【解析】四川省绵阳市2020届高三上学期第一次诊断性考试数学(理)试题
- 格式:pdf
- 大小:28.30 KB
- 文档页数:2
四川省绵阳市2025届高三第一次诊断性考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A={−2,−1,0,1,2},B=x|(x+1)2≤1,则A∩B=( )A. {−2,−1}B. {−2,−1,0}C. [−2,0]D. [−2,2]2.“ac2>bc2”是“a>b”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件3.已知x>0,y>0,且满足x+y=xy−3,则xy的最小值为( )A. 3B. 23C. 6D. 94.某公司根据近几年经营经验得到广告支出与获得利润数据如下:广告支出x/万元258111519利润y/万元334550535864根据表中数据可得利润y关于广告支出x的经验回归方程为y=1.65x+a.据此经验回归方程,若计划利润达到100万元,估计需要支出广告费( )A. 30万元B. 32万元C. 36万元D. 40万元5.下列选项中,既是增函数,也是奇函数的是( )A. y=x−2B. y=x+1x C. y=x−sinx D. y=ln x−1x+16.已知θ为第一象限角,且tan(θ+π3)+tanθ=0,则1−cos2θ1+cos2θ=( )A. 9B. 3C. 13D. 197.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:ℎ)间的关系为P=P0e−kt(e是自然对数的底数,P0,k为正的常数).如果前9ℎ消除了20%的污染物,那么消除60%的污染物需要的时间约为()(参考数据:lg2≈0.301)A. 33ℎB. 35ℎC. 37ℎD. 39ℎ8.已知函数f(x)=−3(x+1)2,x≤0e x(x2−3),x>0 ,g(x)=mx,若关于x的不等式x(f(x)−g(x))<0的整数解有且仅有2个,则实数m的取值范围是( )A. 0,B. 0,C. (−2e,0]D. (−∞,0)∪0,二、多选题:本题共3小题,共18分。
2020届四川省绵阳市2017级高三上学期一诊考试数学(理)试卷★祝考试顺利★一、选择题1.已知{*|3}A x x =∈≤N ,{}2|40B x x x =-≤,则A B =I ( )A. {1,2,3}B. {1,2}C. (0,3]D. (3,4]【答案】A【解析】【分析】 先求解集合,A B ,然后求解A B I .【详解】因为{}{*|3}1,2,3A x x ==∈≤N ,{}{}2|40|04B x x x =x x =-≤≤≤,所以{}1,2,3A B =I .故选:A.2.若0b a <<,则下列结论不正确的是( ) A.11a b < B. 2ab a > C. |a|+|b|>|a+b| D.>【答案】C【解析】【分析】结合不等式的性质或特殊值,逐个选项验证.【详解】因为0b a <<,所以11a b<,选项A 正确; 因为0b a <<,所以2ab a >,选项B 正确;因为0b a <<,所以|a|+|b|=|a+b|,选项C 不正确;因为13y x =为增函数,>选项D 正确.故选:C.3.下列函数中定义域为R ,且在R 上单调递增的是( )A. 2()f x x =B. ()f x =C. ()ln ||f x x =D.2()e x f x = 【答案】D【解析】【分析】先求解选项中各函数的定义域,再判定各函数的单调性,可得选项.【详解】因为()f x =[0,)+∞,()ln ||f x x =的定义域为{}0x x ≠,所以排除选项B,C.因为2()f x x =在(,0]-∞是减函数,所以排除选项A,故选:D.4.等差数列{}n a 的前n 项和为n S ,若32a =,33S =,则6a =( )A. 4B. 5C. 10D. 15【答案】B【解析】【分析】先由3S 求2a ,再求公差d ,最后可得6a .【详解】因为3233S a ==,所以21a =,可得32211d a a =-=-=,所以6335a a d =+=, 故选:B.5.已知函数2()21xx f x =-,若()2f m -=,则()f m =( ) A. -2B. -1C. 0D. 12【答案】B【解析】【分析】 先由()f x 写出()f x -,再由二者关系可得()f m 与()f m -的关系,易得()f m .。
2017-2018学年四川省绵阳市高三(上)一诊数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.设集合A={x∈Z|(x﹣4)(x+1)<0},B={2,3,4},则A∩B=()A.(2,4) B.{2,4}C.{3}D.{2,3}2.若x>y,且x+y=2,则下列不等式成立的是()A.x2<y2B.C.x2>1 D.y2<13.已知向量=(x﹣1,2),=(x,1),且∥,则||=()A.B.2 C.2 D.34.若,则t an2α=()A.﹣3 B.3 C.D.5.某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月缴水费55元,则该职工这个月实际用水为()立方米.A.13 B.14 C.15 D.166.已知命题p:∃x0∈R,使得e x0≤0:命题q:a,b∈R,若|a﹣1|=|b﹣2|,则a﹣b=﹣1,下列命题为真命题的是()A.p B.¬q C.p∨q D.p∧q7.在△ABC中,“C=”是“sinA=cosB”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.已知函数f(x)=sinϖx+cosϖx(ϖ>0)图象的最高点与相邻最低点的距离是,若将y=f(x)的图象向右平移个单位得到y=g(x)的图象,则函数y=g (x)图象的一条对称轴方程是()A.x=0 B.C.D.9.已知0<a<b<1,给出以下结论:①;④log a>log b.则其中正确的结论个数是()A.1个 B.2个 C.3个 D.4个10.已知x1是函数f(x)=x+1﹣ln(x+2)的零点,x2是函数g(x)=x2﹣2ax+4a+4的零点,且满足|x1﹣x2|≤1,则实数a的最小值是()A.2﹣2B.1﹣2C.﹣2 D.﹣111.已知a,b,c∈R,且满足b2+c2=1,如果存在两条互相垂直的直线与函数f(x)=ax+bcosx+csinx的图象都相切,则a+c的取值范围是()A.[﹣2,2]B. C. D.12.若存在实数x,使得关于x的不等式+x2﹣2ax+a2≤(其中e为自然对数的底数)成立,则实数a的取值集合为()A.{} B.[,+∞)C.{}D.[,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.已知变量x,y满足约束条件,则z=2x+y的最小值是.14.已知偶函数f(x)在[0,+∞)上单调递增,且f(2)=1,若f(2x+1)<1,则x的取值范围是.15.在△ABC中,AB=2,AC=4,cosA=,过点A作AM⊥BC,垂足为M,若点N满足=3,则=.16.如果{a n}的首项a1=2017,其前n项和S n满足S n+S n=﹣n2(n∈N*,n≥2),﹣1则a101=.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,,D是边BC上一点,且,BD=2.(1)求∠ADC的大小;。
绵阳市高中2017级第一次诊断性考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{*|3}A x x =∈≤N ,{}2|40B x x x =-≤,则A B ⋂=A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]2.若0b a <<,则下列结论不正确的是A .11a b< B .2ab a >C .|a|+|b|>|a+b|D>3.下列函数中定义域为R ,且在R 上单调递增的是A .2()f x x =B.()f x =C .()ln ||f x x = D .2()xf x e =4.等差数列{}n a 的前n 项和为n S ,若32a =,33S =,则6a =A .4B .5C .10D .155.已知函数2()21xx f x =-,若()2f m -=,则()f m =A .-2B .-1C .0D .126.已知命题:p 函数2sin sin y x x=+,(0,)x π∈的最小值为:q 若向量a ,b ,c 满足a b b c ⋅=⋅,则a c =.下列命题中为真命题的是 A .()p q ⌝∧B .p q ∨C .()p q ∧⌝D .()()p q ⌝∧⌝7.若0.613a ⎛⎫= ⎪⎝⎭,0.83b -=,ln3c =,则a ,b ,c 的大小关系为A .b c a >>B .c a b >>C .c b a >>D .a c b >>8.