机取一个数 x ,使得 |x + 1|- |x - 2| ≥1成立的概率为 ________.【答案】13【解析】 当 x<- 1 时,不等式化为- x - 1+ x -2≥1,此时无解;当- 1≤x ≤2 时,不等式化为 x +1+ x -2≥1,解之得 x ≥1;当 x>2 时,不等式化为 x + 1- x +2≥1,此时恒成立, ∴|x + 1| - |x -2| ≥1的解集为 [ 1,+∞ ) . 在 [ -3, 3]上使不等式有解的区间为 [ 1,3] ,由几何概型的概率公式得 P = 3- 1 1 .3-(- 3) =3【例 7】( 2013 北京)下图是某市 3 月 1 日至 14 日的空气质量指数趋势图, 空气质量指数小于 100 表示空气质量优良, 空气质量指数大于 200 表示空气重度污染. 某人随机选择 3 月 1 日至 3 月 13 日中的某一天到达该市, 并停留 2 天.( 1)求此人到达当日空气重度污染的概率;( 2)设 X 是此人停留 期间空气质量优良的天数,求 X 的分布列与数学期望;( 3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明 )【答案】 132; 1213; 3 月 5 日【解析】 设 Ai 表示事件“此人于3 月 i 日到达该市” (i = 1, 2, , 13) .1(i ≠j) .根据题意, P(Ai) = ,且 Ai ∩Aj =13( 1)设 B 为事件“此人到达当日空气重度污染”,则B =A5∪A8.2所以 P(B) =P(A5∪A8)= P(A5) + P(A8) = .13( 2)由题意可知, X 的所有可能取值为 0,1, 2,且P(X= 1) =P(A3∪A6∪A7 ∪A11)4=P(A3) + P(A6) + P(A7) + P(A11) =13,P(X= 2) =P(A1∪A2∪A12∪A13)4=P(A1) + P(A2) + P(A12) + P(A13) =13,5P(X= 0) = 1- P(X= 1) - P(X= 2) =13.所以 X 的分布列为X 0 1 2P 5 4 4 13 13 135 4 4 12故 X 的期望 E(X) =0×+1×+2×= .13 13 13 13( 3)从 3 月 5 日开始连续三天的空气质量指数方差最大.【例 8】(2013 福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为2,中奖可以3 获得 2 分;方案乙的中奖率为2,中奖可以获得 3 分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中5奖与否互不影响,晚会结束后凭分数兑换奖品.( 1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求 X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】1115;方案甲.2 2【解析】方法一:( 1)由已知得,小明中奖的概率为3,小红中奖的概率为5,且两人中奖与否互不影响.记“这2 人的累计得分X≤3”的事件为A,则事件 A 的对立事件为“ X=5”,2 2 411因为 P(X=5) =×=,所以P(A)=1-P(X=5)=,3 5 151511即这两人的累计得分X≤3的概率为15.( 2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1) ,选择方案乙抽奖累计得分的数学期望为E(3X2) .2 2由已知可得,X1~ B 2,3, X2~ B 2,5,2 42 4所以 E(X1) =2×3=3, E(X2) =2×5=5,812从而 E(2X1) = 2E(X1) =, E(3X2) = 3E(X2) =.3 5因为 E(2X1)>E(3X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:( 1)由已知得,小明中奖的概率为2,小红中奖的概率为2,且两人中奖与否互不影响.35记“这两人的累计得分 X ≤3”的事件为 A ,则事件 A 包含有“ X =0”“ X =2”“ X =3”三个两两互斥的事件,2 2 1 2 2 22 22, 因为 P(X = 0) = 1-× 1- = ,P(X = 2) = × 1-= ,P(X =3) = 1- × = 15 355355 3 511所以 P(A) = P(X = 0) + P(X = 2) + P(X = 3) =15,11即这两人的累计得分 X ≤3的概率为 15.( 2)设小明、小红都选择方案甲所获得的累计得分为 X1,都选择方案乙所获得的累计得分为X2,则 X1, X2 的分布列如下:X1 0 2 4 X2 0 3 6 P14 4 P912 4 9 9 9 2525251448所以 E(X1) =0× 9+2× 9+4× 9= 3,E(X2) =0× 9 +3× 12+6× 4 = 12.25 25 25 5因为 E(X1)>E(X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.【例 9】( 2013 浙江) 设袋子中装有 a 个红球, b 个黄球, c 个蓝球,且规定:取出一个红球得1 分,取出一个黄球得2 分,取出一个蓝球得3 分.( 1)当 a = 3, b = 2,c = 1 时,从该袋子中任取 (有放回,且每球取到的机会均等 )2 个球,记随机变量 ξ为取出此 2球所得分数之和,求 ξ的分布列;( 2)从该袋子中任取 (每球取到的机会均等 )1 个球,记随机变量 η为取出此球所得分数. 