1.1.1集合的含义与表示(习题)
- 格式:doc
- 大小:42.50 KB
- 文档页数:1
人教A 版高中数学必修一1.1.1《集合的含义与表示》同步练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合A 只含有一个元素a ,则下列各式正确的是( ) A .0∈A B .a ∉AC .a∈AD .a =A2.设x ∈N ,且1x∈N ,则x 的值可能是( ) A .0 B .1 C .-1D .0或13.下面四个关系式:π∈{x|x 是正实数},0.3∈Q,0∈{0},0∈N,其中正确的个数是( ) A .4 B .3 C .2D .14.集合{x∈N|-1<x<112}的另一种表示方法是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}5.已知集合A ={x∈N *|,则必有( ) A .-1∈A B .0∈AC .D .1∈A6.集合M ={(x ,y)|xy<0,x∈R,y∈R}是( ) A .第一象限内的点集 B .第三象限内的点集 C .第四象限内的点集D .第二、四象限内的点集7.若集合{},,a b c 中的三个元素可构成某个三角形的三条边长,则此三角形一定不是( ) A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形8.已知A ={x|3-3x>0},则有( ) A .3∈A B .1∈A C .0∈A D .-1∉A二、填空题9.集合A ={x|x∈N 且42x-∈Z},用列举法可表示为A =________. 10.一边长为6,一边长为3的等腰三角形所组成的集合中有________个元素.11.点(1,3)P 和集合},)(2{|Ax y y x =+=之间的关系是________. 12.用列举法表示集合A ={(x ,y)|x +y =3,x∈N,y∈N *}为________. 13.若{}2,2,3,4A =-,{}2|,B x x t t A ==∈,用列举法表示B = .14.下列集合中:A ={x =2,y =1},B ={2,1},C ={(x ,y)| 31x y x y +=⎧⎨-=⎩},D ={(x ,y)|x =2且y =1},与集合{(2,1)}相等的共有________个.三、解答题15.“今有三女,长女五日一归,中女四日一归,小女三日一归,问三女何时相会”.(选自《孙子算经》),请将三女前三次相会的天数用集合表示出来.16.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值. 17.已知集合A 含有两个元素a 和a 2,若1∈A,求实数a 的值.18.已知集合A ={0,2,5,10},集合B 中的元素x 满足x =ab ,a∈A,b∈A 且a≠b,写出集合B .19.已知集合S 满足条件:若a S ∈,则1(0,1)1aS a a a+∈≠≠±-.若3S ∈,试把集合S 中的所有元素都求出来. 20.集合A ={x|2y x y x=⎧⎨=⎩ }可化简为___以下是两位同学的答案,你认为哪一个正确?试说明理由. 学生甲:由2y xy x=⎧⎨=⎩得x =0或x =1,故A ={0,1}; 学生乙:问题转化为求直线y =x 与抛物线y =x 2的交点,得到A ={(0,0),(1,1)}.参考答案1.C 【解析】分析:根据集合A 的表示,判断出a 是A 的元素,根据元素与集合的关系,是属于与不属于,从而得到答案. 详解:集合{}A a =,a A ∴∈.故选C.点睛:在解决元素与集合的关系时,注意它们的关系只有“属于”与“不属于”两种. 2.B 【解析】首先x≠0,排除A ,D ;又x∈N,排除C ,故选B. 3.A 【解析】本题考查元素与集合之间的关系,由数集的分类可知四个关系式均正确.选A. 4.C 【解析】 ∵x∈N,且-1<x<112,∴集合中含有元素0,1,2,3,4,5,故选C. 点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集.列举法应用于有限集,特别为单元素集合. 5.D 【解析】∵x∈N *1,2,即A ={1,2},∴1∈A.选D. 6.D 【解析】根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.选D.点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集7.D 【分析】根据集合中元素的互异性可知,D 正确;给,,a b c 取特值可知,,,A B C 不正确. 【详解】根据集合中元素的互异性可知,a b c ≠≠,所以此三角形一定不是等腰三角形,故D 正确; 当3,4,5a b c ===时,三角形为直角三角形,故A 不正确; 当 6.8.9a b c ===时,三角形为锐角三角形,故B 不正确; 当6,8,11a b c ===时,三角形为钝角三角形,故C 不正确; 故选:D. 【点睛】本题考查了集合中元素的互异性,属于基础题. 8.C 【解析】因为A ={x|3-3x>0}={x|x<1},所以0∈A.选C. 9.{0,1,3,4,6} 【解析】 注意到42x-∈Z,因此,2-x =±2,±4,±1,解得x =-2,0,1,3,4,6,又∵x∈N,∴x=0,1,3,4,6. 10.1 【解析】这样的三角形只有1个,是两腰长为6,底边长为3的等腰三角形. 11.P A ∈ 【详解】在2y x =+中,当1x =时,3y =, 因此点P 是集合A 的元素,故P A ∈. 故答案为:P A ∈.12.{(0,3),(1,2),(2,1)} 【解析】集合A 是由方程x +y =3的部分整数解组成的集合,由条件可知,当x =0时,y =3;当x =1时,y =2;当x =2时,y =1.故A ={(0,3),(1,2),(2,1)}. 13.{}4,9,16 【分析】解决该试题的关键是对于t 令值,分别得到x 的值,然后列举法表示. 【详解】因为集合{}2,2,3,4A =-,而集合B 中的元素是将集合A 中的元素一一代入,通过平方得到的集合,即{}2|,B x x t t A ==∈,2,4t x ∴=±=;3,9t x ==;4,16t x ==,{}4,9,16B ∴=,那么用列举法表示B ={}4,9,16.本试题主要是考查了集合的描述法与列举法的准确运用,属于基础题. 14.2 【解析】因为集合{(2,1)}的元素表示的是有序实数对,由已知集合的代表元素知,元素为有序实数对的是C ,D ,而A 表示含有两个元素x =2,y =1的集合,B 表示含有2个元素的集合. 15.{60,120,180}. 【解析】试题分析:先判断三女相会的日数必为5,4,3的公倍数,再求最小的三个整数,并用集合形式表示试题解析:三女相会的日数,即为5,4,3的公倍数,它们的最小公倍数为60,因此三女前三次相会的天数用集合表示为{60,120,180}. 16.a =0或1. 