已知x ,y 满足约束条件20,10,10,x y x y x y -≤⎧⎪-+≥⎨⎪+-≥⎩,则2z x y =+的最小值为A .4B .2C .1D .139.设函数()ln xf x ae x =-(其中常数0a ≠)的图象在点(1,(1)) f 处的切线为l ,则l 在y 轴上的截距为A .1B .2C .1ae -D .12ae -10.某数学小组到进行社会实践调查,了解到某公司为了实现1000万元利润目标,准备制定激励销售人员的奖励方案:在销售利润超过10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.同学们利用函数知识,设计了如下的函数模型,其中符合公司要求的是(参考数据:10001.0027.37≈,lg70.845≈)A .0.25y x =B . 1.002xy =C .7log 1y x =+D .tan 110x y ⎛⎫=-⎪⎝⎭11.函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上单调递增,且图象关于x π=-对称,则ω的值为 A .23 B .53C .2D .8312.在ABC ∆中,60A ︒∠=,A ∠的平分线AD 交边BC 于点D ,已知AD =且1()3AB AD AC λλ=-∈R ,则AB 在AD 方向上的投影为 A .1B .32C .3 D.2二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数()f x 的定义域为R ,且满足()(2)f x f x =+,当[0,2)x ∈时,()xf x e =,则(7)f =________. 14.已知向量(2,2)a =-,向量b 的模为1,且|2|2a b -=,则a 与b 的夹角为________.15.2019年10月1日,在庆祝新中国成立70周年阅兵中,由我国自主研制的军用飞机和军用无人机等参阅航空装备分秒不差飞越天安门,壮军威,振民心,令世人瞩目.飞行员高超的飞行技术离不开艰苦的训练和科学的数据分析.一次飞行训练中,地面观测站观测到一架参阅直升飞机以千米/小时的速度在同一高度向正东飞行,如图,第一次观测到该飞机在北偏西30︒的方向上,1分钟后第二次观测到该飞机在北偏东75︒的方向上,仰角为30,则直升机飞行的高度为________千米.(结果保留根号)16.若函数21()(ln )2f x x m x x x =+--有且仅有1个零点,则实数m 的取值范围为________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知函数22()(cos sin )2sin f x x x x =--. (1)求函数()f x 的最小正周期与单调递减区间; (2)若()01f x =-,且0,2x ππ⎛⎫∈-- ⎪⎝⎭,求0x 的值.18.(12分)已知数列{}n a 满足212n n n a a a +++=,*n ∈N ,且11a =,47a =,数列{}n b 的前n 项和122n n S +=-.(1)求数列{}n a 、{}n b 的通项公式; (2)设22log na n n cb =+,求数列{}nc 的前n 项和n T .19.(12分)已知ABC ∆中三个内角A ,B ,Csin()1B A C =++. (1)求sin B ; (2)若2C A π-=,b 是角B的对边,b =ABC ∆的面积.20.(12分)已知函数ln 2()ln 2x f x x -=+.(1)求函数()f x 在区间[1,)+∞上的值域; (2)若实数1x ,2x 均大于1且满足()()1212f x f x +=,,求()12f x x 的最小值.21.(12分)已知函数2()xf x e ax =-,a ∈R ,(0,)x ∈+∞. (1)若()f x 存在极小值,求实数a 的取值范围;(2)若202e a <≤,求证:()(ln )f x ax x x >-.(二)选考题:共10分.请考生在第22、23题中任选一题做答.如果多做,则按所做的第一题记分. 22.[选修4-4:坐标系与参数方程](10分)以在直角坐标系xOy 中,曲线C的参数方程为cos ,sin x y αααα⎧=+⎪⎨=-⎪⎩(α为参数).坐标原点O 为极点,x 轴的正半轴为极轴,取相同长度单位建立极坐标系,直线l 的极坐标方程为cos 36πρθ⎛⎫-= ⎪⎝⎭. (1)求曲线C 的普通方程和极坐标方程; (2)设射线:3OM πθ=与曲线C 交于点A ,与直线l 交于点B ,求线段AB 的长.23.[选修4—5:不等式选讲](10分)设函数()|||1|5()f x x m x m =-++-∈R . (1)当2m =时,求不等式()0f x ≥的解集; (2)若()2f x ≥-,求实数m 的取值范围.绵阳市高中2017级第一次诊断性考试理科数学参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分. 1-5 ACDBB 6-10 DBCAC 11-12 AD 二、填空题:本大题共4小题,每小题5分,共20分.13.e 14.4π 1516.12m =-或0m ≥选填详细解答:一、选择题:本大题共10小题,每小题5分。
秘密★启用前【考试时间:2019年10月31日15:00-17:00】注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。
2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知}3|{≤∈=*x N x A ,0}4x -x |{x 2≤=B ,则=⋂B A ( )}3,2,1.{A }2,1.{B (]3,0.C (]4,3.D【答案】A【解析】由题意得:{1,2,3}}3|{=≤∈=*x N x A ,[]4,10}4x -x |{x 2=≤=B ,所以=⋂B A }3,2,1{.【方法总结】集合是数学中比较基础的题目,但是仍然有许多同学出现考试失分。
特此总结下与集合中的元素有关问题的求解策略。
(1)确定集合的元素是什么,即集合是数集、点集还是其他类型的集合.(2)看这些元素满足什么限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性. 2.若0<<a b ,则下列结论不正确的是( ) A.ba 11< B.2a ab > C.||||||b a b a +>+ D.33b a < 【答案】C【解析】由题意得:此题可以用特殊值加排除法,设1,2-=-=b a 时,||||||b a b a +=+与C 矛盾.【方法总结】此题考查不等式的性质,基础题。
||||||||||b a b a b a -≥+≥+ 3.下列函数中的定义域为R ,且在R 上单调递增的是( )绵阳市高中2017级第一次诊断性考试文科数学A.2)(x x f = B.x x f =)( C.||ln )(x x f = D.x e x f 2)(=【答案】D【解析】B.的定义域为[)∞+,0,C 的定义域0≠x ,排除。
3.2三角函数化简及恒等变换一、选择题:每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.【四川省绵阳市2020届高三上期第一次诊断性考试数学(理)试题】 函数)0)(6sin()(>+=w wx x f π在⎪⎭⎫⎝⎛22-ππ,上单调递增,且图像关于π-=x 对称,则w 的值为( ) A.32 B.35 C.2 D.38【答案】A 【解析】函数)0)(6sin()(>+=w wx x f π的递增区间)(22622-Z k k x k ∈+≤+≤+πππωππ,化简得:).(23232-Z k k x k ∈+≤≤+ωπωπωπωπ已知在⎪⎭⎫ ⎝⎛22-ππ,单增,所以.320.232-32-<<⇒⎪⎩⎪⎨⎧≥≤ωπωππωπ,又因为图像关于π-=x 对称,).(26Z k k x ∈+=+πππω所以)(3Z k k w ∈--=π.因为0>ω此时k=-1,所以32=ω 【方法总结】此题考查三角函数的对称轴和单调区间,涉及在知识的交叉点命题思路,这是高考命题的思路。
题目综合性强,需要逆向思维。
题目属于中等难度。
