中考数学专题分类复习: 旋转变换(解析版)
- 格式:doc
- 大小:1.15 MB
- 文档页数:10
中考数学压轴题专题复习——初中数学旋转的综合含详细答案一、旋转1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.【详解】(1)CG=EG.理由如下:∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理.在Rt△DEF中,EG=12FD,∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=1MC,∴EG=CG.2(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG【点睛】本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.2.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与BC、DC的延长线交于点E、F,连接EF,设CE=a,CF=b.(1)如图1,当a=42时,求b的值;(2)当a=4时,在图2中画出相应的图形并求出b的值;(3)如图3,请直接写出∠EAF绕点A旋转的过程中a、b满足的关系式.【答案】(1)42;(2)b=8;(3)ab=32.【解析】试题分析:(1)由正方形ABCD的边长为4,可得AC=42,∠ACB=45°.再CE=a=42,可得∠CAE=∠AEC,从而可得∠CAF的度数,既而可得 b=AC;(2)通过证明△ACF∽△ECA,即可得;(3)通过证明△ACF∽△ECA,即可得.试题解析:(1)∵正方形ABCD的边长为4,∴AC=42,∠ACB=45°.∵CE=a=42,∴∠CAE=∠AEC=452︒=22.5°,∴∠CAF=∠EAF-∠CAE=22.5°,∴∠AFC=∠ACD-∠CAF=22.5°,∴∠CAF=∠AFC,∴b=AC=CF=42;(2)∵∠FAE=45°,∠ACB=45°,∴∠FAC+∠CAE=45°,∠CAE+∠AEC=45°,∴∠FAC =∠AEC.又∵∠ACF=∠ECA=135°,∴△ACF∽△ECA,∴AC CFEC CA=,∴4242=,∴CF=8,即b=8.(3)ab=32.提示:由(2)知可证△ACF∽△ECA,∴∴AC CFEC CA=,∴4242a=,∴ab=32.3.如图1,在□ABCD中,AB=6,∠B= (60°<≤90°). 点E在BC上,连接AE,把△ABE沿AE折叠,使点B与AD上的点F重合,连接EF.(1)求证:四边形ABEF是菱形;(2)如图2,点M是BC上的动点,连接AM,把线段AM绕点M顺时针旋转得到线段MN,连接FN,求FN的最小值(用含的代数式表示).【答案】(1)详见解析;(2)FE·sin(-90°)【解析】【分析】(1)由四边形ABCD是平行四边形得AF∥BE,所以∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四边形ABEF是平行四边形,又BE=EF,因此可得结论;(2)根据点M在线段BE上和EC上两种情况证明∠ENG=90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF,∴∠BAE=∠FEA,∴AB∥FE,∴四边形ABEF是平行四边形,又BE=EF,∴四边形ABEF是菱形;(2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B∴∠1=∠2又AM=NM,AB=MG∴△ABM≌△MGN∴∠B=∠3,NG=BM∵MG=AB=BE∴EG=AB=NG∴∠4=∠ENG= (180°-)=90°-又在菱形ABEF中,AB∥EF∴∠FEC=∠B=∴∠FEN=∠FEC-∠4=- (90°-)=-90°②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN.同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90°综上所述,∠FEN=-90°∴当点M在BC上运动时,点N在射线EH上运动(如图3)当FN⊥EH时,FN最小,其最小值为FE·sin(-90°)【点睛】本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值.4.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.(1)探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.他的证明思路如下:第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.第二步:证明△APM≌△ANM,得MP=MM.第一步:证明∠POM=90°,得OM2+OP2=MP2.最后得到OM2+BN2=MN2.请你完成第二步三角形全等的证明.(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.