若 E η= 5,D η=5,求 a ∶ b ∶ c.3 9【答案】 3∶ 2∶ 1【解析】( 1)由题意得,ξ= 2, 3, 4, 5, 6.P(ξ= 2) = 3×3 1= ,6×6 4 P(ξ= 3) =2×3×2= 1,6×6 32×3×1+2×2 5 P(ξ= 4) = 6×6 = 18. P(ξ= 5) = 2×2×1 16×6= 9,P(ξ= 6) = 1×1 1,= 366×6 所以 ξ 的分布列为ξ 2 3 4 5 6 P1 1 5 1 1 4318936( 2)由题意知 η 的分布列为η 1 2 3Pa b ca +b +c a + b + ca +b +ca 2b3c5所以 E η= a + b + c + a +b + c + a +b + c = 3,5 a 5 b 5c5D η= 1- 32· a + b + c +2- 32· a + b + c +3- 32· a + b + c = 9, 2a - b - 4c = 0,解得 a = 3c , b = 2c , 化简得a + 4b -11c = 0,故 a ∶b ∶c =3∶2∶1.【例 10】( 2009 北京理) 某学生在上学路上要经过 4 个路口, 假设在各路口是否遇到红灯是相互独立的,遇到红灯的 概率都是 1,遇到红灯时停留的时间都是2min.3( 1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; ( 2)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望 .【答案】4;327 8【解析】 本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础 知识,考查运用概率与统计知识解决实际问题的能力.( 1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件 A ,因为事件 A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为PA11111 4 .333 27( 2)由题意,可得可能取的值为 0,2, 4, 6,8(单位: min ) .事件“2k ”等价于事件“该学生在路上遇到k 次红灯”( k 0, 1, 2,3, 4),k 4 k∴ P2kC k412k 0,1,2,3,4,33∴即 的分布列是0 246 8P16 32 8818181278181∴ 的期望是 E16 32 88 1 82468.818127 81813【课堂练习】1.( 2013 广东) 已知离散型随机变量X 的分布列为X 1 2 3P3 3 151010则 X 的数学期望 E(X) = () 35A. 2B . 2 C. 2 D . 32.( 2013 陕西) 如图,在矩形区域 ABCD 的 A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区 域 ADE 和扇形区域 CBF( 该矩形区域内无其他信号来源,基站工作正常 ).若在该矩形区域内随机地选一地点,则该地点无 信号的概率是 ( ).A .1- π π π D . π4 B . -1 B .2- 42 23.在棱长分别为 1, 2, 3 的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离 大于 3的概率为 ()4 3 2 3A .7B . 7C . 7D . 144.( 2009 安徽理) 考察正方体 6 个面的中心,甲从这 6 个点中任意选两个点连成直线,乙也从这6 个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于12 34?BA .B .C .D .75757575?F?C?D? E? A5.( 2009 江西理) 为了庆祝六一儿童节,某食品厂制作了3 种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5 袋,能获奖的概率为()3133 C .4850A .B .81D ..8181816.( 2009 辽宁文) ABCD 为长方形, AB = 2, BC =1,O 为 AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于 1 的概率为A .B . 1C .8D . 18447.( 2009 上海理) 若事件 E 与 F 相互独立,且 P EP F1 的值等于,则P EI F4A . 01 C .11B .4D .1628.( 2013 广州) 在区间 [1,5] 和[2, 4]上分别取一个数,记为a ,b ,则方程 x 2 y 22+b 2= 1 表示焦点在 x 轴上且离心率小a于 3的椭圆的概率为 ()2C .1711531A .2B . 3232D . 321, 2,3,9.已知数列 {a } 满足 a = a+ n - 1(n ≥2,n ∈ N),一颗质地均匀的正方体骰子,其六个面上的点数分别为nnn -14, 5, 6,将这颗骰子连续抛掷三次,得到的点数分别记为 a , b , c ,则满足集合 {a ,b , c} = {a 1, a 2, a 3}(1 ≤a i ≤6,i = 1, 2, 3)的概率是 ()1B . 1C . 1D . 1A .72 36 24 1210.( 2009 湖北文) 甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、 0.6、 0.5,则三人都达标的概率是,三人中至少有一人达标的概率是 。
