人教课标版初中数学八年级上册第十四章14.1 整式的乘法单项式乘以单项式和单项式乘以多项式 教案
- 格式:doc
- 大小:128.00 KB
- 文档页数:3
八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版一. 教材分析新人教版八年级数学上册第14.1节整式的乘法,主要介绍了单项式乘以单项式的运算方法。
这是初中数学中基础而重要的一部分,对于学生来说,这部分内容既是复习和巩固之前学过的知识,又是学习更复杂数学运算的基础。
二. 学情分析学生在学习这一节之前,已经学习了有理数的乘法、乘方以及单项式的概念。
他们对这些基础知识有一定的理解和掌握,但可能对于如何将乘法应用到单项式上,以及如何处理符号等问题会感到困惑。
因此,在教学过程中,我需要针对学生的这些特点进行引导和解释。
三. 说教学目标1.知识与技能目标:使学生掌握单项式乘以单项式的运算方法,能够正确地进行计算。
2.过程与方法目标:通过实例演示和练习,培养学生独立解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们勇于探索的精神。
四. 说教学重难点1.教学重点:单项式乘以单项式的运算方法。
2.教学难点:如何处理符号问题,以及如何将乘法应用到单项式上。
五. 说教学方法与手段在教学过程中,我将采用讲授法、引导法、实践法等多种教学方法。
通过实例讲解,引导学生自己探索和发现规律,再通过练习巩固所学知识。
同时,我会利用黑板、粉笔等教学手段,清晰地展示运算过程,帮助学生理解和记忆。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何进行单项式的乘法运算。
2.讲解:讲解单项式乘以单项式的运算规则,并通过示例进行演示。
3.练习:学生进行练习,教师引导学生思考和解决问题。
4.总结:对本节课的内容进行总结,强调重点和难点。
5.作业布置:布置相关的练习题,巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,能够突出重点。
我会用不同的颜色标注出运算规则和注意事项,帮助学生理解和记忆。
八. 说教学评价教学评价主要通过学生的练习情况和课堂表现来进行。
第十四章 14.1.4单项式乘单项式
知识点:单项式与单项式相乘
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
归纳整理:(1)积的系数等于各项系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
(2)相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算.
(3)只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式丢掉.
(4)单项式与单项式相乘的乘法法则对于三个或三个以上的单项式相乘同样适用.
(5)单项式与单项式的积仍是单项式.
考点:单项式乘单项式的计算
【例】计算:(1)10x2yz3·;(2)·;
(3)3ab2··2abc;(4)(- 2x n+1y n)·(-3xy)·.
解:(1)10x2yz3·=(x2·x)(y·y4)z3
=-5x3y5z3;
(2)·=(a·a2)(b2·b)=-a3b3;
(3)3ab2··2abc=(a·a2·a)(b2·b·b)c=-2a4b4c;
(4)(-2x n+1y n)·(-3xy)·
=(x n+1·x·x2)(y n·y)z=-3x n+4y n+1z.
点拨:(1)系数参与运算时,正确理解系数是参与乘方运算还是乘法运算.(2)凡是单项式中出现过的字母,在结果中也要再出现,不能遗漏.
感谢您的支持,我们会努力把内容做得更好!。
14.1 整式的乘法14.1.4 整式的乘法第1课时 单项式乘单项式和单项式乘多项式1.探索并了解单项式与单项式、单项式与多项式相乘的法则,并运用它们进行运算.2.会进行整式的混合运算.重点单项式与单项式、单项式与多项式相乘的运算法则及其应用.难点灵活地进行单项式与单项式、单项式与多项式相乘的运算.一、复习导入1.知识回顾:回忆幂的运算性质:a m ·a n =a m +n (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(a m )n =a mn (m ,n 都是正整数),即幂的乘方,底数不变,指数相乘.(ab)n =a n b n (n 为整数),即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.口答:幂的三个运算性质是学习单项式与单项式、单项式与多项式乘法的基础,所以先组织学生对上述的内容作复习.2.练一练(a 2)2=____________;(-23)2=____________;[(-12)2]3=____________; (a 3)2·a 3____________;23·25=____________;(32xy 2)2=____________; (-53)5(-35)5=____________. 二、探究新知问题:光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米?注:从实际的问题导入,让学生自己动手试一试,主动探索,在自己的实践中获得知识,从而构建新的知识体系.地球与太阳的距离约为(3×105)×(5×102)千米.