【解析】【分析】(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明△APM≌△ANM,再利用勾股定理即可解决问题;(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.【详解】(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵点A(0,4),B(4,4),∴OA=AB,∠OAB=90°,∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS).(2)如图2中,结论仍然成立.理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS),∴MN=PM,∵∠ABN=∠AOP=135°,∠AOB=45°,∴∠MOP=90°,∴PM2=OM2+OP2,∴OM2+BN2=MN2;(3)如图3中,若点B是MN的中点,求MN的长.设MN=2x,则BM=BN=x,∵OA=AB=4,∠OAB=90°,∴OB=42,∴OM=42﹣x,∵OM2+BN2=MN2.∴(42﹣x)2+x2=(2x)2,解得x=﹣22+26或﹣22﹣26(舍弃)∴MN=﹣42+46.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.5.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D 从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C 逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)见解析(2)见解析(3)存在【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D于点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2,于是得到t=2÷1=2s;③当6<t<10s 时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD cm,∴△BDE的最小周长=CD;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s.综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:在不带坐标的几何动点问题中求最值,通常是将其表达式写出来,再通过几何或代数的方法求出最值;像第三小问这种探究性的题目,一定要多种情况考虑全面,控制变量,从某一个方面出发去分类.6.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.7.在平面直角坐标系中,O为原点,点A(0,4),点B(﹣2,0),把△ABO绕点A逆时针旋转,得△AB′O′,点B、O旋转后的对应点为B′、O′.(1)如图①,若旋转角为60°时,求BB′的长;(2)如图②,若AB′∥x轴,求点O′的坐标;(3)如图③,若旋转角为240°时,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标(直接写出结果即可)【答案】(1)252)点O′8545);(3)点P′的坐标为(﹣83 5,365.【解析】分析:(1)由点A、B的坐标可得出AB的长度,连接BB′,由旋转可知:AB=AB′,∠BAB′=60°,进而可得出△ABB′为等边三角形,根据等边三角形的性质可求出BB′的长;(2)过点O′作O′D⊥x轴,垂足为D,交AB′于点E,则△AO′E∽△ABO,根据旋转的性质结合相似三角形的性质可求出AE、O′E的长,进而可得出点O′的坐标;(3)作点A关于x轴对称的点A′,连接A′O′交x轴于点P,此时O′P+AP′取最小值,过点O′作O′F⊥y轴,垂足为点F,过点P′作PM⊥O′F,垂足为点M,根据旋转的性质结合解直角三角形可求出点O′的坐标,由A、A′关于x轴对称可得出点A′的坐标,利用待定系数法即可求出直线A′O′的解析式,由一次函数图象上点的坐标特征可得出点P的坐标,进而可得出OP的长度,再在Rt△O′P′M中,通过解直角三角形可求出O′M、P′M的长,进而可得出此时点P′的坐标.详解:(1)∵点A(0,4),点B(﹣2,0),∴OA=4,OB=2,∴AB22OA OB5.在图①中,连接BB′.由旋转可知:AB =AB ′,∠BAB ′=60°,∴△ABB ′为等边三角形,∴BB ′=AB =25. (2)在图②中,过点O ′作O ′D ⊥x 轴,垂足为D ,交AB ′于点E . ∵AB ′∥x 轴,O ′E ⊥x 轴,∴∠O ′EA =90°=∠AOB .