2. 【湖北省华中师大一附中2017级高三上学期理科数学期中考试试题】已知函数()2sin()(0,||)f x x ωϕωϕπ=+><的部分图像如右图所示,且(,1),(,1)2A B ππ-,则ϕ的值为 ( )A.56πB.6πC. 56π-D. 6π- 【答案】C【解析】由已知得:1,2==ωπT ,图像经过(,1),(,1)2A B ππ-65-πϕ=3. 【2019-2020学年秋季鄂东南省级示范高中教育教学改革联盟学校高三年级上学期期中考试理科数学】已知将函数()()πcos 202f x x ϕϕ⎛⎫=+<< ⎪⎝⎭的图象向左平移ϕ个单位长度后,得到函数()g x 的图象,若()g x 的图象关于原点对称,则π3f ⎛⎫= ⎪⎝⎭( )A .BC .12-D .12【答案】A【解析】()()πcos 202f x x ϕϕ⎛⎫=+<< ⎪⎝⎭的图象向左平移ϕ个单位长度后,得到函数()g x []ϕ32cos +=x ,因为()g x 的图象关于原点对称,所以[]030cos )0(=+=ϕg ,所以6πϕ=,π3f ⎛⎫= ⎪⎝⎭23)362(cos -=+⨯ππ .4.【2019·四川棠湖中学开学考试】在平面直角坐标系中,点O (0,0),P (6,8),将向量OP →绕点O 按逆时针方向旋转3π4后得到向量OQ →,则点Q的坐标是( )A.(-72,-2)B. (-72, 2)C.(-46,-2)D.(-46,2) 【答案】 A【解析】 因为点O (0,0),P (6,8),所以OP →=(6,8), 设OP →=(10cos θ,10sin θ),则cos θ=35,sin θ=45,因为向量OP →绕点O 按逆时针方向旋转3π4后得到OQ →,设Q (x ,y ),则x =10cos ⎝⎛⎭⎫θ+3π4=10⎝⎛⎭⎫cos θcos 3π4-sin θsin 3π4=-72, y =10sin ⎝⎛⎭⎫θ+3π4=10⎝⎛⎭⎫sin θcos 3π4+cos θsin 3π4=-2, 所以点Q 的坐标为()-72,-2,故选A.5.函数()2π2cos cos 26f x x x ⎛⎫=+- ⎪⎝⎭图象的一条对称轴方程为( )A .π6x =B .π4x =C .π3x =D .π2x = 【答案】A【解析】∵()2ππ2cos cos 21sin 266f x x x x ⎛⎫⎛⎫=+-=-+ ⎪ ⎪⎝⎭⎝⎭,∴ππ2π62x k +=+(k ∈Z ),∴ππ26k x =+(k ∈Z ),当k =0时,π6x =.6. 【2019山东济南月考】M ,则下列结论中正确的是( )A .图象MB .将2sin2y x =MC .图象MD .()f x 【答案】C【解析】将2sin 2y x =的图象向左平移,故B 错;()f x D 错;M A 错误,C 正确,故选C .7.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是( ) A .①②④ B .②④ C .①④D .①③【答案】C【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.7. 【安徽省定远中学2019届高三全国高考猜题预测卷一数学试题】函数()[]()cos 2π,2πf x x x =∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( )A .5π3B .2πC .7π6D .π【答案】B【解析】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =. 又[]π,2πx ∈-,所以2x π=-或32x π=或π6x =或5π6x =, 所以函数()[]()cos 2π,2πf x x x =∈-的图象与函数()sin g x x =的图象交点的横坐标的和为π3ππ5π2π2266-+++=. 故选B.【名师点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.求解时,根据两个函数相等,求出所有交点的横坐标,然后求和即可. 8. 【广东省韶关市2019届高考模拟测试(4月)数学文试题】 已知函数π()sin()(0)6f x x ωω=+>的相邻对称轴之间的距离为π2,将函数图象向左平移6π个单位得到函数()g x 的图象,则()g x =( ) A .πsin()3x +B .πsin(2)3x +C .cos2xD .πcos(2)3x +【答案】C【解析】函数π()sin()(0)6f x x ωω=+>的相邻对称轴之间的距离为π2, 则π22T =, 解得:πT =, 所以2ππω=,解得2ω=,将函数π()sin(2)6f x x =+的图象向左平移6π个单位,得到ππππ()sin[2()]sin 2cos 26636g x x x x ⎛⎫=++=++= ⎪⎝⎭的图象, 故选C .【名师点睛】本题考查的知识要点:三角函数关系式的平移变换和伸缩变换的应用,正弦型函数性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.求解时,首先利用函数的图象求出函数的关系式,进一步利用图象的平移变换的应用求出结果. 9. 【山东省栖霞市2019届高三高考模拟卷数学理)试题】将函数π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭的图象向右平移π6个单位长度,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( )A .函数()g x 1B .函数()g x 的最小正周期为πC .函数()g x 的图象关于直线π3x =对称D .函数()g x 在区间π2,6π3⎡⎤⎢⎥⎣⎦上单调递增 【答案】D【解析】将函数()f x 的图象向右平移π6个单位长度得:πππ()2sin 22sin 2666h x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再把图象上所有点的横坐标伸长到原来的2倍得:()π2sin 6g x x ⎛⎫=-⎪⎝⎭, ()g x 的最大值为2,可知A 错误; ()g x 的最小正周期为2π,可知B 错误;π3x =时,ππ66x -=,则π3x =不是()g x 的图象的对称轴,可知C 错误; 当2,63ππx ⎡⎤∈⎢⎥⎣⎦时,ππ0,62x ⎡⎤-∈⎢⎥⎣⎦,此时()g x 单调递增,可知D 正确. 本题正确选项为D.【名师点睛】本题考查三角函数图象平移变换和伸缩变换、正弦型函数的单调性、对称性、值域和最小正周期的求解问题,关键是能够明确图象变换的基本原则,同时采用整体对应的方式来判断正弦型函数的性质.求解时,根据平移变换和伸缩变换的原则可求得()g x 的解析式,依次判断()g x 的最值、最小正周期、对称轴和单调性,可求得正确结果.10【湖南省岳阳市第一中学2019届高三第一次模拟(5月)数学试题】设函数π()sin 6f x x ⎛⎫=- ⎪⎝⎭,若对于任意5ππ,62α⎡⎤∈--⎢⎥⎣⎦,在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,则m 的最小值为( )A .π6B .π2C .7π6D .π【答案】B【解析】当5ππ,62α⎡⎤∈--⎢⎥⎣⎦时,有π2π,63πα⎡⎤-∈--⎢⎥⎣⎦,所以()[f α∈. 在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,所以存在唯一确定的β,使得()()[0,]2f f βα=-∈. []πππ0,,[,]666m m ββ∈-∈--,所以ππ2ππ5π[,),[,)63326m m -∈∈. 故选B.【名师点睛】本题主要考查了三角函数的图象和性质,考查了函数与方程的思想,正确理解两变量的关系是解题的关键,属于中档题.求解时,先求()[f α∈,再由存在唯一确定的β,使得()()[0,2f f βα=-∈,得ππ2π[,)633m -∈,从而得解. 10. 【福建省厦门市厦门外国语学校2019届高三最后一模数学试题】已知函数()cos f x x x ωω=+(>0)ω的零点构成一个公差为π2的等差数列,把函数()f x 的图象沿x 轴向左平移π6个单位,得到函数()g x 的图象,关于函数()g x ,下列说法正确的是( ) A .在[,]42ππ上是增函数 B .其图象关于π4x =-对称C .函数()g x 是奇函数D .在区间π2π[,]63上的值域为[−2,1]【答案】D【解析】()cos f x x x ωω=+可变形为π()2sin()6f x x ω=+,因为()y f x =的零点构成一个公差为π2的等差数列,所以()y f x =的周期为π, 故2ππω=,解得2ω=,所以π()2sin(2)6f x x =+,函数()f x 的图象沿x 轴向左平移π6个单位后得到()()22sin[()]sin()cos(22)222x g f x x x x ++===++=πππ666π,选项A :222,k x k k -+≤≤∈πππZ ,解得:k x k k 2-+≤≤∈πππ,Z , 即函数()y g x =的增区间为π[π,π],2k k k -+∈Z ,显然π[,][π,π]422k k ππ⊄-+,故选项A 错误; 选项B :令2π,x k k =∈Z ,解得:k x k 2=∈π,Z ,即函数()y g x =的对称轴为k x k 2=∈π,Z , 不论k 取何值,对称轴都取不到π4x =,所以选项B 错误; 选项C :()y g x =的定义域为R ,因为2cos02(00)g ==≠,所以函数()y g x =不是奇函数,故选项C 错误;选项D :当π2π[,]63x ∈时,故42[,]33x ∈ππ,根据余弦函数图象可得,2cos(2[)2(),1]x g x ∈-=,故选项故本题应选D.