问题是(3×105)×(5×102)等于多少呢?学生提出运用乘法交换律和结合律可以解决:(3×105)×(5×102)=(3×5)×(105×102)=15×107(为什么?)在此处再问学生更加规范的书写是什么?应该是地球与太阳的距离约为1.5×108千米.请学生回顾,我们是如何解决问题的.问题:如果将上式中的数字改为字母,即ac5·bc2,你会算吗?学生独立思考,小组交流.注:从特殊到一般,从具体到抽象,在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得单项式与单项式相乘的运算法则.学生分析:跟刚才的解决过程类似,可以将ac5和bc2分别看成a·c5和b·c2,再利用乘法交换律和结合律.ac5·bc2=(a·c5)·(b·c2)=(a·b)·(c5·c2)=abc5+2=abc7.注:在教学过程中注意运用类比的方法来解决实际问题.[探究一]类似地,请你试着计算:(1)2c5·5c2;(2)(-5a2b3)·(-b2c).ac5和bc2,2c5和5c2,(-5a2b3)和(-4b2c)都是单项式,通过刚才的尝试,谁能告诉大家怎样进行单项式乘法?注:先不给出单项式与单项式相乘的运算法则,而是让学生类比,自己动手试一试,再相互交流,自己小结出如何进行单项式的乘法.要求学生用语言叙述这个性质,这对于学生提高数学语言的表述能力是有益的.学生小结:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.3.算一算例1:教材例4.在例题教学中应该先让学生观察有哪些运算,如何利用运算性质和法则.分析后再动手做,同时让学生说一说每一步的依据.提醒学生在单项式的运算中应该先确定符号.例2小民的步长为a米,他量得家里卧室长15步,宽14步,这间卧室的面积有多少平方米?注:将运算法则应用在实际问题中,提高学生解决实际问题的能力.4.辩一辩教材第99页练习2.注:辩一辩的目的是让学生通过对这些判断题的讨论甚至争论,加强对运算法则的掌握,同时也培养学生一定的批判性思维能力.[探究二]1.师生共同研究教材第99页的问题,对单项式与多项式相乘的方法能有感性认识.注:这个实际问题来源于学生的实际,所以在教学中通过师生共同探讨,再结合分配律学习不难得到结论.2.试一试计算:2a2·(3a2-5b).(根据乘法分配律)注:因为整式的运算是在数的运算的基础上发展起来的,所以在解决问题时让学生类比数的运算律,将单项式乘以多项式转化为单项式的乘法,自己尝试得出结论.3.想一想从上面解决的两个问题中,谁能总结一下,怎样将单项式和多项式相乘?学生发言,互相补充后得出结论:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.4.做一做教材例5.(在学习过程中提醒学生注意符号问题,多项式的每一项都包括它前面的符号) 注:学生在计算过程中,容易出现符号问题,要特别提醒学生注意.教材第100页练习.三、课外巩固1.必做题:教材第104~105页习题14.1第3,4题.2.备选题:(1)若(-5a m +1b 2n -1)(2a n b m )=-10a 4b 4,则m -n 的值为________;(2)计算:(a 3b)2·(a 2b)3;(3)计算:(3a 2b)2+(-2ab)(-4a 3b);(4)计算:(-52xy)·(23xy 2-2xy +43y).本节课采用引导发现法.通过教师精心设计的问题链,引导学生将需要解决的问题转化成用已经学过的知识可以解决的问题,充分体现了教师的主导作用和学生的主体作用,学生始终处在观察思考之中.。
八年级数学上册“第十四章整式的乘法与因式分解”必背知识点一、整式的乘法1. 单项式乘单项式:法则:把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2. 单项式乘多项式:法则:用单项式去乘多项式的每一项,再把所得的积相加。
3. 多项式乘多项式:法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
二、乘法公式1. 平方差公式:公式:$(a+b)(a-b) = a^2 b^2$应用:两个数的和与这两个数的差的积,等于这两个数的平方差。
2. 完全平方公式:公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 2ab + b^2$应用:两个数的和 (或差)的平方,等于这两个数的平方和,加上(或减去)这两个数积的2倍。
三、因式分解1. 因式分解的定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫作分解因式。
2. 提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
3. 公式法:利用平方差公式和完全平方公式进行因式分解。
注意:分解因式必须分解到每一个因式都不能再分解为止。
四、十字相乘法十字相乘法主要用于二次项系数为1的二次多项式的因式分解。
方法:通过观察和尝试,将常数项分解为两个因数的乘积,并使得这两个因数与一次项系数的组合满足整式的乘法规则。
五、注意事项在进行整式乘法时,要注意系数的计算、字母的指数运算以及符号的处理。
在进行因式分解时,要注意分解的彻底性,即每一个因式都不能再进一步分解。
熟练掌握乘法公式和因式分解的方法,对于提高解题效率和准确率至关重要。
掌握这些知识点,将有助于学生更好地理解和应用整式的乘法与因式分解,提高代数运算能力和解题能力。