【解析】 试题分析:试题解析:∵a∈A 且3a∈A,∴a<6且3a<6,∴a<2. 又∵a 是自然数∴a =0或1. 17.a =-1.【解析】试题分析:本题中已知集合A 中有两个元素且1∈A,据集合中元素的特点需分a =1和a 2=1两种情况,最后注意集合中元素的互异性,进行验证. 试题解析:若1∈A,则a =1或a 2=1,即a =±1. 当a =1时,集合A 有重复元素,∴a≠1;当a =-1时,集合A 含有两个元素1,-1,符合互异性. ∴a=-1.点睛:利用元素的性质求参数的方法,已知一个元素属于集合,求集合中所含的参数值.具体解法:(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值.(2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验. 18.B ={0,10,20,50}. 【解析】试题分析:先按是否取零进行讨论,再根据乘积结果,利用集合元素互异性进行取舍 试题解析:解析 当或时,x =0;当或时,x =10; 当或时,x =20; 当或时,x =50.所以B ={0,10,20,50}.点睛:常利用集合元素的互异性确定集合中的元素,根据题目一一列举可能取值(应用列举法和分类讨论思想),然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数. 19.113,2,,32-- 【分析】由条件“若a S ∈,则11aS a+∈-”可进行一步步推导,根据所得值循环出现可得答案. 【详解】∵3S ∈,∴13213S +=-∈-,从而1(2)11(2)3S +-=-∈--,则11131213S ⎛⎫+- ⎪⎝⎭=∈⎛⎫-- ⎪⎝⎭, ∴1123112S +=∈-,出现循环,根据集合中元素的互异性可得集合S 中的所有元素为113,2,,32--.【点睛】本题考查了集合中元素的互异性,属于基础题. 20.甲正确 【解析】试题分析:先解方程组得解集,再根据集合代表元素得应为数集,不是点集,因此选甲 试题解析:同学甲正确,同学乙错误.由于集合A 的代表元素为x ,因此满足条件的元素只能为x =0,1;而不是实数对故同学甲正确.。
1.1.1集合的含义与表示精选必考题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个集合中,是空集的是( )A .{}33x x +=B .(){}22,,,x y y x x y R =-∈C .{}20x x ≤D .{}210,x x x x R -+=∈ 2.下列关系中,正确的是( )A .0N +∈B .3Z 2∈ C .πQ ∉ D .0⊆n 3.已知集合{}2320A x R ax x =∈-+=中只有一个元素,则a =( ) A .92 B .98 C .0 D .0或984.对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M =,则满足条件的非空集合M 的个数是( )A .11B .12C .15D .16 5.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( )A .0B .0或1C .1-D .0或1-6.设集合2{|log (1)}A x y x ==-,{|B y y ==,则A B =I ( ) A .(0,2] B .(1,2) C .(1,)+∞D .(1,2] 7.下列四个关系中,正确的是( )A .{},a a b ∈B .{}{},a a b ∈C .{}a a ∉D .{},a a b ∉ 8.对于任意两个正整数m 、n ,定义某种运算“※”,法则如下:当m 、n 都是正奇数时,m ※n =m n +;当m 、n 不全为正奇数时,m ※n =mn .则在此定义下,集合{}**(,)|16,,M a b a b a N b N ※==∈∈中的元素个数是( )A .7B .11C .13D .14 9.若集合中三个元素为边可构成一个三角形,则该三角形一定不可能是( ) A .等腰三角形 B .直角三角形C .钝角三角形D .锐角三角形10.若集合()22017*2,10,,2n mn n A m n m Z n Z ⎧⎫++⎪⎪==∈∈⎨⎬⎪⎪⎩⎭,则集合A 的元素个数为( )A .4038B .4036C .22017D .22018二、多选题11.下列各组对象能构成集合的是( ). A .拥有手机的人B .2019年高考数学难题C .所有有理数D .小于π的正整数 12.(多选)已知,,x y z 为非零实数,代数式||||||xyz x y z x y z xyz+++的值所组成的集合是M ,则下列判断正确的是()A .0M ∉B .2M ∈C .4M -?D .4M Î 13.(多选)下面四个说法中错误的是( )A .10以内的质数组成的集合是{}2,3,5,7B .由1,2,3组成的集合可表示为{}1,2,3或{}3,1,2C .方程2210x x -+=的所有解组成的集合是{}11,D .0与{}0表示同一个集合14.(多选)已知集合{}A x x x =≤∈R ,a =,b = ) A .a A ∈B .a A ∉C .b A ∈D .b A ∉三、填空题15.已知集合A ={x ,y x,1},B ={x 2,x +y ,0},若A =B ,则x 2017+y 2018=______. 16.甲、乙两人同时参加一次数学测试,共10道选择题,每题均有四个选项,答对得3分,答错或不答得0分,甲和乙都解答了所有试题,经比较,他们只有2道题的选项不同,如果甲乙的最终得分的和为54分,那么乙的所有可能的得分值组成的集合为__. 17.已知集合A={x|x 2-3x <0,x ∈N *},则用列举法表示集合A= ______ .18.不等式31x x a-≥+的解集为M ,若2M -∉,则实数a 的取值范围为________. 19.已知a ∈R ,不等式31x x a -≥+的解集为P ,且-2∈P ,则a 的取值范围是______. 20.设集合{,,1}A x xy xy =-,其中x ∈Z ,y ∈Z 且0y ≠. 若0A ∈,则用列举法表示集合A =________21.如果集合{}2210A x ax x =++=中只有一个元素,那么a 的值是___________. 22.下列关系正确的有__________.Q ;②{}0∅n ;③(){}{}22,4|,y y x x R ⊆=∈;④{}00∈. 23.集合{}2340A x ax x =--=的子集只有两个,则a 值为____________.24.若集合{}2210,A x ax x a R =++=∈至多有一个元素,则a 的取值范围是___________.25.已知集合{}21,1,3A a a a =+--,若1A ∈,则实数a 的值为______.26.若集合A =2{|310}x ax x -+=中只含有一个元素,则a 值为__________;若A 的真子集个数是3个,则a 的范围是 __________。