【名师点睛】本题考查了三角函数的图象与性质,考查了图象平移的规则,整体法思想是解决本题的思想方法.根据()y f x =的零点构成一个公差为π2的等差数列可得函数()y f x =的周期,从而得出函数()y f x =的解析式,沿x 轴向左平移π6个单位,便可得到函数()g x 的解析式,由()y g x =的解析式逐项判断选项的正确与否即可.11.【2019全国Ⅲ理12】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是( )A . ①④B . ②③C . ①②③D . ①③④ 【答案】D【解析】 当[0,2]x ∈π时,,2555x ωωπππ⎡⎤+∈π+⎢⎥⎣⎦, 因为()f x 在[0,2]π有且仅有5个零点,所以5265ωπππ+<π„, 所以1229510ω<„,故④正确, 因此由选项可知只需判断③是否正确即可得到答案, 下面判断③是否正确, 当(0,)10x π∈时,(2),5510x ωωππ+π⎡⎤+∈⎢⎥⎣⎦,若()f x 在0,10π⎛⎫⎪⎝⎭单调递增, 则(2)102ω+ππ<,即3ω<,因为1229510ω<„,故③正确.12.【2019天津理7】已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且π4g ⎛⎫=⎪⎝⎭3π8f ⎛⎫= ⎪⎝⎭( ) A.2-B.D.2 【答案】C【解析】 因为()f x 是奇函数,所以0ϕ=,()sin f x A x ω=.将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x ,即()1sin 2g x A x ω⎛⎫= ⎪⎝⎭,因为()g x 的最小正周期为2π,所以2212ωπ=π,得2ω=, 所以()sin g x A x =,()sin 2f x A x =.若4g π⎛⎫=⎪⎝⎭sin 442g A A ππ⎛⎫=== ⎪⎝⎭2A =, 所以()2sin 2f x x =,332sin 22sin 2884f ππ3π⎛⎫⎛⎫=⨯=== ⎪ ⎪⎝⎭⎝⎭故选C .13.将函数()2cos2f x x =的图象向右平移6π个单位后得到函数()g x 的图象,若函数()g x 在区间0,3a ⎡⎤⎢⎥⎣⎦和72,6a π⎡⎤⎢⎥⎣⎦上均单调递增,则实数a 的取值范围是( ) A .,32ππ⎡⎤⎢⎥⎣⎦ B .,62ππ⎡⎤⎢⎥⎣⎦ C.,63ππ⎡⎤⎢⎥⎣⎦ D .3,48ππ⎡⎤⎢⎥⎣⎦【答案】A14.若将函数()sin2cos2f x x x =+的图象向左平移()0ϕϕ>个单位,所得的图象关于y 轴对称,则ϕ的最小值是( ) A.4π B. 8π C. 38π D. 58π 【答案】B【解析】函数()sin2cos22sin 24f x x x x π⎛⎫=+=+ ⎪⎝⎭的图象向左平移()0ϕϕ>个单位,得到2sin 224y x πϕ⎛⎫=++ ⎪⎝⎭ 图象关于y 轴对称,即()242k k Z ππϕπ+=+∈,解得1=28k πϕπ+,又0ϕ>,当0k =时, ϕ的最小值为8π,故选B. 15. 【2019四川遂宁、广安、眉山、内江四高三上学期第一次联考】已知不等式262sin cos 6cos 0444x x x m +--≥对于,33x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,则实数m 的取值范围是( )A .(,2⎤-∞-⎦B .2,2⎛⎤-∞ ⎥ ⎝⎦ C .2,22⎡⎤⎢⎥⎣ D .)2,⎡+∞⎣ 【答案】B【点评】解决恒成立问题的关键是将其进行等价转化,使之转化为函数的最值问题,或者区间上的最值问题,使问题得到解决.具体转化思路为:若不等式()f x A >在区间D 上恒成立,则等价于在区间D 上()f x 的最小值大于A ;若不等式()f x B <在区间D 上恒成立,则等价于在区间D 上()f x 最大值小于B .16.已知实数,x y 满足221x y +=,则()()11xy xy -+有( )A .最小值21和最大值1B .最小值43和最大值1 C .最小值21和最大值43D .最小值1,无最大值【答案】B【解析】由221x y +=,可设cos ,sin x y θθ== ,则()()11xy xy -+=111sin 21sin 222θθ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭2131sin 2,144θ⎡⎤=-∈⎢⎥⎣⎦,故选B 17.【四川省成都市成都第七中学万达学校高2020届高三(上)第一次月考数学(文科)试题】定义在⎪⎭⎫⎝⎛20π,上的函数)(x f y =满足:x x f x f tan )()('>恒成立,则下列不等式中成立的是( )A .)3()6(3ππf f > B .1sin )3(332)1(πf f >C .)4()6(2ππf f >D .)3(2)4(3ππf f > 【答案】A【解析】分析:x x f x f tan )()('>⇒0tan )(-)('>x x f x f ⇒0)(sinx -)(cos '>x f x xf ,故此构造函数)(sin x f x x F =)(,)(x F 在⎪⎭⎫ ⎝⎛20π,上上增函数。
理科数学答案 第1页(共6页)绵阳市高中2017级第一次诊断性考试理科数学参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分.ACDBB DBCAC AD二、填空题:本大题共4小题,每小题5分,共20分.13.e 14.4π 15. 16.12m =−或m ≥0 三、解答题:本大题共6小题,共70分.17.解:(1)22()(cos sin )2sin f x x x x =−−212sin cos 2sin x x x =−−cos 2sin 2x x =−)4x π+, ……………………………………………4分 ∴ T =22ππ=, 即()f x 的最小正周期为π. ……………………………………………………5分 ∵ cos y x =的单调递减区间为[2k π,2k ππ+],k ∈Z ,∴ 由2k π≤2x +4π≤2k ππ+,k ∈Z ,解得8k ππ−≤x ≤38k ππ+,k ∈Z , ∴ ()f x 的单调递减区间为[8k ππ−,38k ππ+],k ∈Z . ……………………7分 (2)由已知0()=1f x −,可得0)14x π+=−, ………………………10分即0cos(2)4x π+=, 再由0()2x ππ∈−−,,可得0732()444x πππ+∈−−,, ∴ 05244x ππ+=−, 解得 03=4x π−.………………………………………………………………12分理科数学答案 第2页(共6页) 18.解:(1)∵ a n +2+a n =2a n +1,n ∈N *,即a n +2-a n +1=a n +1-a n ,∴ 数列{}n a 是等差数列.由1411+37a a a d ,===,解得112a d ,==,∴1=+(1)21n a a n d n −=−. ………………………………………………………4分 当1n =时,12b =,当n ≥2时,1122(22)n n n n n b S S +−=−=−−−1222222=n n n n n +−=⨯−=.∴ 数列{}n b 的通项公式为2n n b =.……………………………………………8分(2)由(1)得,212n n c n −=+,………………………………………………9分 3521(21)(22)(23)(2)n n T n −=++++++++ 3521(2222)(123)n n −=+++++++++ 2(14)(1)142n n n −+=+− 2122232n n n +−+=+. ……………………………………………………12分 19.解:(1)在△ABC 中,A +B +C =π,即B =π-(A +C ),∴ sin B =sin(A +C ),由题意得cos B =sin B +1. …………………………………………………3分 两边平方可得2cos 2B =sin 2B +2sin B +1,根据sin 2B +cos 2B=1,可整理为3sin 2B+2sin B -1=0, 解得31sin =B 或sin B =-1(舍去).