《整式的乘法》说课稿尊敬的各位专家评委,各位老师你们好:我叫柯阳兵,来自xxxxxxx.今天,我说课的内容是:义务教育教科书人教版八年级上册第十四章第一节《整式的乘法》第四课时《单项式乘以单项式和单项式乘以多项式》.下面我将从教学背景、教学目标、教法学法、教学过程、课后反思五个方面对本节课进行课后说课.一、说教学背景(一)教材分析整式的乘除与因式分解,属于《课程标准》中的“数与代数”领域的核心知识.而初中代数的一条主线是:由数到式,再到方程、函数,其中,式具有承上启下的作用.式的教学又以整式为主,整式的运算以数的运算和幂的运算为基础.作为幂的运算的直接应用,教科书在第四小节安排了整式的乘法.本节内容由浅入深地学习单项式乘单项式、单项式乘多项式、多项式乘多项式,三个知识点环环相扣,每个新知识点的学习既是对前一个所学知识的应用,也为后一个知识学习奠定基础.整式的乘法既是进一步学习分式和根式运算的基础,同时又是学习物理、化学等其他学科不可缺少的数学工具.本节课主要解决单项式乘单项式和多项式与单项式相乘的问题,多项式与多项式的乘法将在下一节继续研究.(二)学情分析在之前的学习中,学生已经学习了数的运算、字母表示数、合并同类型、去括号等内容,了解有关运算律和法则,同时在前面几节课又学习了同底数幂乘法、幂的乘方、积的乘方法则,具备了类比有理数运算进行整式运算的知识基础.我所在的学校是xxxxxxx,学校推行课堂教学改革已经五年,班上的学生较活跃,在课堂上能积极思考,踊跃地发表自己的观点.但我们学校是一所寄宿制学校,生源都来源于农村乡镇,学生基础参差不齐,计算能力不强.二、说教学目标(一)教学目标的确定依据课程标准、教学内容和学情,从以下四个方面构建了本节课的学习目标.知识与技能:探索并了解单项式与单项式、单项式与多项式相乘的法则,并运用它们进行运算. 数学思考:经历单项式与单项式、单项式与多项式相乘的法则的形成过程,发展学生的运算能力,体验转化、类比的思想方法.问题解决:利用数式通性的特点、乘法分配律生成法则,并从中获得分析问题和解决问题的基本方法.情感态度:让学生主动参与到探索过程中去,逐步形成独立思考、主动探索的习惯.(二)学习重难点基于以上对教材和学情的分析,确定本节课的教学重点和难点分别是:重点:单项式与单项式、单项式与多项式相乘的法则及其概括过程;难点:单项式与单项式、单项式与多项式相乘的计算中符号的确定和漏项问题.三、说教法学法洛克说:任何东西都不能像良好的方法那样,给学生指明道路,帮助他们前进.新课标也强调课堂教学要以学生为主体,教师为主导.基于对教材和学情的分析,并结合我校课堂教学的实际,我在本课中主要采用以下教学方法:(1)教法:启发式教学,课堂中以问题为驱动,通过教师的引导示范演示等方式组织教学.《基础教育课程改革纲要》指出,“课改的根本就是要改变学生的学习方式.”因此,在本节课的教学中,我将更加突出学生的主体地位.让学生以自学、合作、分享、实践等方式参与到学习活动中.(2)学法:自主学习、启发探究、合作讨论、分享交流、动手实践.四、说教学过程为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为五个环节.创设情景激趣引入;归纳探索,生成法则;例题导析,巩固法则;互动探究,触类旁通;总结归纳,自我测评.第一环节创设情景激趣引入播放天宫二号发射视频,教师引入新课.【设计意图】课程标准要求:学生的学习,要从实际出发,创设与现实生活相联系的问题情境,以激发学生的求知欲.播放神舟十一号发射视频,不仅宣传我国航天事业取得的巨大成就,激发学生民族自豪感,同时也为问题的引入作一个铺垫.第二环节归纳探索·生成法则教师出示问题1,和自研前两个问题,即:(1)用式子表示出运行轨道的长度;(2)说说上式计算每步运算的依据.学生独立思考,然后进行全班展示讲解.此环节教师关注两个问题:①关注学生计算结果的准确性;②让学生说出每一步计算的依据,巩固与本节课学习相关的知识.在解决自研第(1)(2)问后,出示第(3)(4)问,学生独立思考,并安排学生板书第(3)问中三个式子的计算步骤.在这个过程中,教师引导学生类比解决33⨯⨯⨯的经验来进行计算.(7.810)(5.410)【设计意图】通过由数的运算过渡到式的运算,让学生体会到“数式通性”的特点.并通过对四个算式的共性的挖掘,培养学生的观察能力、抽象能力和语言组织能力,同时为后续学习单项式乘以多项式和多项式乘以多项式,积累方法上的经验.通过以上式子以及计算方法共性的比较,让学生用自己的语言概括单项式乘以单项式的法则,教师引导学生剖析法则的内涵,也就是单项式乘以单项式运算的实质和步骤.【设计意图】学生先通过自由发言,阐述自己的观点;再通过相互补充加以反思,最后完成对法则的抽象,在概括法则的过程中培养学生的语言表达能力.第三环节 例题导析·巩固法则师生共同分析解答,教师板书第(1)题步骤.教师板书时,引导学生依据法则来分析、逐步书写解题过程,切忌出现跳步现象.之后,学生独立完成例1中第(2)(3)题步骤书写,并安排学生板演,让学生进行评价,发现自己或同伴出现的问题,教师带领学生进行订正及示范.在学生参与计算演练后,教师再提出具有挑战性的问题:进行单项式乘法运算过程时需要注意什么问题?让学生反思总结,升华提高,再有目的性地进行练习.【设计意图】这一环节的设计不仅规范单项式乘法的运算步骤和格式,而且及时性的总结不仅使学生掌握了法则,而且学会反思,在练习中积累解题经验.第四环节 互动探究·触类旁通【设计意图】著名的教育家魏书生认为,“教师的责任在于引导指导学生,而不是把知识给学生背一遍.”