第一章集合与函数概念1.1集合1.1.1集合的含义与表示基础过关练题组一集合的含义与元素的特征1.(2021辽宁阜新二中高一月考)下列各组对象不能构成集合的是()A.中国古代四大发明B.2020年高考数学难题C.所有有理数D.小于π的正整数2.(2021山东省实验中学高一月考)下列各组中的集合P与Q表示同一个集合的是()A.P是由元素1,√3,π构成的集合,Q是由元素π,1,|-√3|构成的集合B.P是由元素π构成的集合,Q是由元素3.141 59构成的集合C.P是由元素2,3构成的集合,Q是由有序实数对(2,3)构成的集合D.P是由满足不等式-1≤x≤1的整数构成的集合,Q是由方程x2=1的解构成的集合3.已知集合S中的三个元素a,b,c是△ABC的三边长,那么△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.设x∈R,集合A中含有三个元素3,x,x2-2x.(1)求实数x应满足的条件;(2)若-2是集合A中的元素,求实数x的值.题组二元素与集合的关系5.下列所给关系中正确的个数是()①π∈R;②√3∉Q;③0∈N*;④|-4|∉N*.A.1B.2C.3D.46.已知集合A中元素x满足x=3k-1,k∈Z,则下列表示正确的是()A.-1∉AB.-11∈AC.3k2-1∈AD.-34∉A7.已知集合A中有三个元素:a-3,2a-1,a2+1,集合B中也有三个元素:0,1,x.(1)若-3∈A,求a的值;(2)是否存在实数a,x,使集合A与集合B中的元素相同?题组三集合的表示方法8.下列各组集合中,表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={3,2},N={(3,2)}9.(2020河南周口项城三高高一第一次月考)用描述法表示函数y=3x+1图象上的所有点为()A.{x|y=3x+1}B.{y|y=3x+1}C.{(x,y)|y=3x+1}D.{y=3x+1}∈N,m∈N,m≤10.(2021上海嘉定高一上学期期中)用列举法表示集合{m|m-2310}=.11.用适当的方法表示下列集合:(1)所有能被3整除的整数;(2)图中阴影部分的点(含边界)的坐标的集合;(3)满足方程x=|x|,x∈Z的所有x的值构成的集合B.能力提升练一、选择题 1.()实数1不是下面哪一个集合中的元素( )A.整数集ZB.{x |x =|x |}C.{x ∈N|-1<x <1}D.{x ∈R|x -1x+1≤0}2.(2020山东烟台龙口高一调研,)设集合B ={x |x 2-4x +m =0},若1∈B ,则B =( ) A.{1,3}B.{1,0}C.{1,-3}D.{1,5}3.(2019山西大同一中高一上第一次月考,)方程组{x +y =2,x -y =0的解构成的集合是( )A.{(1,1)}B.{1,1}C.(1,1)D.{1}4.(2020广西南宁三中高一上月考,)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b∈B },则M 中元素的个数为 ( )A.3B.4C.5D.65.(2020山西吕梁中学高一上期中,)设集合A ={x ∈N|3≤x <6},B ={3,4},若x ∈A 且x ∉B ,则x 等于 ( )A.3B.4C.5D.66.(2020山东潍坊一中高一上期中,)已知集合M ={x |x =k 2+14,k ∈Z},N ={x |x =k 4+12,k ∈Z},若x 0∈M ,则x 0与N 的关系是 ( )A.x 0∈NB.x 0∉NC.x 0∈N 或x 0∉ND.不能确定7.(2019四川成都实验外国语学校高一上期中,)已知集合A ={a ,|a |,a -2},若2∈A ,则实数a 为 ( ) A.±2或4 B.2 C.-2 D.4 8.(2020上海洋泾中学高一月考,)给定集合A ,B ,定义A*B ={x |x =m -n ,m ∈A ,n ∈B },若A ={4,5,6},B ={1,2,3},则集合A*B 中的所有元素之和为( )A.15B.14C.27D.-149.(2021山东济宁鱼台第一中学高一月考,)给定集合S ={1,2,3,4,5,6,7,8},对于x ∈S ,如果x +1∉S ,x -1∉S ,那么x 是S 的一个“好元素”,由S 的3个元素构成的所有集合中,不含“好元素”的集合共有 ( ) A.6个 B.12个 C.9个D.5个二、填空题10.(2020河北承德一中高一上月考,)已知集合A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示B = .11.(2020山东济南外国语学校第一次段考,)设a ,b ,c 为非零实数,m =a |a |+b |b |+c |c |+abc |abc |,则m 的所有值组成的集合为 .三、解答题12.(2020江西赣州赣县中学高一上月考,)已知集合M ={1,a ,b },N ={a ,a 2,ab },且集合M 与N 相等,求a ,b 的值.13.(2020上海金山中学高一期中,)设数集A 由实数构成,且满足:若x ∈A (x ≠1且x ≠0),则11-x ∈A.(1)若2∈A ,试证明A 中还有另外两个元素; (2)判断集合A 是不是双元素集合,并说明理由;(3)若A 中元素个数不超过8,所有元素的和为143,且A 中有一个元素的平方等于所有元素的积,求集合A 中的所有元素.答案全解全析第一章 集合与函数概念1.1 集合1.1.1 集合的含义与表示基础过关练1.B2.A3.D 5.B 6.C 8.B 9.C1.B 根据集合的概念,可知集合中的元素具有确定性,可得选项A 、C 、D 中的元素都是确定的,能构成集合,但B 选项中“难题”的标准不明确,不满足集合中元素的确定性,不能构成集合.故选B . 方法技巧判断一组对象的全体能否构成集合的重要依据是元素的确定性,若考查的对象是确定的,就能构成集合,否则不能构成集合.2.A 由于选项A 中集合P ,Q 的元素完全相同,所以P 与Q 表示同一个集合,而B ,C ,D 中P ,Q 的元素不相同,所以P 与Q 不能表示同一个集合.故选A .3.D 因为集合中的元素必须是互异的,所以三角形的三边互不相等,故选D .4.解析(1)根据集合中元素的互异性,可知{x ≠3,x ≠x 2-2x ,x 2-2x ≠3,解得x ≠0且x ≠3且x ≠-1.(2)因为x 2-2x =(x -1)2-1≥-1,且-2是集合A 中的元素,所以x =-2.此时集合A ={3,-2,8},符合题意.5.B 由常见数集的定义知①②正确,③④错误.故选B.6.C 令3k -1=-1,解得k =0∈Z ,∴-1∈A ; 令3k -1=-11,解得k =-103∉Z ,∴-11∉A ; ∵k 2∈Z ,∴3k 2-1∈A ;令3k -1=-34,解得k =-11∈Z ,∴-34∈A. 故选C .7.