大学概率论考试题及答案一、选择题(每题4分,共20分)1. 设随机变量X服从标准正态分布,则P(X > 1.96)的值是:A. 0.025B. 0.05C. 0.975D. 0.95答案:C2. 若随机变量X和Y相互独立,则P(X > 2, Y > 2)等于:A. P(X > 2) + P(Y > 2)B. P(X > 2) * P(Y > 2)C. P(X > 2) - P(Y > 2)D. P(X > 2) / P(Y > 2)答案:B3. 某次实验中,成功的概率为0.5,重复进行n次独立实验,则恰好成功k次的概率为:A. C(n, k) * (0.5)^k * (1 - 0.5)^(n-k)B. C(n, k) * (0.5)^nC. C(n, k) * (0.5)^(n-k) * (1 - 0.5)^kD. C(n, k) * (0.5)^(n-k)答案:A4. 随机变量X的期望值E(X)为2,方差Var(X)为4,则E(2X)等于:A. 4B. 8C. 2D. 16答案:A5. 设随机变量X服从参数为λ的泊松分布,则P(X = 0)等于:A. e^(-λ)B. λ * e^(-λ)C. λ^2 * e^(-λ)D. λ^3 * e^(-λ)答案:A二、填空题(每题5分,共20分)1. 若随机变量X的方差为9,则(2X - 3)的方差为______。
答案:362. 设随机变量X服从[0, 1]上的均匀分布,则P(X < 0.5) = ______。
答案:0.53. 抛一枚公正的硬币3次,出现正面向上的概率为______。
答案:1/24. 设随机变量X服从参数为4的指数分布,则P(X > 2) = ______。
答案:e^(-4)三、计算题(每题15分,共30分)1. 已知随机变量X服从参数为λ=2的泊松分布,求P(X=3)。
高考概率考试题及答案一、选择题1. 某次考试中,学生A和学生B独立地答对一道题的概率分别为0.7和0.6,那么他们两人至少有一人答对这道题的概率是多少?A. 0.32B. 0.54C. 0.86D. 0.94答案:C2. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 0.6B. 0.4C. 0.33D. 0.67答案:A二、填空题3. 一个骰子连续掷两次,两次都掷出偶数的概率是______。
答案:1/34. 从一副去掉大小王的扑克牌中随机抽取一张牌,抽到黑桃的概率是______。
答案:1/4三、解答题5. 已知某工厂生产的一批产品中,次品率为2%,现随机抽取100件产品进行检查。
求至少有3件次品的概率。
解答:设X为100件产品中次品的数量,X服从二项分布B(100,0.02)。
要求至少有3件次品的概率,即P(X≥3)。
根据二项分布的性质,我们有:P(X≥3) = 1 - P(X<3) = 1 - [P(X=0) + P(X=1) + P(X=2)]计算得:P(X=0) = C(100, 0) * (0.02)^0 * (0.98)^100P(X=1) = C(100, 1) * (0.02)^1 * (0.98)^99P(X=2) = C(100, 2) * (0.02)^2 * (0.98)^98将上述概率值代入公式计算,得到P(X≥3)的值。
答案:根据上述计算过程,得出P(X≥3)的具体数值。
6. 甲乙两人进行射击比赛,甲击中目标的概率为0.8,乙击中目标的概率为0.9。
若两人同时射击,求至少有一人击中目标的概率。
解答:设A为甲击中目标的事件,B为乙击中目标的事件。
要求至少有一人击中目标的概率,即P(A∪B)。
根据概率的加法公式,我们有:P(A∪B) = P(A) + P(B) - P(A∩B)由于甲乙两人射击是相互独立的事件,所以P(A∩B) = P(A) * P(B)。
概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。
2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。
三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。
求在一小时内至少有一台机器发生故障的概率。
2. 一个班级有50名学生,其中30名男生和20名女生。
如果随机选择一名学生,这名学生是男生的概率是0.6。
求这个班级中男生和女生的人数。
四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。
2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。
如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。
求第二次取出的球是蓝球的概率。
答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。
至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。
2. 设男生人数为x,女生人数为y。
根据题意,x/(x+y) = 0.6,且x+y=50。
解得x=30,y=20。
四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。
计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。