《2011版课程标准》也强调学生在获得知识技能的过程中,只有通过自主性的体验、经历、探究和思考,课堂教学目标才能落实.对于单项式乘以多项式的法则的学习,教师充分相信学生,大胆放手,学生阅读实际问题,按照教师提供的探究指导,即(1)用不同的表示方法扩大后的绿地的面积.(2)从表示绿地面积的代数式中,你能发现它们之间有怎样的关系?让经历思考、讨论、展示、总结等活动,进而明确单项式乘以多项式的法则及其实质.在了解法则后,为体现法则的应用性,教师PPT 呈现例2.虽然是例题,但是教师先不讲解,让学生尝试独立完成,教师根据学生遇到的问题和出现的错误,有针对性地进行讲解、板书示范并师生一起总结计算过程中的注意点.通过例题的练习总结,了解了单项式乘以多项式的法则和计算中的注意点,之后,迅速出示一组习题.【设计意图】出示一组练习题及时巩固,是为让效果更落实,练习1的设计是为了注意符号问题和注意漏乘-1这一项,练习(2)是为了强调运算的顺序和在计算中不要漏掉23ab 这一项中b 这个因式.练习(3)属于混合运算,旨在让学生注意运算顺序,和同类项的合并,从而得到最后结果.第五环节 总结归纳·自我测评这一环节安排了两个内容,分享收获和目标检测.【设计意图】 为多角度、多层次地考查学生的学习情况.通过小结,使学生加深对本节课内容的认识,体会类比、转化是数学学习的重要的思想方法.通过两道练习题,进一步检测学生运用法则的熟练程度.五、说课后反思上完这节课后,我觉得有如下成功之处:1.以问题为载体给学生提供探索的空间.本节课的每个环节的设计与展示,都以问题的解决为中心,构建了“以问题研究和学生活动”为中心的课堂学习环节,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点.2.课堂中,让学生参与到知识产生、发展和应用的全过程.数学教学不是把现成的结论交给学生,教学中,通过指导、引导让他们自己寻求知识产生的起因,探索与其他知识的联系.3.教师成为了课堂的组织者与引导者.课堂中,教师预设问题,放手让学生参与,启发和引导学生进入角色,组织学生自我表现和合作交流.4.学生参与面广,思维活跃,表现力强.学校推行课堂教学改革多年,“让学生成为课堂的主体”的理念培养了孩子自信力、表达力.当然,教学中也存在一些问题.如:本节课的学习涵盖单项式乘以单项式,单项式乘以多项式,内容较多,学生法则运用不熟练,后面还需要加以练习,以达到巩固提高的目的.。
第十四章 整式的乘法与因式分解14.1 整式的乘法一、同底数幂的乘法一般地,对于任意底数a 与任意正整数m ,n ,a m ·a n =()m aa a a ⋅⋅⋅个·()n aa a a ⋅⋅⋅个=()m n aa a a +⋅⋅⋅个=m n a +.语言叙述:同底数幂相乘,底数不变,指数__________.【拓展】1.同底数幂的乘法法则的推广:三个或三个以上同底数幂相乘,法则也适用.m n p a a a ⋅⋅⋅=m n pa +++(m ,n ,…,p 都是正整数).2.同底数幂的乘法法则的逆用:a m +n =a m ·a n (m ,n 都是正整数). 二、幂的乘方1.幂的乘方的意义:幂的乘方是指几个相同的幂相乘,如(a 5)3是三个a 5相乘,读作a 的五次幂的三次方,(a m )n 是n 个a m 相乘,读作a 的m 次幂的n 次方. 2.幂的乘方法则:一般地,对于任意底数a 与任意正整数m ,n ,()=mn mm n m m m m m mmn n a a a a a a a +++=⋅⋅⋅=个个.语言叙述:幂的乘方,底数不变,指数__________.【拓展】1.幂的乘方的法则可推广为[()]m n p mnpa a =(m ,n ,p 都是正整数).2.幂的乘方法则的逆用:()()mn m n n m a a a ==(m ,n 都是正整数). 三、积的乘方1.积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(ab )3,(ab )n 等.3()()()()ab ab ab ab =⋅⋅(积的乘方的意义)=(a ·a ·a )·(b ·b ·b )(乘法交换律、结合律)=a 3b 3.2.积的乘方法则:一般地,对于任意底数a ,b 与任意正整数n ,()()()()=n n nn an bn ab ab ab ab ab a a a b b b a b =⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅个个个.因此,我们有()nn nab a b =.语言叙述:积的乘方,等于把积的每一个因式分别__________,再把所得的幂相乘. 四、单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别__________,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.1.只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏. 2.单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用. 3.单项式乘单项式的结果仍然是单项式.【注意】1.积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值. 2.相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算. 