2019-2020年高考数学大一轮复习高考专题突破五高考中的立体几何问题课件
- 格式:ppt
- 大小:3.01 MB
- 文档页数:37
专题突破练(5)立体几何的综合问题2.如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AB=2,BC=1,AC=5,若规定正视方向垂直平面ACC1A1,则此三棱柱的侧视图的面积为()45C.5 D.6答案C折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是()A.A′C⊥BDB.∠BA′C=90°5.[2018·河南豫东、豫北十校测试]鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,原为木质结构,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经90度榫卯起来,若正四棱柱体的高为4,底面正方形的边长为1,则该鲁班锁的表面积为 ( )A.48 B .60 C .72 D .846.如图所示,已知在多面体ABC -DEFG 中,AB ,AC ,AD 两两垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为( )A.2 B .4 C .6 D .8答案 B解析 如图所示,将多面体补成棱长为2的正方体,那么显然所求的多面体的体积即为该正方体体积的一半,于是所求几何体的体积为V =12×23=4.选B.7.[2017·湖北黄冈中学二模]一个几何体的三视图如图所示,其中正视图是边长为2的等边三角答案 B解析 由三视图可知,该几何体是半圆锥,其展开图如图所示,则依题意,点A ,M 的最短距离,即为线段AM .∵P A =PB =2,半圆锥的底面半圆的弧长为π,∴展开图中的∠BPM =πPB=π2, π5π5π答案 B解析 如图所示,为组合体的轴截面,记BO 1的长度为x ,由相似三角形的比例关系,得PO 13R=x R,则PO 1=3x ,圆柱的高为3R -3x ,所以圆柱的表面积为S =2πx 2+2πx ·(3R -3x )=-4πx 2+6πRx ,则当x =34R 时,S 取最大值,S max =94πR 2.选B.9.在正方体ABCD -A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD的中心,M ,N 分别为AB ,BC 边的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ的值有( )A.0个 B .1个 C .2个 D .3个10. [2017·东北三省三校二模]已知三棱柱ABC -A 1B 1C 1,侧棱BB 1⊥平面ABC ,AB =2,AC =3,AA 1=14,AC ⊥BC ,将其放入一个水平放置的水槽中,使AA 1在水槽底面内,平面ABB 1A 1与水槽底面垂直,且水面恰好经过棱BB 1,现水槽底面出现一个小洞,水位下降,则在水位下降过程中,几何体露出水面部分的面积S 关于水位下降的高度h 的函数图象大致为( )答案 A1x 时,正四棱锥的体积最大,则x 为 ( )A .0.5B .0.8C .0.2D .1答案 C二、填空题13.如图,在正方体ABCD-A1B1C1D1中,P为棱DC的中点,则D1P与BC1所在直线所成角的余弦值等于________.10514.如图,已知球O的面上有四点A,B,C,D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=2,则球O的体积等于________.答案6π解析如图,以DA,AB,BC为棱长构造正方体,设正方体的外接球球O的半径为R,则正方体的体对角线长即为球O的直径,所以64πR315.如图,用一个边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个巢,将半径为1的球体放入其中,则球心与巢底面的距离为__________.3+12解析 由题意知,折起后原正方形顶点间最远的距离为1,如图中的DC ;折起后原正方形顶点到底面的距离为12,如图中的BC .由图知球心与巢底面的距离OF =1-122+12=3+12. 16.[2017·安徽黄山第二次质检]如图所示,正方体ABCD -A ′B ′C ′D ′的棱长为1,E ,F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′,DD ′交于点M ,N ,设BM=x ,x ∈[0,1].给出以下五个命题:①当且仅当x =0时,四边形MENF 的周长最大;17.[2017·河南洛阳月考]如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=BC=2AC=4.(1)若点P为AA的中点,求证:平面B CP⊥平面B C P;值;若不存在,说明理由.解(1)证明:如图,以C为原点,CA,CB,CC1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则C(0,0,0),A(2,0,0),B1(0,4,4),C1(0,0,4),P(2,0,2),B(0,4,0),→→118.719.[2018·广东韶关调研]已知四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD为菱形,∠ABC(2)由(1)得AE,AD,AP两两垂直,连接AM,以AE,AD,AP所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系.520.[2017·湖北黄冈期末]如图,在各棱长均为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC,∠A1AC=60°.(1)求侧棱AA与平面AB C所成角的正弦值的大小;1故以O为坐标原点,建立如图所示的空间直角坐标系Oxyz,。