高中概率试题及答案一、选择题(每题2分,共10分)1. 抛一枚均匀的硬币,正面朝上的概率是多少?A. 0.5B. 0.25C. 0.75D. 12. 从52张扑克牌中随机抽取一张,抽到红桃的概率是多少?A. 1/4B. 1/2C. 1/3D. 1/133. 一个袋子里有3个红球和2个蓝球,随机取出一个球,取到蓝球的概率是多少?A. 1/3B. 1/2C. 2/5D. 3/54. 一个事件的概率为0.3,那么它的对立事件的概率是多少?A. 0.7B. 0.3C. 0.5D. 0.65. 一个班级有30名学生,其中10名男生和20名女生,随机抽取一名学生,抽到女生的概率是多少?A. 1/3B. 2/3C. 1/2D. 3/4二、填空题(每题3分,共15分)6. 一个骰子有6个面,每个面出现的概率是_________。
7. 如果一个事件的概率是0.4,那么它发生的概率是_________。
8. 从10个不同的球中随机抽取3个,不放回,抽到特定3个球的概率是_________。
9. 一个袋子里有5个红球和5个蓝球,随机取出2个球,两个球都是红球的概率是_________。
10. 一个事件的概率为0.2,那么它不发生的概率是_________。
三、解答题(每题5分,共10分)11. 一个袋子里有2个红球和3个蓝球,随机取出2个球,求至少一个红球的概率。
12. 一个班级有50名学生,其中25名男生和25名女生。
随机抽取3名学生,求至少有1名男生的概率。
四、计算题(每题7分,共14分)13. 一个袋子里有5个红球,3个蓝球和2个黄球。
随机取出3个球,求取出的球中至少有一个红球的概率。
14. 一个盒子里有10个球,其中3个是中奖球。
随机抽取2个球,求至少抽到一个中奖球的概率。
五、应用题(每题8分,共16分)15. 一个学校有500名学生,其中300名是高中生,200名是初中生。
随机抽取10名学生,求至少有8名高中生的概率。
概率初步试题及答案一、选择题(每题4分,共20分)1. 某事件的概率为0.5,那么它的对立事件的概率是()。
A. 0.5B. 0C. 1D. 0.3答案:C2. 抛掷一枚硬币,正面朝上的概率是()。
A. 0.5B. 0.25C. 0.75D. 1答案:A3. 随机变量X服从二项分布B(n,p),其中n=10,p=0.3,那么P(X=3)是()。
A. 0.3B. 0.03C. 0.09D. 0.33答案:C4. 某次考试,甲、乙、丙三人的成绩独立,甲通过的概率为0.7,乙通过的概率为0.6,丙通过的概率为0.5,那么三人都通过的概率是()。
A. 0.21B. 0.35C. 0.105D. 0.05答案:C5. 已知随机变量X服从正态分布N(μ,σ^2),其中μ=0,σ^2=1,那么P(-1<X<1)是()。
A. 0.6826B. 0.95C. 0.8413D. 0.9772答案:C二、填空题(每题5分,共20分)1. 概率的取值范围是()。
答案:[0,1]2. 随机变量X服从泊松分布,其参数λ=4,则P(X=2)=()。
答案:0.33. 某次实验中,事件A和事件B是互斥的,且P(A)=0.4,P(B)=0.3,则P(A∪B)=()。
答案:0.44. 已知随机变量X服从均匀分布U(0,3),则E(X)=()。
答案:1.5三、计算题(每题10分,共20分)1. 已知随机变量X服从二项分布B(5,0.2),求P(X≥3)。
答案:P(X≥3)=P(X=3)+P(X=4)+P(X=5)=C_5^3*0.2^3*0.8^2+C_5^4*0.2^4*0.8+0.2^5=0.0512+0.0128+0.00032=0.064322. 已知随机变量X服从正态分布N(2,4),求P(1<X<3)。
答案:P(1<X<3)=Φ((3-2)/2)-Φ((1-2)/2)=Φ(0.5)-Φ(-0.5)=0.6915-0.3585=0.333四、解答题(共40分)1. 某班有50名学生,其中有20名女生,30名男生。
一、习题详解:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i(5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。
概率论考试题及答案一、选择题(每题2分,共10分)1. 某校有100名学生,其中60名男生和40名女生。
随机抽取1名学生,该学生是女生的概率是多少?A. 0.4B. 0.6C. 0.8D. 1.0答案:A2. 抛一枚均匀的硬币,正面朝上和反面朝上的概率相等,那么连续抛掷3次硬币,得到至少两次正面朝上的概率是多少?A. 0.5B. 0.75C. 0.875D. 0.625答案:D3. 一个袋子里有5个红球和3个蓝球,随机抽取2个球,那么两个球都是红球的概率是多少?A. 1/6B. 1/3C. 1/2D. 2/5答案:D4. 如果事件A的概率是0.3,事件B的概率是0.4,且A和B互斥,那么A和B至少有一个发生的概率是多少?A. 0.7B. 0.5C. 0.6D. 0.4答案:A5. 一个骰子被抛掷,那么得到的点数是偶数的概率是多少?A. 0.5B. 0.33C. 0.25D. 0.16答案:A二、填空题(每题3分,共15分)6. 概率论中的_______定义了事件发生的可能性大小。
答案:概率7. 如果事件A和事件B是独立的,那么P(A∩B) = _______。
答案:P(A) * P(B)8. 随机变量X服从参数为λ的泊松分布,那么X的概率质量函数为:P(X=k) = _______。
答案:(λ^k / k!) * e^(-λ)9. 在连续概率分布中,随机变量X的取值范围是无限的,其概率密度函数f(x)满足________。