五、单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积__________.用式子表示:m (a +b +c )=ma +mb +mc (m ,a ,b ,c 都是单项式).【注意】1.单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.2.计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号. 3.对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果. 六、多项式与多项式相乘1.法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积__________.2.多项式与多项式相乘时,要按一定的顺序进行.例如(m +n )(a +b +c ),可先用第一个多项式中的每一项与第二个多项式相乘,得m (a +b +c )与n (a +b +c ),再用单项式乘多项式的法则展开,即 (m +n )(a +b +c )=m (a +b +c )+n (a +b +c )=ma +mb +mc +na +nb +nc . 【注意】1.运用多项式乘法法则时,必须做到不重不漏.2.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积. 七、同底数幂的除法 同底数幂的除法法则:一般地,我们有m n m n a a a -÷=(a ≠0,m ,n 都是正整数,并且m >n ). 语言叙述:同底数幂相除,底数不变,指数__________.【拓展】1.同底数幂的除法法则的推广:当三个或三个以上同底数幂相除时,也具有这一性质,例如:m n p m n p a a a a --÷÷=(a ≠0,m ,n ,p 都是正整数,并且m >n +p ). 2.同底数幂的除法法则的逆用:m n m n a a a -=÷(a ≠0,m ,n 都是正整数,并且m >n ). 八、零指数幂的性质 零指数幂的性质:同底数幂相除,如果被除式的指数等于除式的指数,例如a m ÷a m ,根据除法的意义可知所得的商为1.另一方面,如果依照同底数幂的除法来计算,又有a m ÷a m =a m -m =a 0. 于是规定:a 0=1(a ≠0).语言叙述:任何不等于0的数的0次幂都等于__________. 【注意】1.底数a 不等于0,若a =0,则零的零次幂没有意义. 2.底数a 可以是不为零的单顶式或多项式,如50=1,(x 2+y 2+1)0=1等. 3.a 0=1中,a ≠0是极易忽略的问题,也易误认为a 0=0. 九、单项式除以单项式单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别__________作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式. 【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.【注意】可利用单项式相乘的方法来验证结果的正确性. 十、多项式除以单项式多项式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商__________.【注意】1.多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.2.多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项. 3.多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.一、相加 二、相乘 三、乘方四、相乘五、相加六、相加七、相减八、1九、相除十、相加1.同底数幂的乘法(1)同底数幂的乘法法则只有在底数相同时才能使用. (2)单个字母或数字可以看成指数为1的幂.(3)底数不一定只是一个数或一个字母,也可以是单项式或多项式.计算m 2·m 6的结果是A .m 12B .2m 8C .2m 12D .m 8【答案】D【解析】m 2·m 6=m 2+6=m 8,故选D .计算-(a -b )3(b -a )2的结果为A .-(b -a )5B .-(b +a )5C .(a -b )5D .(b -a)5【答案】D【解析】-(a-b )3(b -a )2=(b -a )3(b -a )2=(b -a )5,故选D .2.幂的乘方与积的乘方(1)每个因式都要乘方,不能漏掉任何一个因式.(2)要注意系数应连同它的符号一起乘方,尤其是当系数是-1时,不可忽略.计算24()a 的结果是A .28aB .4aC .6aD .8a【答案】D【解析】24()a =248a a ⨯=,故选D .下列等式错误的是A .(2mn )2=4m 2n 2B .(-2mn )2=4m 2n 2C .(2m 2n 2)3=8m 6n 6D .(-2m 2n 2)3=-8m 5n 5【答案】D【解析】A .(2mn )2=4m 2n 2,该选项正确; B .(-2mn )2=4m 2n 2,该选项正确; C .(2m 2n 2)3=8m 6n 6,该选项正确;D .(-2m 2n 2)3=-8m 6n 6,该选项错误.故选D .3.整式的乘法(1)单顶式与单顶式相乘,系数是带分数的一定要化成假分数,还应注意混合运算的运算顺序:先乘方,再乘法,最后加减.有同类顶的一定要合并同类顶.