解析 (1)由-3∈A 且a 2+1≥1, 可知a -3=-3或2a -1=-3, 当a -3=-3时,a =0; 当2a -1=-3时,a =-1.经检验,0与-1都符合要求. ∴a =0或a =-1. (2)易知a 2+1≠0.若集合A 与集合B 中元素相同, 则a -3=0或2a -1=0.若a -3=0,则a =3,此时集合A 包含的元素为0,5,10,与集合B 包含的元素不相同.若2a -1=0,则a =12,此时集合A 包含的元素为0,-52,54,与集合B 包含的元素不相同.故不存在实数a ,x ,使集合A 与集合B 中元素相同.8.B A 中,集合M 表示点(3,2),集合N 表示点(2,3),故M 与N 不是同一集合;B 中,由于集合中的元素具有无序性,故{3,2}与{2,3}是同一集合;C 中,集合M 表示点集,集合N 表示数集,故M 与N 不是同一集合;D 中,集合M 表示数集,集合N 表示点集,故M 与N 不是同一集合.9.C 因为集合是点集,所以代表元素是(x ,y ),所以用描述法表示为{(x ,y )|y =3x +1}.故选C .10.答案 {2,5,8}解析 由m ∈N ,m ≤10得m =0,1,2, (10)经检验,可知当m =2时,2-23=0∈N ,当m =5时,5-23=1∈N ,当m =8时,8-23=2∈N ,所以{m|m -23∈N ,m ∈N ,m ≤10}={2,5,8}.11.解析 (1){x |x =3n ,n ∈Z }.(2)(x ,y )-1≤x ≤2,-12≤y ≤1,且xy ≥0. (3)B ={x |x =|x |,x ∈Z }.能力提升练1.C2.A3.A4.B5.C6.A7.C8.A9.A一、选择题1.C 1∉{x ∈N|-1<x <1},故选C.2.A ∵集合B ={x |x 2-4x +m =0},1∈B , ∴1-4+m =0,解得m =3.∴B ={x |x 2-4x +3=0}={1,3}.故选A .3.A 解方程组{x +y =2,x -y =0得{x =1,y =1,用集合表示为{(1,1)},故选A . 4.B 由题意知x =a +b ,a ∈A ,b ∈B ,列表如下:a +b a 1 2 3 b 4 5 6 7 5 6 7 8则x 的可能取值为5,6,7,8.因此集合M 中共有4个元素,故选B . 5.C A ={x ∈N|3≤x <6}={3,4,5}, B ={3,4},由x ∈A 且x ∉B ,知x =5. 6.A M ={x|x =2k+14,k ∈Z}, N ={x |x =k+24,k ∈Z}, ∵2k +1(k ∈Z )是一个奇数,k +2(k ∈Z )是一个整数,∴x 0∈M 时,一定有x 0∈N ,故选A . 7.C 由条件2∈A 可知,a =2或|a |=2或a -2=2,解得a =±2或a =4.由集合中元素的互异性可知a <0,所以满足条件的只有a =-2,故选C . 解题模板由集合中元素的特征求解字母的值的步骤:8.A 由题可知,m =4,5,6,n =1,2,3, 当m =4,n =1,2,3时,m -n =3,2,1; 当m =5,n =1,2,3时,m -n =4,3,2; 当m =6,n =1,2,3时,m -n =5,4,3.所以A*B ={1,2,3,4,5},元素之和为15,故选A .9.A 要不含“好元素”,说明这三个数必须相连,故不含“好元素”的集合有{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6种可能.故选A . 二、填空题10.答案 {4,9,16}解析 ∵集合A ={-2,2,3,4},B ={x |x =t 2,t ∈A },∴t =±2时,x =4;t =3时,x =9;t =4时,x =16,∴B ={4,9,16}. 11.答案 {-4,0,4}解析 因为a ,b ,c 为非零实数,所以当a >0,b >0,c >0时,m =a |a |+b |b |+c |c |+abc|abc |=1+1+1+1=4;当a ,b ,c 中有一个小于0(不妨设a <0,b >0,c >0)时,m =a |a |+b |b |+c |c |+abc |abc |=-1+1+1-1=0;当a ,b ,c 中有两个小于0(不妨设a <0,b <0,c >0)时,m =a |a |+b |b |+c |c |+abc |abc |=-1-1+1+1=0; 当a <0,b <0,c <0时,m =a |a |+b |b |+c |c |+abc |abc |=-1-1-1-1=-4.所以m 的所有值组成的集合为{-4,0,4}. 三、解答题12.解析 由集合M 与N 相等得{1=a 2,b =ab或{1=ab ,b =a 2,解得{a =-1,b =0或{a =1,b =1, 经检验,{a =1,b =1不满足集合中元素的互异性,故舍去. 综上,a =-1,b =0.13.解析 (1)证明:∵2∈A ,∴11-2=-1∈A. ∵-1∈A ,∴11-(-1)=12∈A. 又∵当12∈A 时,11-12=2∈A , ∴A ={2,-1,12}.∴A 中还有另外两个元素,分别为-1,12. (2)不是双元素集合.理由:由题意得,若x ∈A (x ≠1且x ≠0),则11-x∈A ,11-11-x=x -1x ∈A ,且x ≠11-x ,11-x ≠x -1x ,x ≠x -1x, 故集合A 中至少有3个元素,不是双元素集合.(3)由(2)可知若x ∈A (x ≠1且x ≠0),则11-x ,x -1x 都为A 中的元素,∵x ·11-x ·x -1x=-1,且A 中有一个元素的平方等于所有元素的积,∴A 中元素个数不为3,又∵A 中元素个数不超过8,∴A 中有6个元素,且(11-x )2=1或(x -1x)2=1,解得x =2或x =12.结合(1)可知此时A 中有2,-1,12这三个元素.设A 中其他三个元素分别为m ,11-m ,m -1m (m ≠1且m ≠0),则A =2,-1,12,m ,11-m ,m -1m .∵A 中所有元素之和为143,∴12+2-1+m +11-m +m -1m =143⇒m =-12,3,23, ∴A 中的所有元素为12,2,-1,-12,3,23.。
一、选择题之答禄夫天创作
创作时间:二零二一年六月三十日
1.给出下列表述:①联合国常任理事国 ; ②充沛接近
2的实数的全体;③方程210x x +-= 的实数根; ④全国著名的高等院校.以上能构成集合的是( )
A 、①③
B 、①②
C 、①③④
D 、①②③④
{}2,1,12--x x 中的x 不能取的值是( )
A 、2
B 、3
C 、4
D 、5
3.下列集合中暗示同一集合的是( )
A 、(){}{})3,2(,2,3==N M
B 、(){}{}2,1,2,1==N M
C 、{(,)|1},{|1}M x y x y N y x y =+==+=
D 、{3,2},{2,3}M N ==
二、填空题
.
{}1,3,132+-∈-m m m , 则m=________________.