……………………………………………5分 ∴ 31sin =B . ……………………………………………………………………6分 (2)由2C A π−=,且A B C π++=, 可得22A B π=−,C 为钝角, ∴ sin 2cos A B =,理科数学答案 第3页(共6页)又b =由正弦定理得sinsin a b c A C===∴a A =,c C =. 又C 为钝角,由(1)得cos B =. ………………………………………9分 ∴ △ABC 的面积为111sin 223S ac B A C ==⨯⨯⨯99sin sin()sin cos 222A A A A π=+= 999sin 2cos 444A B ==== 综上所述,△ABC 的面积为2. …………………………………………12分 20.解:(1)由题意得ln 244()1ln 2ln 2x f x x x +−==−++, ………………………2分 由x ≥1,知ln x ≥0,于是ln x +2≥2,∴ 10ln 2x <+≤12,即420ln 2x −≤−<+, ∴-1≤41ln 2x −+<1, ∴()f x 的值域为[-1,1). ……………………………………………………5分(2)=+)()(21x f x f 2ln 412ln 4121+−++−x x 21=, 所以232ln 42ln 421=+++x x . 又1211x x >>,,∴2121ln ln ln x x x x +=42ln 2ln 21−+++=x x ………………………………8分4)2ln 42ln 4()]2(ln )2[(ln 322121−+++⋅+++=x x x x 21124(ln 2)4(ln 2)2[8]43ln 2ln 2=x x x x ++++−++理科数学答案 第4页(共6页)≥220(8433+−=, ……………………………………………11分 当且仅当21124(ln 2)4(ln 2)ln 2ln 2x x x x ++=++,即x 1=x 2时取“=”, 故20312min ()e x x =,∵ ()f x 在(1,+∞)上是增函数,∴ 137)(min 21=x x f . ………………… ………………………………………12分 21.解:(1)由题意得e ()e 2(2)x x f x ax x a x '=−=−,令e ()xh x x=, 则2e (1)()x x h x x−'=. ……………………………………………………………2分 ∴ 当0<x <1时,得()h x '<0,此时()h x 单调递减,且x →0,()h x →+∞,当x >1时,得()h x '>0,此时()h x 单调递增,且x →+∞,()h x →+∞, ∴ ()h x min =h (1)=e .①当2a ≤e ,即a ≤e 2时,()f x '≥0,于是()f x 在(0,+∞)上是增函数, 从而()f x 在(0,+∞)上无极值.②当2a >e ,即a >e 2时,存在0<x 1<1<x 2,使得1()f x '=2()f x '=0, 且当x ∈(0,x 1)时,()f x '>0,()f x 在(0,x 1)上是单调递增;当x ∈(x 1,x 2)时,()f x '<0,()f x 在(x 1,x 2)上是单调递减;当x ∈(x 2,+∞)时,()f x '<0,()f x 在(x 2,+∞)上是单调递增,故x 2是()f x 在(0,+∞)上的极小值. 综上,e 2a >. …………………………………………………………………6分 (2)要证f (x )>ax (ln x -x )即等价于证明e x >ax ln x .①当0<x ≤1时,得e x >1,ax ln x ≤0,显然成立; ………………………………………………………………………7分 ②当x >1时,则x ln x >0,结合已知0<a ≤2e 2,可得0<ax ln x ≤2e 2x ln x .理科数学答案 第5页(共6页)于是问题转化为证明e x >2e 2x ln x , 即证明22e ln 0x x x−−>. …………………………………………………………8分 令22e ()ln 1x g x x x x−=−>,, 则222e (1)()x x x g x x −−−'=, 令2()2e (1)x h x x x −=−−,则2()2e 1x h x x −'=−,易得()h x '在(0)+∞,上单调递增. ∵2(1)=10(2)=30eh h ''−<>,, ∴存在0(12)x ∈,使得0()=0h x ',即0202e 1x x −=. ∴()h x 在区间(1,0x )上单调递减,在区间(0x ,+∞)上单调递增, ………………………………………10分 又(1)=10(2)=0h h −<,,∴当(12)x ∈,时,()0g x '<,()g x 单调递减,当(2)x ∈+∞,时,()0g x '>,()g x 单调递增,∴()g x ≥(2)g =1-ln2>0,故g (x )>0,问题得证. ……………………………………………………12分22.解:(1)由题意得2222(cos )(sin )4x y αααα+=+=,∴ 曲线C 的普通方程为224x y +=. …………………………………………2分 ∵ cos x ρθ=,sin y ρθ=,∴ 代入可得曲线C 的极坐标方程为2ρ=. ………………………………5分(2)把=3πθ代入ρcos(6πθ−)=3中, 可得ρcos(36ππ−)=3,理科数学答案 第6页(共6页)解得ρ=,即B 点的极径B ρ=,由(1)易得A ρ=2,∴ |AB |=|A ρ-B ρ|=-2. ………………………………………………10分23.解:(1)当m =2时,f (x )=︱x -2︱+︱x+1︱-5.当x ≤-1时,()(2)(1)50f x x x =−−−+−≥,解得x ≤-2; ……………………………………………………………………1分 当-1<x <2时,()(2)15f x x x =−−++−≥0,无解. ……………………………………………………………………………3分 当x ≥2时,()215f x x x =−++−≥0,解得x ≥3; ……………………………………………………………………4分综上,原不等式的解集为(2][3)−∞−+∞,,. ………………………………5分 (2)∵()|||1|5f x x m x =−++−≥|()(1)|5x m x −−+−|1|5m =+−≥-2,∴ |1|m +≥3, …………………………………………………………………8分 ∴ m +1≥3或m +1≤-3,即m ≥2或m ≤-4,∴ 实数m 的取值范围是(−∞,-4][2)+∞,. ……………………………10分2020届绵阳一诊参数处理的全面考查16.若函数21()(ln )2f x x m x x x =+--只有一个零点,则实数m 的取值范围为【解析】(半分离)由()0f x =,得21(2)(ln )2x x m x x -=-,令21()(2),()ln 2g x x x h x x x =-=-,则(),()g x h x 在(0,1)单减,在(1,)+∞单增。
秘密★启用前【考试时间:2024年10月30日15:00—17:00】绵阳市高中2022级第一次诊断性考试数学(答案在最后)注意事项:1.答卷前,考生务必将自己的班级、姓名、考号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题,共58分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2,1,0,1,2A =--,(){}211B x x =+≤,则A B = ()A.{}2,1-- B.{}2,1,0-- C.[]2,0- D.[]22-,【答案】B 【解析】【分析】先求出集合B ,再根据集合交集运算即可得答案【详解】由()211x +≤,可得20x -≤≤,所以{}20B x x =-≤≤,所以A B = {}{}{}2,1,0,1,2202,1,0x x --⋂-≤≤=--.故选:B2.“22ac bc >”,是“a b >”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】利用充分条件、必要条件的定义判断即得.【详解】若22ac bc >,则20,0c c ≠>,因此a b >,当a b >,0c =时,220ac bc ==,所以“22ac bc >”,是“a b >”的充分不必要条件.故选:A3.已知0,0x y >>,且满足3x y xy +=-,则xy 的最小值为()A.3B.C.6D.9【答案】D 【解析】【分析】利用基本不等式化简已知条件,再解不等式求得xy 的范围,从而求得xy 的最小值.【详解】3x y xy +=-≥)23310-=≥,30,9xy -≥≥,当且仅当3x y ==时等号成立,所以xy 的最小值为9.故选:D4.