(2)单顶式与多顶式相乘的计算方法,实质是利用分配律将其转化为单项式乘单项式.计算:3x 2·5x 3的结果为A .3x 6B .15x 6C .5x 5D .15x 5【答案】D【解析】直接利用单项式乘以单项式运算法则,得3x 2·5x 3=15x 5.故选D .下列各式计算正确的是A .2x (3x -2)=5x 2-4xB .(2y +3x )(3x -2y )=9x 2-4y 2C .(x +2)2=x 2+2x +4D .(x +2)(2x -1)=2x 2+5x -2【答案】B【解析】A 、2x (3x -2)=6x 2-4x ,故本选项错误; B 、(2y +3x )(3x -2y )=9x 2-4y 2,故本选项正确; C 、(x +2)2=x 2+4x +4,故本选项错误;D 、(x +2)(2x -1)=2x 2+3x -2,故本选项错误.故选B .4.同底数幂的除法多顶式除以单项式可转化为单项式除以单顶式的和,计算时应注意逐项相除,不要漏项,并且要注意符号的变化,最后的结果通常要按某一字母升幂或降幂的顺序排列.计算2x 2÷x 3的结果是 A .xB .2xC .x -1D .2x -1【答案】D【解析】因为2x 2÷x 3=2x -1,故选D .计算:4333a b a b ÷的结果是 A .aB .3aC .abD .2a b【答案】A【解析】因为43334333a b a b a b a --÷==.故选A .计算:22(1510)(5)x y xy xy --÷-的结果是A .32x y -+B .32x y +C .32x -+D .32x --【答案】B【解析】因为2221111121(1510)(5)3232x y xy xy xyx y x y ------÷-=+=+.故选B .5.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来.先化简,再求值:2[()(4)8]2x y y x y x x -+--÷,其中8x =,2018y =.【解析】原式222(248)2x xy y xy y x x =-++--÷2(28)2x xy x x =+-÷142x y =+-. 当8x =,2018y =时,原式182018420182=⨯+-=.1.计算3(2)a -的结果是 A .38a -B .36a -C .36aD .38a2.下列计算正确的是 A .77x x x ÷=B .224(3)9x x -=-C .3362x x x ⋅=D .326()x x =3.如果2(2)(6)x x x px q +-=++,则p 、q 的值为 A .4p =-,12q =- B .4p =,12q =- C .8p =-,12q =-D .8p =,12q =4.已知30x y +-=,则22y x ⋅的值是 A .6B .6-C .18D .85.计算3n ·(-9)·3n +2的结果是 A .-33n -2B .-3n +4C .-32n +4D .-3n +66.计算223(2)(3)m m m m -⋅-⋅+的结果是 A .8m 5B .–8m 5C .8m 6D .–4m 4+12m 57.若32144m nx y x y x ÷=,则m ,n 的值是 A .6m =,1n = B .5m =,1n = C .5m =,0n =D .6m =,0n =8.计算(-x )2x 3的结果等于__________. 9.(23a a a ⋅⋅)³=__________.10.3119(1.210)(2.510)(410)⨯⨯⨯=__________. 11.计算:(a 2b 3-a 2b 2)÷(ab )2=__________.12.若1221253()()m n n m a b a b a b ++-= ,则m +n 的值为__________. 13.计算:(1)21(2)()3(1)3x y xy x -⋅-+⋅-; (2)23(293)4(21)a a a a a -+--. (3)(21x 4y 3–35x 3y 2+7x 2y 2)÷(–7x 2y ).14.先化简,再求值:(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2; (2)243()()m m m -⋅-⋅-,其中m =2-.15.“三角”表示3xyz ,“方框”表示-4a b d c .求×的值.16.下列运算正确的是A .326a a a ⨯=B .842a a a ÷=C .3(1)33a a --=-D .32911()39a a =17.计算5642333312(3)2a b c a b c a b c ÷-÷,其结果正确的是A .2-B .0C .1D .218.计算:(7)(6)(2)(1)x x x x +---+=__________. 19.如果1()()5x q x ++展开式中不含x 项,则q =__________. 20.已知:2x =3,2y =6,2z =12,试确定x ,y ,z 之间的关系.21.在一次测试中,甲、乙两同学计算同一道整式乘法:(2x +a )(3x +b ),由于甲抄错了第一个多项式中的符号,得到的结果为6x 2+11x -10;由于乙漏抄了第二个多项式中的系数,得到的结果为2x 2-9x +10. (1)试求出式子中a ,b 的值;(2)请你计算出这道整式乘法的正确结果.22.(2019•镇江)下列计算正确的是A .236a a a ⋅=B .734a a a ÷=C .358()a a =D .22()ab ab =23.