由旋转可知:∠B ′AO ′=∠BAO ,AO ′=AO =4,∴△AO ′E ∽△ABO ,AE AO ='O E BO ='AO AB,即4AE ='2O E =25,∴AE =85,O ′E =45,∴O ′D =45+4,∴点O ′的坐标为(8545,+4). (3)作点A 关于x 轴对称的点A ′,连接A ′O ′交x 轴于点P ,此时O ′P +AP ′取最小值,过点O ′作O ′F ⊥y 轴,垂足为点F ,过点P ′作PM ⊥O ′F ,垂足为点M ,如图3所示. 由旋转可知:AO ′=AO =4,∠O ′AF =240°﹣180°=60°,∴AF =12AO ′=2,O ′F =32AO ′=23,∴点O ′(﹣23,6).∵点A (0,4),∴点A ′(0,﹣4).设直线A ′O ′的解析式为y =kx +b ,将A ′(0,﹣4)、O ′(﹣23,6)代入y =kx +b ,得: 4236b k b =-⎧⎪⎨-+=⎪⎩,解得:534k b ⎧=-⎪⎨⎪=-⎩,∴直线A ′O ′的解析式为y =﹣53x ﹣4. 当y =0时,有﹣53x ﹣4=0,解得:x =﹣43,∴点P (﹣43,0),∴OP =O ′P ′=43. 在Rt △O ′P ′M 中,∠MO ′P ′=60°,∠O ′MP ′=90°,∴O ′M =12O ′P ′=23,P ′M =32O ′P ′=65,∴点P ′的坐标为(﹣23+235,6+65),即(﹣833655,).点睛:本题考查了函数图象及旋转变换、待定系数法求一次函数解析式、等边三角形的判定与性质、一次函数图象上点的坐标特征以及解直角三角形,解题的关键是:(1)利用等边三角形的性质找出BB′的长;(2)通过解直角三角形求出AE、O′E的长;(3)利用两点之间线段最短找出当O′P+AP′取得最小值时点P的位置.8.如图1,△ACB、△AED都为等腰直角三角形,∠AED=∠ACB=90°,点D在AB上,连CE,M、N分别为BD、CE的中点.(1)求证:MN⊥CE;(2)如图2将△AED绕A点逆时针旋转30°,求证:CE=2MN.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)延长DN交AC于F,连BF,推出DE∥AC,推出△EDN∽△CFN,推出DE EN DN==,求出DN=FN,FC=ED,得出MN是中位线,推出MN∥BF,证CF CN NF△CAE≌△BCF,推出∠ACE=∠CBF,求出∠CBF+∠BCE=90°,即可得出答案;(2)延长DN到G,使DN=GN,连接CG,延长DE、CA交于点K,求出BG=2MN,证△CAE≌△BCG,推出BG=CE,即可得出答案.试题解析:(1)证明:延长DN交AC于F,连BF,∵N为CE中点,∴EN=CN,∵△ACB和△AED是等腰直角三角形,∠AED=∠ACB=90°,DE=AE,AC=BC,∴∠EAD=∠EDA=∠BAC=45°,∴DE ∥AC ,∴△EDN ∽△CFN , ∴DE EN DN CF CN NF== , ∵EN=NC ,∴DN=FN ,FC=ED , ∴MN 是△BDF 的中位线,∴MN ∥BF ,∵AE=DE ,DE=CF ,∴AE=CF ,∵∠EAD=∠BAC=45°,∴∠EAC=∠ACB=90°,在△CAE 和△BCF 中,CA BC CAE BCF AE CF ⎧⎪∠∠⎨⎪⎩=== , ∴△CAE ≌△BCF (SAS ),∴∠ACE=∠CBF ,∵∠ACE+∠BCE=90°,∴∠CBF+∠BCE=90°,即BF ⊥CE ,∵MN ∥BF ,∴MN ⊥CE .(2)证明:延长DN 到G ,使DN=GN ,连接CG ,延长DE 、CA 交于点K ,∵M 为BD 中点,∴MN 是△BDG 的中位线,∴BG=2MN ,在△EDN 和⊈CGN 中,DN NG DNE GNC EN NC ⎧⎪∠∠⎨⎪⎩===,∴△EDN ≌△CGN (SAS ),∴DE=CG=AE ,∠GCN=∠DEN ,∴DE ∥CG ,∴∠KCG=∠CKE ,∵∠CAE=45°+30°+45°=120°,∴∠EAK=60°,∴∠CKE=∠KCG=30°,∴∠BCG=120°,在△CAE 和△BCG 中,AC BC CAE BCG AE CG ⎧⎪∠∠⎨⎪⎩=== , ∴△CAE ≌△BCG (SAS ),∴BG=CE ,∵BG=2MN ,∴CE=2MN .【点睛】考查了等腰直角三角形性质,全等三角形的性质和判定,三角形的中位线,平行线性质和判定的应用,主要考查学生的推理能力.9.已知:如图1,将两块全等的含30º角的直角三角板按图所示的方式放置,∠BAC=∠B 1A 1C =30°,点B ,C ,B 1在同一条直线上.(1)求证:AB =2BC(2)如图2,将△ABC 绕点C顺时针旋转α°(0<α<180),在旋转过程中,设AB 与A 1C 、A 1B 1分别交于点D 、E ,AC 与A 1B 1交于点F .当α等于多少度时,AB 与A 1B 1垂直?请说明理由.(3)如图3,当△ABC 绕点C 顺时针方向旋转至如图所示的位置,使AB ∥CB 1,AB 与A 1C 交于点D ,试说明A 1D=CD .【答案】(1)证明见解析(2)当旋转角等于30°时,AB 与A 1B 1垂直.