某公司根据近几年经营经验,得到广告支出与获得利润数据如下:广告支出x /万元258111519利润y /万元334550535864根据表中数据可得利润y 关于广告支出x 的经验回归方程为ˆ 1.6ˆ5yx a =+.据此经验回归方程,若计划利润达到100万元,估计需要支出广告费()A.30万元B.32万元C.36万元D.40万元【答案】D 【解析】【分析】先得求数据的中心点()10,50.5,代入ˆ 1.6ˆ5yx a =+得ˆ34a =,再由ˆ100=y 求得40x =即得.【详解】258111519106x +++++==,33455053586450.56y +++++==,因ˆ 1.6ˆ5yx a =+过点()x y ,故ˆ50.5 1.6510a =⨯+,得ˆ34a =,故当ˆ100=y时,341001.65x +=,得40x =,故选:D5.下列选项中,既是增函数,也是奇函数的是()A.2y x -=B.1y x x =+C.sin y x x=- D.1ln1x y x -=+【答案】C 【解析】【分析】分别判断函数的奇偶性和单调性即可.【详解】对于A ,令()2f x x -=,0x ≠,()()()22fx x x f x ---=-==,所以2y x -=是偶函数,故A 错误;对于B ,1y x x=+在(),1∞--和()1,+∞上单调递增,在()1,0-和()0,1上单调递减,故B 错误;对于C ,令()sin g x x x =-,R x ∈,()()()()sin sin g x x x x x g x -=---=--=-,所以sin y x x =-是奇函数,又1cos 0y x '=-≥,所以sin y x x =-是R 上的增函数,故C 正确;对于D ,令()1ln1x h x x -=+,()(),11,x ∈-∞-⋃+∞,则()()()11201111x x h x x x x x '+-⎛⎫'=⋅=> ⎪-+-+⎝⎭,所以函数1ln 1x y x -=+在(),1∞--和()1,+∞上单调递增,但在定义域上不单调,故D 错误.故选:C.6.已知θ为第一象限角,且πtan tan 03θθ⎛⎫++= ⎪⎝⎭,则1cos21cos2θθ-=+()A.9B.3C.13D.19【答案】B 【解析】【分析】根据两角和的正切公式结合已知条件可求出tan θ=.【详解】由题意知θ为第一象限角,且πtan tan 03θθ⎛⎫++= ⎪⎝⎭,故πtan tan3tan 0π1tan tan 3θθθ++=-,解得tan θ或3tan 3θ=-(舍去),则2221cos22sin tan 31cos22cos θθθθθ-===+,故选:B7.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P (单位:mg/L )与时间t (单位:h )间的关系为0ektP P -=(e 是自然对数的底数,0P ,k 为正的常数).如果前9h 消除了20%的污染物,那么消除60%的污染物需要的时间约为()(参考数据:lg 20.301≈)A.33hB.35hC.37hD.39h【答案】C 【解析】【分析】根据给定条件,求出常数k ,然后再令0.4P =即可解出t .【详解】依题意,900(120%)ek P P --=,解得1ln 0.89k =-,即900.8t P P =,当0(160%)P P =-时,9000.40.8tP P =,即90.80.4t=,解得9lg 0.49(2lg 21)9(120.301)37lg 0.83lg 21130.301t --⨯==≈≈--⨯,所以污消除60%的污染物需要的时间约为37h .故选:C8.已知函数()()()()2231,0,e 3,0x x x f x g x mx x x ⎧-+≤⎪==⎨->⎪⎩,若关于x 的不等式()()()0x f x g x -<的整数解有且仅有2个,则实数m 的取值范围是()A.30,2⎛⎤⎥⎝⎦B.2e 0,2⎛⎤ ⎥⎝⎦C.(]2e,0- D.()3,00,2⎛⎤-∞ ⎥⎝⎦【答案】A 【解析】【分析】判断函数的单调性,作出函数图象,结合题意列出相应不等式组,即可求得答案.【详解】令()()2e3,0xh x xx =->,则()()()e 31x h x x x +'=-,当01x <<时,ℎ′<0,则ℎ在0,1上单调递减;当1x >时,ℎ′>0,则ℎ在1,+∞上单调递增;令()()231,0k x x x =-+≤,则其图象为开口向下,对称轴为1x =-的抛物线;由关于x 的不等式()()()0x f x g x -<,可知0x ≠,当0x >时,()()f x g x <,即有()()h x g x <;当0x <时,()()f x g x >,即有()()k x gx >;作出函数图象如图:要使关于x 的不等式()()()0x f x g x -<的整数解有且仅有2个,显然0m ≤不能满足题意,故需满足()()()()02222m h g k g ⎧>⎪≥⎨⎪-≤-⎩,即20e 232m m m>⎧⎪≥⎨⎪-≤-⎩,解得302m <≤,即m 的取值范围为30,2⎛⎤⎥⎝⎦,故选:A【点睛】关键点睛:解答本题的关键在于作出函数图象,从而列出相应不等式组,求得答案.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知数列的前n 项和为n S ,且116,6n n a a S +==+,则()A.342S =B.2n nS a <C.{}n S 是等比数列D.存在大于1的整数n ,k ,使得n kS a =【答案】AB 【解析】【分析】通过n a 与n S 的关系,作差得到数列{}n a 是以6为首项,2为公比的等比数列,进而逐项判断即可.【详解】由16n n a S +=+,可得16,2n n a S n -=+≥两式相减可得:12,2n n a a n +=≥,又2211612,2a a S a =+==,所以数列{}n a 是以6为首项,2为公比的等比数列,所以162n n a -=⨯,626nn S =⨯-,所以3362642S =⨯-=,A 正确;262n n a =⨯,所以2n n S a <,B 正确;由626nn S =⨯-,可得1236,18,42S S S ===,显然3212S S S S ≠,可判断{}n S 不是等比数列,C 错误;若n k S a =,即162662n k -⨯-=⨯,也即1221n k --=,显然不存在大于1的整数,n k ,使得等式成立,D 错误;故选:AB10.已知函数()22sin cos 0)222x x x f x ωωωω=-+>在[)0,π上有且仅有4个零点,则()A.1114,33ω⎛⎤∈⎥⎝⎦B.令()π6g x f x ⎛⎫=+⎪⎝⎭,存在ω,使得()g x '为偶函数C.函数()f x 在()0,π上可能有3个或4个极值点D.函数()f x 在ππ,3535⎛⎫- ⎪⎝⎭上单调递增【答案】ABD 【解析】【分析】利用二倍角和辅助角公式化简得到()π2sin 3f x x ω⎛⎫=+⎪⎝⎭,根据()f x 在[)0,π上有且仅有4个零点,可确定πππ,π333x ωω⎡⎫+∈+⎪⎢⎣⎭,进而解得111433ω<≤,再根据其范围结合函数图象和平移知识等逐【详解】()2π2sincos sin 2sin (0)2223x x x f x x x x ωωωωωωω⎛⎫=-=+=+> ⎪⎝⎭对于A ,[)0,πx ∈,πππ,π333x ωω⎡⎫+∈+⎪⎢⎣⎭,因为()f x 在[)0,π上有且仅有4个零点,所以π4ππ5π3ω<+≤,解得111433ω<≤,∴1114,33ω⎛⎤∈ ⎥⎝⎦,故A 正确;对于B ,()π6g x f x ⎛⎫=+⎪⎝⎭ππππ2sin 2sin 6363x x ωωω⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,()ππ2cos 63g x x ωωω'⎛⎫=++ ⎪⎝⎭为偶函数,则πππ,63k k ω+=∈Z ,即62,k k ω=-∈Z ,∵0,ω>∴取4ω=,()8cos 4g x x '=-为偶函数,满足题意,故B 正确;对于C ,∈0,π,πππ,π333x ωω⎛⎫+∈+ ⎪⎝⎭,∵1114,33ω⎛⎤∈ ⎥⎝⎦,(]ππ4π,5π3ω+∈,∴函数()f x 在()0,π上可能有4个或5个极值点,故C 不正确;对于D ,若ππ,3535x ⎛⎫∈-⎪⎝⎭,则πππππ,3353353x ωωω⎛⎫+∈-++ ⎪⎝⎭,∵1114,33ω⎛⎤∈⎥⎝⎦,∴ππ7π8πππ46π7π,,,353353535310515ωω⎡⎫⎛⎤-+∈+∈⎪ ⎢⎥⎣⎭⎝⎦,∴函数()f x 在ππ,3535⎛⎫- ⎪⎝⎭上单调递增.故D 正确;故选:ABD.11.已知函数()f x 的定义域为,()f x 不恒为0,且()()222f x f y x y x y f f ++-⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,则()A.