(2019•泸州)计算233a a ⋅的结果是A .54aB .64aC .53aD .63a24.(2019•柳州)计算:2(1)x x -=A .31x -B .3x x -C .3x x +D .2x x -25.(2019•天津)计算5x x ⋅的结果等于__________. 26.(2019•绥化)计算:324()m m -÷=__________. 27.(2019•乐山)若392m n ==,则23m n +=__________. 28.(2019•武汉)计算:2324(2)x x x -⋅. 29.(2019•南京)计算:22()()x y x xy y +-+.1.【答案】A【解析】33(2)8a a -=-,故选A . 2.【答案】D【解析】A 、76x x x ÷=,故此选项错误; B 、224(3)9x x =-,故此选项错误; C 、336x x x ⋅=,故此选项错误; D 、326()x x =,故此选项正确, 故选D . 3.【答案】A【解析】已知等式整理得:x 2-4x -12=x 2+px +q ,可得p =-4,q =-12,故选A .4.【答案】D【解析】∵x +y -3=0,∴x +y =3,∴2y ·2x =2x +y =23=8.故选D .5.【答案】C【解析】3n ·(-9)·3n +2=-3n ·32·3n +2=-32n +4,故选C .6.【答案】A【解析】原式=4m 2·2m 3=8m 5,故选A .7.【答案】B 【解析】因为33121444m n m n x y x y x y x --÷==,所以32m -=,10n -=,5m =,1n =,故选B . 8.【答案】x 5【解析】根据积的乘方以及同底数幂的乘法法则可得:(-x )2x 3=x 2·x 3=x 5.故答案为:x 5. 9.【答案】a 18【解析】(23a a a ⋅⋅)³=(6a )³=a 18.故答案为:a 18. 10.【答案】241.210⨯【解析】原式=1.2×103×(2.5×1011)×(4×109)=12×1023=1.2×1024.故答案为:1.2×1024. 11.【答案】1b -【解析】(a 2b 3-a 2b 2)÷(ab )2=(a 2b 3-a 2b 2)÷a 2b 2=a 2b 3÷a 2b 2-a 2b 2÷a 2b 2=1b -.故答案为:1b -. 12.【答案】2【解析】(a m +1b n +2)(a 2n –1b 2m )=a m +1+2n –1·b n +2+2m =a m +2n ·b n +2m +2=a 5b 3, ∴25223m n n m +=++=⎧⎨⎩, 两式相加,得3m +3n =6,解得m +n =2,故答案为:2.13.【解析】(1)原式=2x 2y +3xy -x 2y=x 2y +3xy .(2)原式=6a 3-27a 2+9a -8a 2+4a=6a 3-35a 2+13a .(3)原式=21x 4y 3÷(–7x 2y )–35x 3y ÷(–7x 2y )+7x 2y 2÷(–7x 2y )=–3x 2y 2+5xy –y .14.【解析】(1)原式=x 2-x +2x 2+2x -6x 2+17x -5=(x 2+2x 2-6x 2)+(-x +2x +17x )-5=-3x 2+18x -5.当x =2时,原式=19.(2)原式=-m 2·m 4·(-m 3)=m 2·m 4·m 3=m 9.当m =-2时,则原式=(-2)9=-512.15.【解析】由题意得×=(3mn ·3)×(–4n 2m 5) =[]526333(4)()()36m m n n m n ⨯⨯-⋅⋅⋅=-.16.【答案】C【解析】A 、2326a a a ⨯=,故本选项错误;B 、844a a a ÷=,故本选项错误;C 、()3133a a --=-,正确;D 、32611()39a a =,故本选项错误, 故选C .17.【答案】A【解析】因为5642333352363341312(3)222a b c a b c a b c ab c ------÷-÷=-=-,故选A . 18.【答案】2x -40【解析】原式=(x 2+x -42)-(x 2-x -2)=2x -40.故答案为:2x -40.19.【答案】15- 【解析】1()()5x q x ++=211()55x q x q +++,由于展开式中不含x 的项,∴105q +=,∴15q =-.故答案为:15-.20.【解析】因为2x =3,所以2y =6=2×3=2×2x =2x +1, 2z =12=2×6=2×2y =2y +1.所以y =x +1,z =y +1.两式相减,得y -z =x -y ,所以x +z =2y .21.【解析】(1)由题意得:(2x -a )(3x +b )=6x 2+(2b -3a )x -ab ,(2x +a )(x +b )=2x 2+(a +2b )x +ab , 所以2b -3a =11①,a +2b =-9②,由②得2b =-9-a ,代入①得-9-a -3a =11,所以a =-5,2b =-4,b =-2.(2)由(1)得(2x +a )(3x +b )=(2x -5)(3x -2)=6x 2-19x +10.22.【答案】B【解析】A 、a 2·a 3=a 5,故此选项错误;B 、a 7÷a 3=a 4,正确;C 、(a 3)5=a 15,故此选项错误;D 、(ab )2=a 2b 2,故此选项错误,故选B .23.【答案】C【解析】23533a a a ⋅=,故选C .24.【答案】B【解析】23(1)x x x x -=-,故选B .25.【答案】6x【解析】56⋅=x x x ,故答案为:6x .26.【答案】2m【解析】原式64642m m m m ÷-===,故答案为:m 2.27.【答案】4【解析】∵23=9=32=m n n ,∴2233339224+=⨯=⨯=⨯=m n m n m n ,故答案为:4.28.【解析】2324(2)x x x -⋅=668x x -67x =.29.【解析】22()()x y x xy y +-+322223x x y xy x y xy y =-++-+ 33x y =+.。