答案:∫f(x)dx = 110. 两个事件A和B互斥的充分必要条件是P(A∩B) = _______。
答案:0三、解答题(共25分)11. 一个工厂有3台机器生产同一种零件,每台机器在一小时内正常运转的概率分别为1/2、2/3和3/4。
假设这些机器相互独立,求至少有两台机器在一小时内正常运转的概率。
答案:首先,我们可以计算出每台机器不正常运转的概率,然后找出至少两台机器正常运转的组合情况。
1(A )三、解答题1•一颗骰子抛两次,以 X表示两次中所得的最小点数(1) 试求X 的分布律; (2)写出X 的分布函数.解:(1)分析:这里的概率均为古典概型下的概率,所有可能性结果共 36种,如果X=1,则表明两次中至少有一点数为1,其余一个1至6点均可,共有C 2 6-1 (这里C 2指任选某次点 数为1, 6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为C ; 6多1 1算了一次)或C 2 5 1种,故P X 1 C 26-1C25 1耳,其他结果类似36 3636可得•0, X1P{X 1} ,1X 2P{X 1} P{X 2} ,2X3F(x)P{X 1} P{X 2} P{X 3}, 3 x 4P{X 1} P{X 2} P{X3}P{X 4}, 4 x 5 P{X1} P{X2} P{X 3} P{X4} P{X5}, 5 x 61 ,x 622 •某种抽奖活动规则是这样的:袋中放红色球及白色球各 5只,抽奖者交纳一元钱后得到一次抽奖的机会,然后从袋中一次取出 5只球,若5只球同色,则获奖100元,否则无奖,以X 表示某抽奖者在一次抽取中净赢钱数,求X 的分布律.解:注意,这里 X 指的是赢钱数,X 取0-1或100-1,显然P X 99k3.设随机变量 X 的分布律为P{X k} a ,k 0,1,2, k!k解:因为 a ae 1,所以a e k 0 k!4.设随机变量X 的分布律为X -1 2 3 p1/41/21/4(1)求X 的分布函数;1 3 512627,3 翌,4 3635,5 36x 2 x 3x 4 x 5x 6 62 1 C ;0 1260为常数,试求常数 a .3⑵求P{X 丄},P{- X 5},P{2 x 3}.2 2 2解:40, x -1布,而与时间间隔的起点无关(时间以小时计)(1) 求某一天中午12时至下午3时没有收到紧急呼救的概率. (2) 求某一天中午12时至下午5时至少收到一次紧急呼救的概率. 解:(1) X ~ P 0.5t P 1.5 P X 0 e 1.5. (2) 0.5t2.50, x -1P{X 1}, 1 x2(1) F (x)P{X 1} P{X 2}1, x 3⑵P 1XX1 124P 2 X 3 P X 2X 3 5.设随机变量X 的分布律为 P{X k}(1) P{X =偶数}(2) P{ X 5}(3) P{ X=3的倍数}2 x 33 , ,2x341, x 33 51 P — X P X2 —222P X2 3 P X 3.4扌,k 1,2, 求:解:(1) P X 偶数丄1丄 22 221 lim i1(2) P X 51 P X 4115 1 16 16⑶P X 3的倍数23236.某公安局在长度为i123ilim123t 的时间间隔内收到的紧急呼救的次数X 服从参数为0.5t 的泊松分2.5丄,1x2 45 7.某人进行射击,每次射击的命中率为0.02,独立射击400次,试求至少击中2次的概6解:设射击的次数为 X ,由题意知X ~ B 400,0.2i k k 400 kP X 2 1 P X 11 C 4000.02 0.98k 0查表泊松分布函数表得:P{X 2} 1 0.28 0.99728.设事件A 在每一次试验中发生的概率为 0.3,当A 发生不少于3次时,指示灯发出信(1)系数a ;(2) X 落在区间(0,[)内的概率.号•现进行5次独立试验,试求指示灯发出信号的概率.解:设X 为事件A 在5次独立重复实验中出现的次数,则指示灯发出信号的概率 X ~ B 5,0.3 p P X 3 1 P X 3 1 (C 00.3°0.75 C 50.310.74 C ;0.320.73) 1 0.8369 0.1631. 9.设顾客在某银行窗口等待服务的时间 X (以分钟计) 在窗口等待服务,若超过 务而离开窗口的次数.写出 服从参数为 5 10分钟,他就离开.他一个月要到银行 5次,以 Y 的分布律,并求P{Y 1}.指数分布•某顾客 Y 表示他未等到服 x 解:因为X 服从参数为5的指数分布,则F(x) 1 e T , P X 10 Y~ B5, e 2 , 1 F(10) e 2 ,则 P{Y k} C5 (e 2)k (1 e 2)5k,k 0,1, 5 P{Y 1} 1- P{Y 0} 1 (1 e 2)5 0.5167 a cosx. 10.设随机变量 X 的概率密度为 f(x)0,|x|~2,试求:|x |2解:(1)由归一性知:1 f (x)dx2a cosxdx 2a ,所以 a2由于上面二项分布的概率计算比较麻烦, 所以而且X 近似服P{X 2}18k ek 0k!7⑵-11.2.P{0 X —} ; cosxdx sin x |(424 .0,x011 . 设连续随机变量X的分布函数为F(x)Ax,0x 11,x1⑶X的概率密度.试求:(1) 解系数(1)A;由⑵X落在区间(0.3, 0.7)内的概率;的连续性可得lim F(x)F(x )在x=1 lim F(x) F(1),即A=1.x 1(2) 0.3 X 0.7 F(0.7) F(0.3) 0.4.(3) X的概率密度 f (x) F (x)2x,00,12.