7.(1)方程组⎩⎨⎧=-=+52y x y x 的解集用列举法暗示为____________.用
描述法暗示为___________.(2)两边长分别为3, 5的三角形中,
第三条边可取的整数的集合用列举法暗示为__________, 用描述法暗示为______________. 三、解答题
合:
(1){|7,,};x x y x N y N +++=∈∈
(2){(,)|7,,};x y x y x N y N +++=∈∈
(3)
2{|1,23,}y y x x x Z =--<<∈ 1.1.1 集合的含义与暗示
附件1:律师事务所反盗版维权声明
附件2:独家资源交换签约学校名录(放年夜检查) 学校名录拜会: 创作时间:二零二一年六月三十日。
1.1.1集合的概念与表示分层练习基础巩固一、单选题1.已知M 是由1,2,3三个元素构成的集合,则集合M 可表示为( ) A .{x |x =1} B .{x |x =2} C .{1,2} D .{1,2,3}【答案】D 【解析】 【分析】根据集合的知识确定正确选项. 【详解】由于集合M 是由1,2,3三个元素构成, 所以{}1,2,3M =. 故选:D2.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学 B .长寿的人 C .π的近似值D .倒数等于它本身的数【答案】D 【解析】 【分析】根据集合的定义分析判断即可. 【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合; 对于B ,长寿也不是一个明确的定义,故不能构成集合; 对于C ,π 的近似值没有明确近似到小数点后面几位, 不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合; 故选:D.3.已知集合{}0,1A =,则集合{},B x y x A y A =-∈∈中元素的个数是( ) A .1个 B .2个 C .3个 D .4个【答案】C 【解析】 【分析】根据,x A x B ∈∈,所以x y -可取1,0,1-,即可得解. 【详解】由集合{}0,1A =,{},B x y x A y A =-∈∈, 根据,x A y B ∈∈, 所以1,0,1x y -=-, 所以B 中元素的个数是3. 故选:C4.已知集合()(){}110A x x x x =-+=,则A =( ) A . {}0,1 B . {}1,0-C .{}0,1,2D .{}1,0,1-【答案】D 【解析】 【分析】通过解方程进行求解即可. 【详解】因为(1)(1)00x x x x -+=⇒=,或1x =-,或1x =, 所以{}1,0,1A =-, 故选:D5.给出下列四个关系:π∈R , 0∉Q ,0.7∈N , 0∈∅,其中正确的关系个数为( ) A .4 B .3C .2D .1【答案】D 【解析】 【分析】根据自然数集、有理数集、空集的含义判断数与集合的关系. 【详解】∵R 表示实数集,Q 表示有理数集,N 表示自然数集,∅表示空集, ∴π∈R ,0∈Q ,0.7∉N ,0∉∅, ∴正确的个数为1 . 故选:D .6.已知{1}A x x m =∈-<Z ∣,若集合A 中恰好有5个元素,则实数m 的取值范围为( )A .4<m ≤5B .4≤m<5C .3≤m<4D .3<m ≤4【答案】D 【解析】 【分析】由已知求出集合A ,进一步得到m 的范围. 【详解】由题意可知{}1,0,1,2,3A =-,可得3<m ≤4. 故选:D 二、多选题7.给出下列说法,其中正确的有( ) A .中国的所有直辖市可以构成一个集合;B .高一(1)班较胖的同学可以构成一个集合;C .正偶数的全体可以构成一个集合;D .大于2 011且小于2 016的所有整数不能构成集合. 【答案】AC 【解析】 【分析】根据集合的确定性依次判断每个选项得到答案. 【详解】中国的所有直辖市可以构成一个集合,A 正确;高一(1)班较胖的同学不具有确定性,不能构成集合,B 错误; 正偶数的全体可以构成一个集合,C 正确;大于2 011且小于2 016的所有整数能构成集合,D 错误. 故选:AC.8.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值可能是( )A .98B .1C .0D .23【答案】AC 【解析】 【分析】对a 进行分类讨论,结合A 有且只有一个元素求得a 的值. 【详解】当0a =时,{}2|3203A x x ⎧⎫=-+==⎨⎬⎩⎭,符合题意.当0a ≠时,9980,8a a ∆=-==,符合题意.故选:AC 三、填空题9.用符号∈或∉填空:3.1___N ,3.1___Z , 3.1____*N ,3.1____Q ,3.1___R . 【答案】 ∉ ∉ ∉ ∈ ∈ 【解析】 【分析】由元素与集合的关系求解即可 【详解】因为3.1不是自然数,也不是整数,也不是正整数,是有理数,也是实数, 所以有:3.1N ∉;3.1Z ∉;*3.1N ∉;3.1Q ∈;3.1R ∈. 故答案为:∉,∉,∉,∈,∈.10.设集合{}1A x xy xy =-,,,其中x ∈Z ,y Z ∈且0y ≠,若0A ∈,则A 中的元素之和为_____. 【答案】0 【解析】 【分析】根据元素与集合间的关系,列方程求解. 【详解】因为0A ∈,所以若0x =,则集合{}0,0,1A =-不成立.所以0x ≠. 若因为0y ≠,所以0xy ≠,所以必有0xy -1=,所以1xy =. 因为x ∈Z ,y Z ∈,所以1x y ==或1x y ==-. 若1x y ==,此时{}1,1,0A =不成立,舍去.若1x y ==-,则{}1,1,0A =-,成立.所以元素之和为1100-+=. 故答案为:0. 四、解答题11.设集合{}22,3,42A a a =++,集合{}20,7,42,2B a a a =+--,这里a 是某个正数,且7A ∈,求集合B . 【答案】B ={0,7,3,1}. 【解析】 【分析】解方程2427a a ++=即得解. 【详解】解:由题得2427a a ++=, 解得1a =或5a =-. 因为0a >,所以1a =. 当1a =时, B ={0,7,3,1}. 故集合B ={0,7,3,1}.12.判断下列各组对象能否构成集合.若能构成集合,指出是有限集还是无限集;若不能构成集合,试说明理由. (1)北京各区县的名称; (2)尾数是5的自然数;(3)我们班身高大于1.7m 的同学. 【答案】(1)能;有限集; (2)能;无限集; (3)能;有限集. 【解析】 【分析】根据集合的基本概念即得. (1)因为北京各区县的名称是确定的,故北京各区县的名称能构成集合;因为北京各区县是有限的,故该集合为有限集; (2)因为尾数是5的自然数是确定的,故尾数是5的自然数能构成集合;因为尾数是5的自然数是无限的,故该集合为无限集; (3)因为我们班身高大于1.7m 的同学是确定的,故我们班身高大于1.7m 的同学能构成集合;因为我们班身高大于1.7m 的同学是有限的,故该集合为有限集.培优提升一、单选题1.定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==-∈∈,若{}1,0A =-,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】根据集合的新定义确定集合中的元素. 【详解】因为2{|,,}A B x x a b a A b B ⊗==-∈∈,{}1,0A =-,{}1,2B =, 所以{0,1,2}A B ⊗=--, 故集合A B ⊗中的元素个数为3, 故选:C.2.若{}22,a a a ∈-,则a 的值为( )A .0B .2C .0或2D .2-【答案】A 【解析】 【分析】分别令2a =和2a a a =-,根据集合中元素的互异性可确定结果. 【详解】若2a =,则22a a -=,不符合集合元素的互异性;若2a a a =-,则0a =或2a =(舍),此时{}{}22,2,0a a -=,符合题意;综上所述:0a =. 故选:A.3.