(3)理由见解析【解析】试题分析:(1)由等边三角形的性质得AB =BB 1,又因为BB 1=2BC ,得出AB =2BC ;(2) 利用AB 与A 1B 1垂直得∠A 1ED=90°,则∠A 1DE=90°-∠A 1=60°,根据对顶角相等得∠BDC=60°,由于∠B=60°,利用三角形内角和定理得∠A 1CB=180°-∠BDC-∠B=60°,所以∠ACA 1=90°-∠A 1CB=30°,然后根据旋转的定义得到旋转角等于30°时,AB 与A 1B 1垂直;(3)由于AB ∥CB 1,∠ACB 1=90°,根据平行线的性质得∠ADC=90°,在Rt △ADC 中,根据含30度的直角三角形三边的关系得到CD=12AC ,再根据旋转的性质得AC=A 1C ,所以CD=12A 1C ,则A 1D=CD . 试题解析: (1)∵△ABB 1是等边三角形;∴ AB =BB 1∵ BB 1=2BC∴AB =2BC(2)解:当AB 与A 1B 1垂直时,∠A 1ED=90°,∴∠A 1DE=90°-∠A 1=90°-30°=60°,∵∠B=60°,∴∠BCD=60°,∴∠ACA 1=90°-60°=30°,即当旋转角等于30°时,AB 与A 1B 1垂直.(3)∵AB ∥CB 1,∠ACB 1=90°,∴∠CDB=90°,即CD 是△ABC 的高,设BC=a ,AC=b ,则由(1)得AB=2a ,A 1C=b , ∵1122ABC S BC AC AB CD ∆=⨯=⨯, 即11222ab a CD =⨯⨯ ∴12CD b =,即CD=12A 1C , ∴A 1D=CD. 【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了含30度的直角三角形三边的关系.10.如图,△ABC 是等边三角形,AB=6cm ,D 为边AB 中点.动点P 、Q 在边AB 上同时从点D 出发,点P 沿D→A 以1cm/s 的速度向终点A 运动.点Q 沿D→B→D 以2cm/s 的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.试题解析:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当0≤t≤时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当≤t≤时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时<t<,t=1或.考点:几何变换综合题11.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;62【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3,6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3m,6m.∴EG=m+3m=(1+3)m ,∵S △BEG =12•EG•BN=12•BG•EH , ∴EH=3?(13) m m +=3+3m , 在Rt △EBH 中,sin ∠EBH=3+36226m EH EB m+==. 【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,12.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB △△≌;②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为(1,3).(Ⅱ)①证明见解析;②点H 的坐标为17(,3)5.(Ⅲ)303343033444S -+≤≤. 【解析】分析:(Ⅰ)根据旋转的性质得AD=AO=5,设CD=x ,在直角三角形ACD 中运用勾股定理可CD 的值,从而可确定D 点坐标;(Ⅱ)①根据直角三角形全等的判定方法进行判定即可;②由①知BAD BAO ∠=∠,再根据矩形的性质得CBA OAB ∠=∠.从而BAD CBA ∠=∠,故BH=AH ,在Rt △ACH 中,运用勾股定理可求得AH 的值,进而求得答案;(Ⅲ)3033430334S -+≤≤.详解:(Ⅰ)∵点()5,0A ,点()0,3B ,∴5OA =,3OB =.∵四边形AOBC 是矩形,∴3AC OB ==,5BC OA ==,90OBC C ∠=∠=︒.∵矩形ADEF 是由矩形AOBC 旋转得到的,∴5AD AO ==.在Rt ADC V 中,有222AD AC DC =+,∴22DC AD AC =- 22534=-=.∴1BD BC DC =-=.∴点D 的坐标为()1,3.(Ⅱ)①由四边形ADEF 是矩形,得90ADE ∠=︒.又点D 在线段BE 上,得90ADB ∠=︒.由(Ⅰ)知,AD AO =,又AB AB =,90AOB ∠=︒,∴Rt ADB Rt AOB V V ≌.②由ADB AOB V V ≌,得BAD BAO ∠=∠.又在矩形AOBC 中,//OA BC ,∴CBA OAB ∠=∠.∴BAD CBA ∠=∠.∴BH AH =.设BH t =,则AH t =,5HC BC BH t =-=-.在Rt AHC V 中,有222AH AC HC =+,∴()22235t t=+-.