设随机变量X服从(0, 5)上的均匀分布,求的概率.x的方程4x2 4Xx X 0有实根解:因为X服从(0, 5)上的均匀分布,所以1f(x) 50x5其他2 2方程4x 4Xx X(x 2)( X2(4X) 16X1,所以有实根的概率为0有实根,则32 51dx2510dxX〜N(3, 4)13.设求P{2 X 5}, P{(1) X 10}, P{ X 2}, P{X解: 确定c使得P{X c}设d满足P{X d} 0.9,问d至多为多少?(1)因为X ~ N(3,4)所以P{X c};2 3P{2 X 5} P{〒穿}P{1}(1) (0.5) (1) (0.5) 1 0.8413 0.6915 0.5328P 4 X 108F(2)(2.5)经查表得1 (0),即2专)故斗214.设随机变量1.29,解:P XF(所以(k)15.设随机变量如何变化的?(3.5)2 0.999810 3 4 3(^)2 2(3.5) 2 (3.5)1 0.99962) 1(0.5)0.1,解:X ~ N(,(0.5)0.3023F(3),则P X2X2(2.5)0.6977(0)得c 3 ;由概率密度关于即(-d 3)20.42.X服从正态分布2 2 (k)0.95 , p XN(0,1 0.5 0.5.c 3 1F(c)(〒)-,x=3对称也容易看出。
概率解答题答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March1、设两两相互独立的三事件,,A B C 满足条件:,()()()ABC P A P B P C =∅==,且已知9()16P A B C ⋃⋃=,求()P A . 解:()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ⋃⋃=++---+()()()()()()()()()P A P B P C P A P B P A P C P A P B =++---293()3()16P A P A =-=, 则13()44P A =或,其中34()P A =舍去,因为()()P A P A B C ≤⋃⋃.2、设事件A 与B 相互独立,两事件中只有A 发生及只有B 发生的概率都是14,试求()P A 及()P B . 解:由已知条件知:1()(),4P AB P AB ==则1()()(),4P A P A P B -=1()()();4P B P A P B -= 解得1()().2P A P B ==3、一口袋中有6个红球及4个白球。
每次从这袋中任取一球,取后放回,设每次取球时各个球被取到的概率相同。
求:(1)前两次均取得红球的概率;(2)取了n 次后,第n 次才取得红球的概率。
解:(1)记A={前两次均取得红球},669()101025P A ==(2)记B={取了n 次后,第n 次才取得红球},114623()()()101055n n P B --==4、甲、乙、丙3位同学同时独立参加《概率论与数理统计》考试,不及格的概率分别为0.4,0.3,0.5. (1)求恰有两位同学不及格的概率;(2)如果已经知道这3位同学中有2位不及格,求其中一位是同学乙的概率. 解:(1)设{}A =恰有两位同学不及格,1{}B =甲考试及格,2{}B =乙考试及格,3{}B =丙考试及格.则123123123123123123()()()()()P A P B B B B B B B B B P B B B P B B B P B B B =⋃⋃=++ 123123123()()()()()()()()()0.29P B P B P B P B P B P B P B P B P B =++=(2)12312312312322()()()()15()()()()29P B B B B B B P B B B P B B B P AB P B A P A P A P A ⋃+====5、甲、乙、丙三门炮向同一架飞机射击,设甲、乙、丙炮射中飞机的概率依次为,,,又设若只有一门炮射中,飞机坠毁的概率为,若有两门炮射中,飞机坠毁的概率为,若三门炮同时射中,飞机必坠毁.试求飞机坠毁的概率 解:设1A ={甲炮射中飞机},2A ={乙炮射中飞机},3A ={丙炮射中飞机},1B ={一门炮射中飞机},2B ={两门炮射中飞机},3B ={三门炮射中飞机},C ={飞机坠毁},则由题意可知事件123,,A A A 相互独立,故1123123123123123123()()()()()()()()()()()0.36P B P A A A A A A A A A P A P A P A P A P A P A P A P A P A =⋃⋃=++=2123123123123123123()()()()()()()()()()()0.41P B P A A A A A A A A A P A P A P A P A P A P A P A P A P A =⋃⋃=++=3123123()()()()()0.14P B P A A A P A P A P A ===故由全概率公式可得:123123()()()()()P C P CB CB CB P CB P CB P CB =⋃⋃=++112233()()()()()()0.360.20.410.60.1410.458P B P C B P B P C B P B P C B =++=⋅+⋅+⋅=6、已知一批产品中96 %是合格品. 检查产品时,一合格品被误认为是次品的概率是;一次品被误认为是 合格品的概率是. 求在被检查后认为是合格品的产品确实是合格品的概率. 解:设A 为被查后认为是合格品的事件,B 为抽查的产品为合格品的事件.9428.005.004.098.096.0)()()()()(=⨯+⨯=+=B A P B P B A P B P A P ,.998.09428.0/9408.0)(/)()()(===A P B A P B P A B P7、某厂用卡车运送防“非典”用品下乡,顶层装10个纸箱,其中5箱民用口罩、2箱医用口罩、3箱消毒棉花。