已知x ,y ,z 为非零实数,代数式||||||||x y z xyz x y z xyz +++的值所组成的集合是M ,则下列判断正确的是( ) A .4∈M B .2M ∈ C .0M ∉ D .4M -∉【答案】A 【解析】【分析】分别对x ,y ,z 的符号进行讨论,计算出集合M 的所有元素,再进行判断. 【详解】根据题意,分4种情况讨论;①、x y 、、z 全部为负数时,则xyz 也为负数,则4||||||||x y z xyz x y z xyz +++=-; ②、x y 、、z 中有一个为负数时,则xyz 为负数,则0||||||||x y z xyz x y z xyz +++=; ③、x y 、、z 中有两个为负数时,则xyz 为正数,则0||||||||x y z xyz x y z xyz +++=; ④、x y 、、z 全部为正数时,则xyz 也正数,则4||||||||x y z xyz x y z xyz +++=; 则{4,0,4}M =-;分析选项可得A 符合. 故选:A. 二、填空题4.集合12ZZ 3A x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭∣,的元素个数为_________. 【答案】12 【解析】 【分析】根据集合得表示可知:3x + 是12的因数,即可求解. 【详解】由12ZZ 3A x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭∣,可知,3x + 是12的因数,故31,2,3,4,6,12x +=±±±±±± ,进而可得x 可取0,1,3,9,1,2,4,5,6,7,9,15--------,故答案为:125.若集合{}2210A xax x =-+=∣有且只有一个元素,则a 的取值集合为__________. 【答案】{}0,1##{}1,0 【解析】 【分析】讨论集合A 中的条件2210ax x -+=属于一次方程还是二次方程即可求解. 【详解】①若0a =,则210x -+=,解得12x =,满足集合A 中只有一个元素,所以0a =符合题意;②若0a =/,则2210ax x -+=为二次方程,集合A 有且只有一个元素等价于2=(2)410a --⨯⨯=∆,解得1a =.故答案为:{}0,1. 三、解答题6.已知{}2|20,R M x ax x x =-+=∈.根据下列条件,求实数a 的值构成的集合.(1)当M =∅;(2)当M 是单元素集(只含有一个元素的集合); (3)当M 是两个元素的集合. 【答案】(1)1,8⎛⎫+∞ ⎪⎝⎭(2)1,08⎧⎫⎨⎬⎩⎭(3)1,08a a a ⎧⎫<≠⎨⎬⎩⎭【解析】 【分析】(1)由判别式小于0可得(方程为一元二次方程); (2)由二次项系数为0或一元二次方程的判别式为0柯得; (3)由方程为一元二次方程,且判别式大于0可得. (1)M =∅,180a ∆=-<,18a >,所以a 的范围是1(,)8+∞;(2)0a =时,{2}M =,满足题意,180a ∆=-=,18a =,此时{4}M =,满足题意,(3)由题意方程有两个不等实根,0a ≠且0∆>,解得18a <且0a ≠,所以a 的范围是1{|8a a <,0}a ≠.拓展创新1.已知集合2{,}A m m =,若1A ∈,则实数m 的值是__________ 【答案】1-【解析】 【分析】由1A ∈,分1m =,21m =两种情况讨论,结合集合中元素的互异性分析,即得解 【详解】 由题意,1A ∈(1)若1m =,则{1,1}A =,和集合中元素的互异性矛盾,不成立; (2)若21m =,则1m =±,由(1)1m ≠ 若1m =-,则{1,1}A =-,1A ∈,成立 故实数m 的值是1- 故答案为:1- 2.已知*k N ∈,记集合{1101100112222,1,,,,01}k k k k k k k A x x a a a a a a a a ---==⨯+⨯++⨯+⨯==或,例如{{}110102,1,01}2,3A x x a a a a ==+===或,….现有一款名称为“解数学题获取软件激活码”网络游戏,它的激活码为集合A 2的各元素之和,则该游戏的激活码为________. 【答案】22 【解析】 【分析】由已知得{22102104+2+,1,,0A x x a a a a a a ====或}1,由此求得集合{}24,5,6,7A =,故而可得答案. 【详解】解:由已知得{22102104+2+,1,,0A x x a a a a a a ====或}1, 所以当100a a ==时,41+0+04x =⨯=; 当1010a a ==,时,41+21+06x =⨯⨯=; 当1001a a ==,时,41+20+115x =⨯⨯⨯=, 当1011a a ==,时,41+21+117x =⨯⨯⨯=,所以{}24,5,6,7A =,该游戏的激活码为4+5+6+722=, 故答案为:22.3.已知集合{}0,2A =,()()(){}21110B x ax x x ax =---+=,用符号A 表示非空集合A中元素的个数,定义,,A B A BA B B A A B ⎧-≥=⎨-<⎩※,若1A B =※,则实数a 的所有可能取值构成集合P ,则P =______.(请用列举法表示) 【答案】{}0,1,2- 【解析】 【分析】由集合的新定义结合题意求出a 的值,再用列举法表示即可 【详解】∵2A =,1A B =※, ∴1B =或3B =, 当1B =时,0a =或1a =.当3B =时,()()()21110ax x x ax ---+=有3个解,所以210x ax -+=只有一个解不为1和1a, 则240a ∆=-=,解得2a =±,当2a =时,2210x x -+=,则此时1x =,不符合题意; 当2a =-时,2210x x ++=,则此时1x =-,符合题意; 所以2a =-,11,,12B ⎧⎫=--⎨⎬⎩⎭,故{}0,1,2P =-. 故答案为:{}0,1,2-.4.用()C A 表示非空集合A 中元素的个数:定义()(),()()*()(),()()C A C B C A C B A B C B C A C B C A -≥⎧=⎨->⎩,若{1,2}A =,{}22()(2)0,B x x ax x ax x R =+++=∈,且*1A B =,设实数a 的所有可能取值构成集合S ,S =__________; 【答案】{0,22,2}- 【解析】 【分析】根据新定义得出集合B 中元素个数,再由方程根的个数分析求解. 【详解】由已知()2C A =,而*1A B =,则()1C B =或3,试卷第11页,共11页 11显然22()(2)0x ax x ax +++=的一个解是0x =, 若()1C B =,则0a =,满足题意;若()3C B =,则0a ≠,方程已有两个根0x =和x a =-,220x ax ++=有两个相等的实根且不为0和a -,280a ∆=-=,22a =±22a =220x ax ++=的解为342x x ==- 22a =-220x ax ++=的解为342x x ==.均满足题意. 综上{0,2,22}S =-. 故答案为:{0,2,2}-.12 试卷第12页,共1页。