解得175t=.∴175BH=.∴点H的坐标为17,3 5⎛⎫ ⎪⎝⎭.(Ⅲ)3033430334S-+≤≤.点睛:本大题主要考查了等腰三角形的判定和性质,勾股定理以及旋转变换的性质等知识,灵活运用勾股定理求解是解决本题的关键.13.如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿的方向以的速度运动,当不与点重合是,将绕点逆时针方向旋转得到,连接.(1)求证:是等边三角形;(2)当时,的周长是否存在最小值?若存在,求出的最小周长;若不存在,请说明理由.(3)当点在射线上运动时,是否存在以为顶点的三角形是直角三角形?若存在,求出此时的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,2+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2,于是得到t=2÷1=2s;③当6<t<10s时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2cm,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC >0°,∴∠BDE >60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm ,∴t=14÷1=14s ,综上所述:当t=2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.考点:旋转与三角形的综合题.14.如图,已知Rt △ABC 中,∠ACB =90°,AC =BC ,D 是线段AB 上的一点(不与A 、B 重合).过点B 作BE ⊥CD ,垂足为E .将线段CE 绕点C 顺时针旋转90︒,得到线段CF ,连结EF .设∠BCE 度数为α.(1)①补全图形;②试用含α的代数式表示∠CDA .(2)若3EF AB = ,求α的大小. (3)直接写出线段AB 、BE 、CF 之间的数量关系.【答案】(1)①答案见解析;②45α︒+;(2)30α=︒;(3)22222AB CF BE =+.【解析】试题分析:(1)①按要求作图即可;②由∠ACB=90°,AC=BC ,得∠ABC=45°,故可得出结论;(2)易证FCE ∆∽ ACB ∆,得3CF AC =FA ,得△AFC 是直角三角形,求出∠ACF=30°,从而得出结论;(3)222A 22B CF BE =+.试题解析:(1)①补全图形.②∵∠ACB=90°,AC=BC ,∴∠ABC=45°∵∠BCE=α ∴∠CDA=45α︒+(2)在FCE ∆和ACB ∆中,45CFE CAB ∠=∠=︒ ,90FCE ACB ∠=∠=︒ ∴ FCE ∆∽ ACB ∆ ∴ CF EF AC AB = Q 3EF AB = ∴ 32CF AC = 连结FA .Q 90,90FCA ACE ECB ACE ∠=︒-∠∠=︒-∠∴ FCA ECB ∠=∠=α在Rt CFA ∆中,90CFA ∠=︒,3cos FCA ∠= ∴ 30FCA ∠=︒即30α=︒.(3)22222AB CF BE =+15.已知△ABC 是边长为4的等边三角形,边AB 在射线OM 上,且OA =6,点D 是射线OM 上的动点,当点D 不与点A 重合时,将△ACD 绕点C 逆时针方向旋转60°得到△BCE ,连接DE .(1)如图1,求证:△CDE 是等边三角形.(2)设OD =t ,①当6<t <10时,△BDE 的周长是否存在最小值?若存在,求出△BDE 周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).【答案】(1)见解析;(2) ①见解析; ②t=2或14.【解析】【分析】(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)①当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,当点D与点B重合时,D,B,E不能构成三角形;当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6<t<10时,此时不存在;当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.【详解】(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)①存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=3,∴△BDE的最小周长=CD+4=3;②存在,∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2;当6<t<10时,由∠DBE=120°>90°,∴此时不存在;当t>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴t=14,综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.。