()0f 可以等于零B.()f x 的解析式可以为:()cos2f x x =C.曲线−1为轴对称图形D.若()11f =,则201()20k f k ==∑【答案】BCD【分析】利用赋值法可得()00f =或()01f =,分类讨论可得()01f =,判断A ;.有一只判断出函数的奇偶性,可判断B ;结合B 的分析以及图象的平移可判断C ;判断出(){}f k 是以()11f =为首项,0为公差的等差数列,即可判断D.【详解】令0x y ==,可得()()000000222f f f f ++-⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,可得()()200f f =,解得()00f =或()01f =,当()00f =时,则可得()()0222f x f x x x x x f f ++-⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,则()0f x =,与()f x 不恒为0矛盾,所以()01f =,故A 错误;令y x =-,可得()()()()()()20,f x f x f f x f x f x +-=∴-=,所以()f x 为偶函数,因为()cos 2f x x =是偶函数,所以()f x 的解析式可以为:()cos2f x x =,故B 正确;因为()f x 为偶函数,所以()f x 的图象关于直线0x =对称,所以()1f x -关于直线1x =对称,所以曲线()1f x -为轴对称图形,故C 正确;令2,x k y k =+=,则可得()()2222222f k f k k f f +++⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,所以()()()*221,N f k f k f k k ++=+∈,又()()2022222f f f f +⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,解得()21f =,所以(){}f k 是以()11f =为首项,0为公差的等差数列,所以201()20k f k ==∑,故D 正确.故选:BCD.【点睛】关键点点睛:采用赋值法是解抽象函数的一种有效方法,多领会其思路.第Ⅱ卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.12.记ABC V 内角A ,B ,C 的对边分别为a ,b ,c .已知()22,3,cos 3b c B C ==+=-,则a =______.【答案】【分析】结合三角形内角和、诱导公式与余弦定理计算即可得解.【详解】由()()2cos cos πcos 3B C B C A ⎡⎤+=-+=-=-⎣⎦,故2cos 3A =,则22222cos 491253a b c bc A =+-=+-⨯=,故a =..13.已知函数()|ln|2||f x x m =+-,m 为正的常数,则()f x 的零点之和为________.【答案】8-【解析】【分析】根据给定条件,探讨函数的对称性,再结合零点的意义即可求解得答案.【详解】函数()f x 的定义域为{R |2}x x ∈≠-,由()0f x =,得|ln|2||x m +=,令函数()|ln|2||g x x =+,(4)|ln|42|||ln |2||()g x x x g x --=--+=+=,则函数()y g x =图象关于直线2x =-对称,在同一坐标系内作出直线(0)y m m =>与函数()y g x =的图象,如图,直线(0)y m m =>与函数()y g x =的图象有4个交点,令其横坐标从左到右依次为1234,,,x x x x ,观察图象得14234x x x x +=+=-,所以()f x 的零点之和为8-.故答案为:8-14.若2x =是函数()()213e 22xf x x a x x ⎛⎫=-+-⎪⎝⎭的极大值点,则实数a 的取值范围为________.【答案】2e a <-【解析】【分析】根据函数的导数,对a 分类讨论,再结合()0f x '=的根,分类讨论,分析函数的极大值点即可得出答案.【详解】()()()()()e 222e x xf x x a x x a =-+-=-+',当0a ≥时,e 0x a +>,当2x <时,′<0,当2x >时,′>0,所以()f x 在(),2∞-上单调递减,在()2,∞+上单调递增,所以2x =是函数的极小值点,不符合题意;当0a <时,令()0f x '=,可得()122,ln x x a ==-,若()2ln a <-,即2e a <-时,则2x <时,′>0,函数()f x 单调递增,()2ln x a <<-时,′<0,函数()f x 单调递减,所以2是函数()()213e 22xf x x a x x ⎛⎫=-+-⎪⎝⎭的极大值点,符合题意;若()2ln a >-即20e a >>-时,则2x >时,′>0,函数()f x 单调递增,()ln 2a x -<<时,′<0,函数()f x 单调递减,所以2是函数()()213e 22xf x x a x x ⎛⎫=-+-⎪⎝⎭的极小值点,不符合题意;若()2ln a =-即2e a =-时,则R x ∈时,′≥0,函数()f x 单调递增,函数()f x 无极值点,不符合题意.综上,当2e a <-时,2是函数()f x 的极大值点.故答案为:2e a <-【点睛】关键点点睛:首先观察导函数,当0a ≥时,分析函数单调性判断2是否为极大值点,当0a <时,根据()0f x '=的两根大小分类,由导数的正负得函数的单调性,再由单调性判断极大值点是否为2.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.近年来,解放军强军兴军的深刻变化,感召了越来越多的高中优秀青年学子献身国防,投身军营.2024年高考,很多高考毕业学生报考了军事类院校.从某地区内学校的高三年级中随机抽取了900名学生,其中男生500人,女生400人,通过调查,有报考军事类院校意向的男生、女生各100名.(1)完成给出的列联表,并分别估计该地区高三男、女学生有报考军事类院校意向的概率;有报考意向无报考意向合计男学生女学生合计(2)根据小概率值0.10α=的独立性检验,能否认为学生有报考军事类院校的意愿与性别有关.参考公式及数据:()()()()()22,n ad bcn a b c da b c d a c b dχ-==+++ ++++.α0.250.150.100.050.0250.0100.0050.001xα1.3232.072 2.7063.841 5.024 6.6357.87910.828【答案】(1)列联表见解析,男生有报考军事类院校意向的概率为15,女生有报考军事类院校意向的概率为1 4(2)能认为学生有报考军事类院校的意愿与性别有关【解析】【分析】(1)先填写22⨯列联表,再根据古典概型概率计算公式求得正确答案.(2)计算2χ的知识,从而作出判断.【小问1详解】根据已知条件,填写22⨯列联表如下:有报考意向无报考意向合计男学生100400500女学生100300400合计200700900男生有报考军事类院校意向的概率为1001 5005=,女生有报考军事类院校意向的概率为10014004=.【小问2详解】()22900100300400100 3.214 2.072200700400500χ⨯-⨯=≈>⨯⨯⨯,所以能认为学生有报考军事类院校的意愿与性别有关.16.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c .已知1sin 2a C =,且cos cos 1a C c A +=,(1)求ABC V 的面积;(2)若π4B =,求A .【答案】(1)14;(2)π8或5π8.【解析】【分析】(1)根据给定条件,利用余弦定理及三角形面积公式求解即得.(2)利用正弦定理,结合和角的正弦公式、二倍角公式求解即得.【小问1详解】在ABC V 中,由余弦定理及cos cos 1a C c A +=,得222222122a b c b c a a c ab bc+-+-⋅+⋅=,整理得1b =,而1sin 2a C =,所以ABC V 的面积11sin 24S ba C ==.【小问2详解】由(1)及正弦定理得1πsin sin sin 4a b A B ===a A =,1sin 2A C =1sin(2π)4A A +=,1(sin 2cos )2A A A ⋅+=,即22sin cos 12sin A A A =-,因此sin 2cos 2A A =,即tan 21A =,由3π04A <<,得3π022A <<,解得π24A =或5π24A =,所以π8A =或5π8A =.17.