1.1.1 集合的含义与表示 第1课时 集合的含义一、知识点填空 1.元素与集合的概念.元素与集合的概念(1)把________统称为元素,通常用__________________表示.表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.表示.2.集合中元素的特性:________、________、________. 3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.的,才说这两个集合是相等的. 4.元素与集合的关系.元素与集合的关系 关系 概念 记法 读法读法元素与元素与 集合的集合的 关系关系 属于属于 如果________的元素,的元素, 就说a 属于集合A a ∈A a 属于集合A 不属于不属于 如果________中的元素,中的元素, 就说a 不属于集合Aa ∉A a 不属于集合A 5.常用数集及表示符号:常用数集及表示符号:名称 自然数集 正整数集 整数集 有理数集 实数集实数集符号 ____ ________ ____ ____ ____ 二、练习题 一、选择题1.下列语句能确定是一个集合的是( ) A .著名的科学家.著名的科学家B .留长发的女生.留长发的女生C .2010年广州亚运会比赛项目年广州亚运会比赛项目D .视力差的男生.视力差的男生2.集合A 只含有元素a ,则下列各式正确的是( ) A .0∈A B .a ∉AC .a ∈AD .a =A3.已知M 中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( ) A .直角三角形.直角三角形 B .锐角三角形.锐角三角形C .钝角三角形.钝角三角形D .等腰三角形.等腰三角形 4.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1 B .-2 C .6 D .2 5.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( ) A .2 B .3 C .0或3 D .0,2,3均可均可6.由实数x 、-x 、|x |、x 2及-3x 3所组成的集合,最多含有( ) A .2个元素个元素B .3个元素个元素C .4个元素个元素D .5个元素个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号) ①不超过π的正整数;的正整数;②本班中成绩好的同学;②本班中成绩好的同学;③高一数学课本中所有的简单题;③高一数学课本中所有的简单题;④平方后等于自身的数.④平方后等于自身的数.8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________. 9.用符号“∈”或“∉”填空”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z . 三、解答题10.判断下列说法是否正确?并说明理由..判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;组成的集合含有四个元素; (4)高一(三)班个子高的同学构成一个集合.班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a . 能力提升12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?中元素的个数是多少?13.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;中必还有另外两个元素;(2)集合A 不可能是单元素集.不可能是单元素集.第2课时 集合的表示一、知识点填空1.列举法.列举法把集合的元素____________出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.法.2.描述法.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x -7<3的解集为__________.所有偶数的集合可表示为________________.二、练习题一、选择题1.集合{x ∈N +|x -3<2}用列举法可表示为( ) A .{0,1,2,3,4} B .{1,2,3,4}C .{0,1,2,3,4,5} D .{1,2,3,4,5} 2.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y ) C .平面直角坐标系中的所有点组成的集合.平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合图象上的所有点组成的集合3.将集合表示成列举法,正确的是( ) A .{2,3} B .{(2,3)}C .{x =2,y =3} D .(2,3) 4.用列举法表示集合{x |x 2-2x +1=0}为( ) A .{1,1} B .{1}C .{x =1} D .{x 2-2x +1=0} 5.已知集合A ={x ∈N |-3≤x ≤3},则有( ) A .-1∈AB .0∈A C.3∈A D .2∈A6.方程组的解集不可表示为( ) A .B .C .{1,2} D .{(1,2)} 二、填空题7.用列举法表示集合A ={x |x ∈Z ,86-x∈N }=______________. 8.下列各组集合中,满足P =Q 的有________.(填序号) ①P ={(1,2)},Q ={(2,1)};②P ={1,2,3},Q ={3,1,2}; ③P ={(x ,y )|y =x -1,x ∈R },Q ={y |y =x -1,x ∈R }. 9.下列各组中的两个集合M 和N ,表示同一集合的是________.(填序号) ①M ={π},N ={3.141 59};②M ={2,3},N ={(2,3)};③M ={x |-1<x ≤1,x ∈N },N ={1};④M ={1,3,π},N ={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合.用适当的方法表示下列集合①方程x (x 2+2x +1)=0的解集;的解集;②在自然数集内,小于1 000的奇数构成的集合;的奇数构成的集合;③不等式x -2>6的解的集合;的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.的自然数的全体构成的集合. 11.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是( ) A .{x |x =1} B .{y |(y -1)2=0} C .{x =1} D .{1} 13.已知集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },若x 0∈M ,则x 0与N 的关系是( ) A .x 0∈NB .x 0∉NC .x 0∈N 或x 0∉ND .不能确定.不能确定。
《1.1.1 集合的含义与表示》同步检测一、基础达标1.下列各组对象不能构成一个集合的是( )A.不超过20的非负实数B.方程x 2-9=0在实数范围内的解C.√3的近似值的全体D.某校身高超过170厘米的同学的全体2.下列各组中集合P 与Q 表示同一个集合的是( )A.P 是由元素1,√3,π构成的集合,Q 是由元素π,1,|-√3|构成的集合B.P 是由π构成的集合,Q 是由3.141 59构成的集合C.P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D.P 是满足不等式-1≤x≤1的自然数构成的集合,Q 是方程x 2=1的解集3.集合M 是由大于-2且小于1的实数构成的,则下列关系式正确的是( )A.√5∈MB.0∉MC.1∈MD.-π2∈M4.已知集合Ω中的三个元素l,m,n 分别是△ABC 的三边边长,则△ABC 一定不是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形5.(多选)下面几个命题中正确的命题有( )A.集合N *中最小的数是1B.若-a ∉N *,则a∈N *C.若a∈N *,b∈N *,则a+b 的最小值是2D.x 2+4=4x 的解集中有2个元素6.已知a,b 是非零实数,代数式|a |a +|b |b +|ab |ab 的值组成的集合是M,则下列判断正确的是( )A.0∈MB.-1∈MC.3∉MD.1∈M7.已知集合A是由全体偶数组成的,集合B是由全体奇数组成的,若a∈A,b∈B,则a+b A,ab A(填“∈”或“∉”).8.若集合A中有两个元素-1和2,集合B中有两个元素x,a2,若A与B相等,则x= ,a= .9.设集合A是由1,k2为元素构成的集合,则实数k的取值范围是.10.已知-3是由x-2,2x2+5x,12三个元素构成的集合中的元素,求x的值.二、能力提升11.已知集合M是方程x2-x+m=0的解组成的集合,若2∈M,则下列判断正确的是( )A.1∈MB.0∈MC.