第十四章 整式的乘法与因式分解
14.1.4 整式的乘法(第一课时)
单项式乘以单项式和单项式乘以多项式
一、教学目标
知识与技能:掌握单项式与单项式、单项式与多项式相乘的法则,并运用它们进行运算。
过程与方法:经历探索单项式与单项式、单项式与多项式乘法法则的过程,在具体情境中了解单项式与单项式、单项式与多项式相乘的意义,理解单项式与单项式、单项式与多项式相乘法则。
情感态度:体验探求数学问题的过程,体验乘法分配律的作用及“整体”、“转化”的数学思想方法在解决问题过程中的应用,获得成功的体验。
二、教学重点:掌握单项式与单项式、单项式与多项式相乘的法则,进行单项式与单项式、单项式与多项式相乘的运算。
三、教学难点:探索单项式与单项式、单项式与多项式相乘法则,灵活地进行整式的乘法运算。
四、教学过程
(一)知识回顾:回忆幂的运算性质:
1.同底数幂相乘:底数不变,指数相加。
式子表达:n m n m a a a +=⋅
2.幂的乘方:底数不变,指数相乘。
式子表达:mn n m a a =)(
3.积的乘方:等于把积的每一个因式分别乘方,再把所得幂相乘。
式子表达:n n n b a ab =)( (m ,n 都是正整数)
(二)创设情境,引入新课
问题1:光的速度约为5103⨯千米/秒,太阳光照射到地球上需要的时间大约是2105⨯秒,你知道地球与太阳的距离约是多少千米吗?
学生分析解决:872525105.11015)1010()53()105()103(⨯=⨯=⨯⨯⨯=⨯⨯⨯
(三)自己动手,得到新知
1.如果将上式中的数字改为字母,比如:25bc ac ⋅,怎样计算?
学生分析解决: 72525))((abc c c b a bc ac =⋅⋅=⋅
2.类似地,请同学试着计算:(1)2542c c ⋅;(2))4()5(232c b b a -⋅-
引导学生发现:725842c c c =⋅; c b a c b b a 5223220)4()5(=-⋅-
3.得出结论:单项式与单项式相乘:把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
(四)巩固结论,加强练习
例1 计算(课本P98 例4)
(1))3)(5(2a b a --
(2) )5()2(23xy x -⋅
补充一个三个单项式相乘的题
(3)2243)2()5(3c ab ab c a -⋅-⋅
练习1 计算 (课本P99—1)
(1)3253x x ⋅
解: 3253x x ⋅515x =
(2))2(42xy y -⋅
解: )2(42xy y -⋅38xy -=
(3)224)3(x x ⋅-
解:224)3(x x ⋅-4223649x x x =⋅=
(4)23)3()2(a a -⋅-
解:23)3()2(a a -⋅-5237298a a a -=⋅-=
(五)再次创设情境
教材本章引言提出的问题
问题4:为了扩大街心花园的绿地面积,要把一块长p 米,宽b 米的长方形绿地,向两边分别加长a 米和c 米,求扩大以后绿地的面积是多少?
提问:你能用几种方法求出扩大后绿地的面积?让学生各抒己见。
总结:扩大后的绿地可以看成长为(a+b+c )米,宽为p 米的长方形, 所以面积为p(a+b+c) 平方米。
扩大后的绿地还可以看成长由三个小长方形组成,所以面积为pa+pb+pc 平方米。
b c
a
p
由于p(a+b+c)和(pa+pb+pc)表示同一块绿地的面积,因此:
p(a+b+c) = pa+pb+pc 。
引导学生观察等式的左边:p(a+b+c) 是单项式p 与多项式(a+b+c) 相乘,等式右边是结果。
如何进行单项式与多项式相乘的运算?
引导学生发现:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
把单项式与多项式相乘,转化为单项式与单项式相乘,而单项式与单项式相乘是一个我们已经解决的问题。
(六)巩固结论,加强练习
例2.计算: (课本P100 例5)
(1))13)(4(2+-x x
(2) ab ab ab 2
1)232(2⋅- 练习2:计算 (课本P100-1)
(1))25(3b a a -
解:)25(3b a a -ab a 6152-=
(2) )6)(3(x y x --
解: )6)(3(x y x --xy x 1862+-=
练习3:(课本P100-2)
化简)52(3)1(2)1(--++-x x x x x x
补充第二问
(2)求值:其中2-=x
当2-=x 时,原式443212)2(16)2(32-=--=-⨯+-⨯-=
(七)课堂小结
1.本节课学了哪些内容?你有哪些收获和体会?
2.单项式与单项式相乘,单项式与多项式相乘运算中,你要注意什么?
(八)布置作业
作业:课本第104页,第1、2、3、4题
课后思考:多项式乘以多项式怎么计算?))((=++q p b a。