到目的地时发现丢失1箱,不知丢失哪一箱。
现从剩下9箱中任意打开2箱,结果都是民用口罩,求丢失的一箱也是民用口罩的概率。
解:考虑成从10个纸箱中取3箱这样一个模型,设i A ={第i 次取道民用口罩},i=1,2,3。
则3351012322510/3()/8P P P A A A P P ==8、设有来自三个地区的各10名,15名和25名考生的报名表,其中女生的报名表分别为3份,7份和5份.随机地取一个地区的报名表,从中先后抽出两份.(1)求先抽到的一份是女生表的概率;(2)已知后抽到的一份是男生表,求先抽到的一份是女生表的概率.解:设事件i A 表示报名表是i 个考区的,1,2,3i =;事件j B 表示第j 次抽到的报名表是女生表,1,2j =;则有1231()()(),3P A P A P A ===111213375(|),(|),(|).101525P B A P B A P B A === (1)由全概率公式可知,先抽到的一份是女生表的概率为311113171529()()(|).31031532590i i i P B P A P B A ===⨯+⨯+⨯=∑(2)所求事件的概率为 12122()(|).()P B B P B B P B =先考虑求解2()P B ,依题意可知,抽签与顺序无关,则有2122237820(|),(|),(|)101525P B A P B A P B A ===, 由全概率公式可知:3221171812061()()(|).31031532590i i i P B P A P B A ===⨯+⨯+⨯=∑因为1211221233777885205(|),(|),(|)10930151430252430P B B A P B B A P B B A =⨯==⨯==⨯=; 则由全概率公式可知:3121211718152()()(|).3103303309i i i P B B P A P B B A ===⨯+⨯+⨯=∑故所求事件的概率为:12122()2/920(|).()61/9061P B B P B B P B ===9、玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率相应为0.8,0.1,0.1,一顾客欲购买一箱玻璃杯,在购买时售货员随意取一箱,而顾客开箱随机查看4只,若无残次品,则买下该箱玻璃杯,否则退回.试求:(1)顾客买下该箱的概率;(2)在顾客买下的一箱中,确实没有残次品的概率. 解:令A 表示顾客买下所查看的一箱玻璃杯,i B 表示箱中恰有i 件残次品,0,1,2.i =由题意可得: 012()0.8,()()0.1.P B P B P B ===441918012442020412(|)1,(|),(|).519C C P A B P A B P A B C C =====(1)由全概率公式可知,顾客买下所查看的一箱玻璃杯的概率为:2412()(|)()0.810.10.10.94.519i i i P A P A B P B ===⨯+⨯+⨯=∑(2)由贝叶斯公式知,在顾客买下的一箱中,确实没有残次品的概率为: 000(|)()10.8(|)0.85.()0.94P A B P B P B A P A ⨯==≈10、设有两箱同类零件,第一箱内装50件,其中10件是一等品;第二箱内装30件,其中18件是一等品.现从两箱中随意挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求 (1)现取出的零件是一等品的概率;(2)在先取出的零件是一等品的条件下,第二次取出的零件仍是一等品的概率. 解:(1)记i A 表示在第i 次中取到一等品,1,2;i = i B 表示挑到第i 箱.则有1111122()(|)()(|)()P A P A B P B P A B P B =⨯+⨯111810.4.52302=⨯+⨯= (2)1212111222()(|)()(|)()P A A P A A B P B P A A B P B =⨯+⨯119118170.19423.254923029=⨯⨯⨯⨯+= 12211()0.19423(|)0.4856.()0.4P A A P A A P A ===11、有朋友自远方来,他坐火车、坐船、坐汽车、坐飞机来的概率分别是0.3,0.2,0.1,0.4.若坐火车来迟到的概率是14;坐船来迟到的概率是13;坐汽车来迟到的概率是112;坐飞机来,则不会迟到.实际上他迟到了,推测他坐火车来的可能性的大小 解:设1A 表示朋友坐火车来,2A 表示朋友坐船来,3A 表示朋友坐汽车来,4A 表示朋友坐飞机来;B 表示朋友迟到了.111141()()(|)(|)()()(|)i i i P A B P A P B A P A B P B P A P B A ===∑10.314.11120.30.20.10.414312⨯==⨯+⨯+⨯+⨯朋友坐飞机迟到的可能性为12.12、甲乙两队比赛,若有一队先胜三场,则比赛结束.假定在每场比赛中甲队获胜的概率为,乙队为,求比赛场数的数学期望.解:设X 表示比赛结束时的比赛场数,则X 的可能取值为3,4,5.