-1∈MD.-2∈M所以方程为x2-x-2=0,解得x1=-1,x2=2.故方程的另一个解为-1.选C.12.由实数x,-x,|x|,√x2,-√x33所组成的集合,其元素的个数最多为( )A.2B.3C.4D.513.已知关于x的不等式x-a≥0的解组成的集合为A,若3∉A,则实数a的取值范围是.14.已知集合A含有三个实数,分别为a2,ba,a,若0∈A且1∈A,则a2 020+b2020= .15.集合A中共有3个元素-4,2a-1,a2,集合B中也共有3个元素9,a-5,1-a,已知9∈A,且集合B中再没有其他元素属于A,根据上述条件求出实数a的值.三、素养综合16.已知集合M中有两个元素x,2-x,若-1∉M,则下列说法一定错误的是.(填序号)①2∈M;②1∈M;③x≠3.参考答案一、基础达标1.答案 CA项,不超过20的非负实数,元素具有确定性、互异性、无序性,能构成一个集合.B项,方程x2-9=0在实数范围内的解,元素具有确定性、互异性、无序性,能构成一个集合.C项,√3的近似值的全体,元素不具有确定性,不能构成一个集合.D项,某校身高超过170厘米的同学,元素具有确定性、互异性、无序性,能构成一个集合.故选C.2.答案 A3.答案 D√5>1,故A错;-2<0<1,故B错;1不小于1,故C错;-2<-π<1,故D正确.24.答案 D因为集合中的元素是互异的,所以l,m,n互不相等,即△ABC不可能是等腰三角形,故选D.5.答案ACN*是正整数集,最小的正整数是1,故A正确;当a=0时,-a∉N*,且a∉N*,故B错误;若a∈N*,则a的最小值是1,又b∈N*,b的最小值也是1,当a和b都取最小值时,a+b取最小值2,故C正确;x2+4=4x的解集为{2},故D错误.故AC正确.6.答案 B当a,b全为正数时,代数式的值是3;当a,b全是负数时,代数式的值是-1;当a,b 是一正一负时,代数式的值是-1.综上可知B正确.7.答案∉;∈解析∵a是偶数,b是奇数,∴a+b是奇数,ab是偶数,故a+b∉A,ab∈A.8.答案-1;±√2解析由集合相等的概念可知x=-1,a2=2,即a=±√2.9.答案k≠1且k≠-1解析∵1∈A,k2∈A,结合集合中元素的互异性可知k2≠1,解得k≠1且k≠-1.10.解析由题意知x-2=-3或2x2+5x=-3.当x-2=-3,即x=-1时,集合中的三个元素为-3,-3,12,不满足集合中元素的互异性,所以x=-1舍去.当2x2+5x=-3,即x=-32或x=-1(舍去)时,集合中的三个元素为-72,-3,12,满足集合中元素的互异性.综上可知x=-32.二、能力提升11.答案 C由2∈M可知,2为方程x2-x+m=0的一个解,所以22-2+m=0,解得m=-2.所以方程为x2-x-2=0,解得x1=-1,x2=2.故方程的另一个解为-1.选C.12.答案 A当x>0时,x=|x|=√x2,-√x33=-x,此时集合中共有2个元素;当x=0时,x=|x|=√x2=-√x33=-x,此时集合中共有1个元素;当x<0时,√x2=|x|=-√x33=-x,此时集合中共有2个元素.综上,此集合中最多有2个元素,故选A.13.答案a>3解析因为3∉A,所以3是不等式x-a<0的解,所以3-a<0,解得a>3.14.答案 1解析由0∈A,“0不能做分母”可知a≠0,故a2≠0,所以ba=0,即b=0.由1∈A,可知a2=1或a=1.当a=1时,得a2=1,由集合中元素的互异性,知a=1不符合题意; 当a2=1时,解得a=-1或a=1(舍去).故a=-1,b=0,所以a2 020+b2 020的值为1.15.解析∵9∈A,∴2a-1=9或a2=9,①若2a-1=9,则a=5,此时A中的元素为-4,9,25,B中的元素为9,0,-4,显然-4∈A且-4∈B,与已知矛盾,故舍去.②若a2=9,则a=±3.当a=3时,A中的元素为-4,5,9,B中的元素为9,-2,-2,B中有两个-2,与集合中元素的互异性矛盾,故舍去;当a=-3时,A中的元素为-4,-7,9,B中的元素为9,-8,4,符合题意.综上所述,a=-3.三、素养综合16.答案②解析依题意得{x≠-1,2-x≠-1,x≠2-x,解得x≠-1,x≠1且x≠3,当x=2或2-x=2,即x=2或x=0时,集合M中的元素为0,2,故①正确;当x=1或2-x=1,即x=1时,集合M中的元素为1,1,不满足集合中元素的互异性,故②不正确;③显然正确.。
1.1.1集合的含义与表示1.用适当的方法表示下列集合:(1)由方程2(1)(2)(3)0x x x -+-=的所有实数根组成的集合;(2)大于2且小于7的整数;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)所有正偶数组成的集合;(5)直角坐标系中第三象限的点组成的集合;(6)以A 为圆心,r 为半径的圆上的所有点组成的集合;(7)所有正方形组成的集合.2.(2012(新课标)理)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为A .3B .6C .8D .103.(1)设a b ∈R ,,集合},,0{},,1{b ab a b a =+,则b a -= ;(2)若2{2,,}{2,2,}a b a b =,求实数,a b 的值.(3)设{,,}A x xy x y =-,{0,||,}B x y =,且A B =,求,x y 的值。
4.(1)已知2{2,25,12}A a a a =-+,且3A -∈,求a 的值。
(2)已知2{0,1,}x x ∈,求实数x 的值。
5.(1)若1{}20x x ax b ∈++=,3{}20x x bx a ∈++=,则______,a =______b =.(2)由代数式,x x -,最多含有多少个元素?6.已知集合A={}2320,x ax x a R -+=∈,(1)若A 是空集,求a 的取值范围;(2)若A 是单元素集,求a 的值;(3)若A 中至多只有一个元素,求a 的取值范围.7.已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合A .。
集合的特点
1.下列所给的对象能构成集合的是( )
A .充分接近π的实数的全体
B .善良的人
C 。
高一所有聪明的同学
D .身高在1.7m 以上的人
2.已知集合S 的三个元素a ,b ,c 是△ABC 的边长,那么△ABC 一定不是( )
A .锐角三角形
B 。
直角三角形
C 。
钝角三角形
D 。
等腰三角形
3.由4-22、、a a 组成的一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )
A .1
B 。
-2
C 。
6
D 。
2
4.设集合}0{}{2222,,,,,y x y x Q xy y x y x p -+=+-=,若P=Q ,求x ,y 的值以及集合P,Q.
5.已知集合}023|{2=+-=x ax x A ,若A 中的元素至多只有一个,求a 的取值范围。
6.设},,2|{Z n m n m x x S ∈+==
(1)若Z a ∈,则a 是否是集合S 中的元素?
(2)对S 中的任意两个212121x x x x x x ∙+,,则,是否属于S ?
集合的表示
1. 用适当的方法表示下列集合:
(1)Welcome 中的所有字母组成的集合
(2)由所有非负偶数组成的集合
(3)直角坐标系内第三象限的点的集合
(4)函数)0(2≠++=a c bx ax y 的图像上所有的点的集合
2. 已知集合}68|
{N x N x A ∈-∈=,试用列举法表示集合A 3. 用适当的符号填空:
(1)3
1- Q,π Q,e Q (2)
32+
-},,6|{Q b Q a b a x x ∈∈+= 高考题
1、 已知集合A={0,1,2},则集合}}|{A y A x y x B ∈∈-=,中元素的个数是( )
A .1
B 。
3
C 。
5
D 。
9
2、 已知集合A={1,2,3,4,5},}|){(A y x A y A x y x B ∈-∈∈=,,,,则B 中所
含元素个数为( )
A.3
B.6
C.8
D.10。