已知数列{}{},n n a b 满足()1n n n a nb +=,且1n a +是n b 与1n b +的等比中项.(1)若124a a +=,求1b 的值;(2)若12a =,设数列{}{},n n a b 的前n 项和分别为,n n S T .(ⅰ)求数列{}{},n n a b 的通项公式;(ⅱ)求n n T S -.【答案】(1)2(2)(ⅰ)()1n a n n =+,()21n b n =+(ⅱ)()32n n n n T S +-=【解析】【分析】(1)先得112b a =,2232b a =,利用1n a +是n b 与1n b +的等比中项可得;(2)(ⅰ)先求得1n n n b a n+=,利用1n a +是n b 与1n b +的等比中项可得12n n n a a n ++=,由累乘法可得()1n a n n =+,进而可得()21n b n =+;(ⅱ)先得1n n n a b -=+,利用等差数列前n 项和公式可得()32n n T S n n +-=.【小问1详解】由()1n n n a nb +=可得112b a =,2232b a =,由题意可知2a 是1b 与2b 的等比中项,故2212a b b =,可得22123a a a =,即213a a =,又因124a a +=,故11a =,故1122b a ==【小问2详解】(ⅰ)由()1n n n a nb +=得1n n n b a n +=,由题意可得1211121n n n n n n n a a a n n b b ++++++==⋅,得12n n n a a n ++=,故12n n a n a n++=,故()1112211321121n n n n n a a a a n n n n a n n a a a ---=⨯⨯⨯⨯+⨯⨯⨯=+--= ,()211n n n b a n n+==+,故()1n a n n =+,()21n b n =+(ⅱ)()()2111n n b n a n n n =+-=-++,()()1212n n n n T b b b a a a S =+++-++- ()()()1122n n b a b a b a =-+-++- ()231n =++++ ()212n n++=()32n n +=18.已知函数()3221f x x ax a x =+--.(1)当5a =-时,则过点()0,2的曲线()f x 的切线有几条?并写出其中一条切线方程;(2)讨论()f x 的单调性;(3)若()f x 有唯一零点,求实数a 的取值范围.【答案】(1)有3条切线,322y x =-+(2)答案见解析(3)325,15⎛⎫- ⎪ ⎪⎝⎭【解析】【分析】(1)根据导数的几何意义,设出切点得出切线斜率,列方程组分析解得个数即可;(2)求出导函数,对a 分类讨论即可得出函数单调区间;(3)根据函数的单调性,结合当x →+∞时,()f x →+∞,利用极大值建立不等式求解.【小问1详解】当5a =-时,()325251f x x x x =---,()231025f x x x =--',设切点为()00,x y ,因为切线过点0,2,所以切线斜率存在,故可设切线方程为2y kx =+,则3200002002525131025kx x x x k x x ⎧+=---⎨=--⎩,化简可得()2200021330x x x --+=,即()()200012330x x x ---=,由2002330x x --=的判别式9240∆=+>知方程有2个不等实根且不为1,故()()200012330x x x ---=有3个不等的实根,所以切线有3条,其中一条切点横坐标为1,故3102532k =--=-,所以切线方程为322y x =-+.【小问2详解】()()()22323f x x ax a x a x a =+-=-+',当0a =时,()230f x x ='≥,所以函数在R 上单调递增;当0a >时,3a a -<,所以x a <-或3ax <时,′>0,()f x 单调递增,当3aa x -<<时,′<0,()f x 单调递减;当0a <时,3aa ->,所以x a >-或3a x <时,′>0,()f x 单调递增,当3ax a <<-时,′<0,()f x 单调递减;综上,0a =时,()f x 在R 上单调递增,无递减区间;当0a >时,()f x 在(),a ∞--和,3a ∞⎛⎫+ ⎪⎝⎭上单调递增,在,3a a ⎛⎫- ⎪⎝⎭上单调递减;当0a <时,()f x 在,3a ∞⎛⎫- ⎪⎝⎭和(),a ∞-+上单调递增,在,3a a ⎛⎫- ⎪⎝⎭上单调递减.【小问3详解】当0a =时,3()1f x x =-,函数仅有1个零点1;当0a >时,由(2)知,()f x 的极大值为()f a -,且当x →+∞时,()f x →+∞,若()f x 有唯一零点,则333()10f a a a a -=-++-<,解得1a <,故()0,1a ∈,当0a <时,由(2)知,()f x 的极大值为3a f ⎛⎫⎪⎝⎭,同理,若()f x 有唯一零点,则3510327a f a ⎛⎫=--< ⎪⎝⎭,解得5a >-,故,05a ⎛⎫∈- ⎪ ⎪⎝⎭,综上,实数a 的取值范围,15⎛⎫- ⎪ ⎪⎝⎭【点睛】关键点点睛:对于含参数的函数,研究单调区间的关键在于对导函数的特点分析,本题导函数为二次函数,所以分析的重点在于导函数零点的关系,在根据函数有唯一零点求参数的时候,利用函数的极大值点建立不等式是解题关键.19.已知函数()2ln 3f x x x x a =+-+,()f x 在(]0,1上的最大值为3ln24-.(1)求实数a 的值;(2)若数列{}n a 满足()1231n n n n a a f a a +=+-,且143a =.(ⅰ)当2,n n ≥∈Z 时,比较n a 与1的大小,并说明理由;(ⅱ)求证:1312nii a=-<∑.【答案】(1)=2(2)(1)1n a >,理由见详解;(2)证明见详解【解析】【分析】(1)利用导数判断()f x 的单调性求出最大值得解;(2)(i )由已知结合基本不等式可得1ln 12nn na a a +≥+,利用数学归纳法证明1n a >,()2,Z n n ≥∈,(ii )先构造函数()ln 1x x xϕ+=,并利用导数证明()1x ϕ<,从而得到()11112+-<-n n a a ,将所证明的式子放缩求和证明.【小问1详解】()()()121123x x f x x x x--'=+-=Q ,(]0,1x ∈,当102x <<时,10x -<,210x -<,()0f x '∴>,则()f x 在10,2⎛⎫⎪⎝⎭上单调递增,当112x ≤≤时,10x -≤,210x -≥,()0f x '∴≤,则()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,()max 11133ln ln 222424f x f a ⎛⎫∴==+-+=- ⎪⎝⎭,解得2a =.所以实数a 的值为2.【小问2详解】(i )由(1)知,()2ln 32f x x x x =+-+,所以212ln 3231n n n nn n a a a a a a +=+-++-,即21ln 12n n n na a a a +++=,212n n a a +≥Q ,1ln 12nn na a a +∴≥+,下面用数学归纳法证明1n a >,()2,Z n n ≥∈,当2n =时,143a =,1214lnln 3111823a a a ∴≥+=+>,假设()2,Z n k k k =≥∈时,命题成立,则1k a >,当1n k =+时,有1ln 112kk ka a a +≥+>成立,所以上述命题对2,Z n n ≥∈,均有1n a >成立.(ii )当1n =时,13112a -=<成立,当2n ≥时,令()ln 1x x x ϕ+=,则()2ln xx x ϕ-'=,当01x <<时,()0x ϕ'>,当1x >时,()0x ϕ'<,所以()x ϕ在()0,1上单调递增,在()1,+∞上单调递减,则()()11x ϕϕ<=,所以()()21ln 11ln 1112222n n n nn n n n n n a a a a a a a a a a ϕ+⎛⎫++++==+=+< ⎪⎝⎭,即11112n n a a +-<-,又由(i )知1n a >,则()11112+-<-n n a a ,()()()121313111ni n i a a a a =∴-=-+-++-⎡⎤⎣⎦∑L ()121111311222n a -⎡⎤⎛⎫<-++++ ⎪⎢⎥⎝⎭⎣⎦L 111123211322n n -⎛⎫=⨯⨯=- ⎪⎝⎭,102n >Q ,1112n ∴-<,12122n ⎛⎫∴-< ⎪⎝⎭,即1312ni i a =-<∑,得证.【点睛】关键点点睛:本题最后小问证明的关键是构造函数()ln 1x x xϕ+=,并利用导数证明()1x ϕ<,从而得到()11112+-<-n n a a .。