其分布律为()()()3330.60.40.28P X ==+=;()()()22223340.60.40.60.40.60.40.3744P X C C ==⨯⨯+⨯⨯=;()()()()()2222224450.60.40.60.60.40.40.3456P X C C ==⨯⨯+⨯⨯=;故,()30.2840.374450.3456 4.0656EX =⨯+⨯+⨯=.13、一箱中装有6个产品,其中有2个是二等品,现从中随机地取出3个,试求取出二等品个数X 的分布律.解:X 的可能取值为0,1,2.34361{0},5C P X C === 1224363{1},5C C P X C ===2124361{2}.5C C P X C === 从而X 的分布律为:14、甲、乙两个独立地各进行两次射击,假设甲的命中率为0.2,乙的命中率为0.5,以X 和Y 分别表示甲和乙的命中次数,试求X 和Y 的联合概率分布.解:由题意知:1(2,)5XB ,1(2,).2YB因为X 和Y 相互独立,则{,}{}{},,0,1,2.P X i Y j P X i P Y j i j ====⨯==2222141012552()()(),,,,.i i ij C C i j -==从而随机变量X 和Y 的联合分布律为:15、袋中有2只白球,3只黑球,现进行无放回摸球,且定义随机变量X 和Y :1,0,X ⎧=⎨⎩第一次摸出白球,第一次摸出黑球1,0,Y ⎧=⎨⎩第二次摸出白球第二次摸出黑球;求:(1)随机变量(,)X Y 的联合概率分布;(2)X 与Y 的边缘分布.解:(1)由题意可知:X 的可能取值为0,1;Y 的可能取值为0,1.323323{0,0},{0,1};54105410P XY P X Y ===⨯====⨯=233211{1,0},{1,1};54105410P X Y P X Y ===⨯====⨯=从而随机变量(,)X Y 的联合概率分布为:(2)因为333{0}{0,0}{0,1};10105P X P X Y P X Y ====+===+= 312{1}{1,0}{1,1};10105P X P X Y P X Y ====+===+= 从而X 的边缘分布律为:…因为333{0}{0,0}{1,0};10105P Y P X Y P X Y ====+===+= 312{1}{0,1}{1,1};10105P Y P X Y P X Y ====+===+=16、某射手每次打靶能命中的概率为23,若连续独立射击5次,记前三次中靶数为X ,后两次中靶数为Y ,求(1)(,)X Y 的分布律;(2)关于X 和Y 的边缘分布律解:(1)由题意X 的所有可能取值为0,1,2,3,Y 的所有可能取值为0,1,2. (1)分00300232521211{0,0}()()()()33333P XY C C ===⋅=,00311132521214{0,1}()()()()33333P X Y C C ===⋅=,00322032521214{0,2}()()()()33333P X Y C C ===⋅=,11200232521216{1,0}()()()()33333P X Y C C ===⋅=,32533333112220325212124{1,2}()()()()33333P X Y C C ===⋅=,32533333221111325212148{2,1}()()()()33333P X Y C C ===⋅=,221220325212148{2,2}()()()()33333P X Y C C ===⋅=,33000232521218{3,0}()()()()33333P X Y C C ===⋅=,330111325212132{3,1}()()()()33333P X Y C C ===⋅=,330220325212132{3,2}()()()()33333P X Y C C ===⋅=故(,)X Y 的联合分布律为:(2) X 和Y 的边缘分布律分别为:17、设随机变量X 的概率密度为=)(x f ⎩⎨⎧-,0,x Axe 00≤>x x , 试求(1)常数A ;(2)方差)(X D .解:(1)因为 ()1f x dx +∞-∞=⎰,所以01x Axe dx A +∞-==⎰,即1A =(2)2230()2,()6xx E X x e dx E X x e dx +∞+∞--====⎰⎰,因而,[]22()()()642D E X E X X =-=-= .18、设随机变量X 的分布函数为0,()arcsin ,1,x a x F x A B a x a a x a⎧≤-⎪⎪=+-<<⎨⎪≥⎪⎩求:(1)确定常数A 和B ;(2)X 的概率密度函数解:(1)因()F x 是连续函数,故lim ()()x a F x F a →-+=- ,lim ()()x a F x F a →-=即arcsin(1)0arcsin10A B A B +-=⎧⎨+=⎩,解得11,2A B π==(2)由()()F x f x '=可知,()0,a x a f x -<<=⎩其它19、设二维随机变量(,)X Y 的联合概率密度为()0,0,(,)0,x y x y Ae f x y -+>>⎧=⎨⎩其他求(1)A 的值;(2){1,2}P X Y <<解:(1)()0(,)1x y xyf x y dxdy Ae dxdy Ae e A +∞+∞+∞+∞+∞+∞-+---∞-∞==⋅==⎰⎰⎰⎰(2) 21212()300(1)(1){1,2}x y x y e e P XY edxdy e ee-+----<<===⎰⎰20、某工厂生产的一种设备的使用寿命X (年)服从指数分布,其密度函数为41, 0()40 , 0xe xf x x -⎧>⎪=⎨⎪≤⎩。