专题17 图形变换(平移、旋转、对称)一.选择题1.(2022·湖南娄底)下列与2022年冬奥会相关的图案中,是中心对称图形的是()A.B.C.D.【答案】D【分析】中心对称图形定义:如果一个图形绕某一点旋转180度,旋转后的图形能和原图形回完全重合,那么这个答图形叫做中心对称图形,根据中心对称图形定义逐项判定即可.【详解】解:根据中心对称图形定义,可知D符合题意,故选:D.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的定义是解决问题的关键.2.(2022·四川自贡)剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是()A.B.C.D.【答案】D【分析】根据轴对称图形的定义判断即可.【详解】∵不是轴对称图形,∴A不符合题意;∵不是轴对称图形,∴B不符合题意;∵不是轴对称图形,∴C不符合题意;∵是轴对称图形,∴D符合题意;故选D.【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合,熟练掌握定义是解题的关键.3.(2022·山东泰安)下列图形:其中轴对称图形的个数是()A.4B.3C.2D.1【答案】B【分析】对每个图形逐一分析,能够找到对称轴的图形就是轴对称图形.【详解】从左到右依次对图形进行分析:第1个图在竖直方向有一条对称轴,是轴对称图形,符合题意;第2个图在水平方向有一条对称轴,是轴对称图形,符合题意;第3个图找不到对称轴,不是轴对称图形,不符合题意;第4个图在竖直方向有一条对称轴,是轴对称图形,符合题意;因此,第1、2、4都是轴对称图形,共3个.故选:B.【点睛】本题考查轴对称图形的概念,解题的关键是寻找对称轴.0,2,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针4.(2022·江苏苏州)如图,点A的坐标为()m,则m的值为()方向旋转60°得到线段AC.若点C的坐标为(),3A B C D【答案】C【分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得⊥ABC是等边三角形,又A(0,2),C(m,3),即得AC BC AB=,可得BD=,即可解得m=.OB=m【详解】解:过C作CD⊥x轴于D,CE⊥y轴于E,如图所示:⊥CD⊥x轴,CE⊥y轴,⊥⊥CDO=⊥CEO=⊥DOE=90°,⊥四边形EODC是矩形,⊥将线段AB绕点A按逆时针方向旋转60°得到线段AC,⊥AB=AC,⊥BAC=60°,⊥⊥ABC是等边三角形,⊥AB=AC=BC,⊥A(0,2),C(m,3),⊥CE=m=OD,CD=3,OA=2,⊥AE=OE−OA=CD−OA=1,⊥AC BC AB=,在Rt⊥BCD中,BD=在Rt⊥AOB中,OB=⊥OB+BD=OD=m,m=,化简变形得:3m4−22m2−25=0,解得:m=或m=(舍去),⊥m=,故C正确.故选:C.【点睛】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.5.(2022·浙江湖州)如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是()A.2cm B.3cm C.4cm D.5cm【答案】C【分析】据平移的性质可得BB′=CC′=1,列式计算即可得解.【详解】解:∵△ABC沿BC方向平移1cm得到△A′B′C′,∴BB′=CC′=1cm,∵B′C=2cm,∴BC′= BB′+ B′C+CC′=1+2+1=4(cm).故选:C.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.6.(2022·浙江嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心'''',形成一个“方吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A B C D胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.1)cm D.-1)cm【答案】D【分析】先求出BD,再根据平移性质求得BB'=1cm,然后由BD BB-′求解即可.【详解】解:由题意,BD=,由平移性质得BB'=1cm,∴点D,B′之间的距离为DB'=BD BB-′=(1)cm,故选:D.【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.7.(2022·湖南怀化)如图,△ABC沿BC方向平移后的像为△DEF,已知BC=5,EC=2,则平移的距离是()A.1B.2C.3D.4【答案】C【分析】根据题意判断BE的长就是平移的距离,利用已知条件求出BE即可.【详解】因为ABC沿BC方向平移,点E是点B移动后的对应点,所以BE的长等于平移的距离,由图像可知,点B、E、C在同一直线上,BC=5,EC=2,所以BE=BC-ED=5-2=3,故选C.【点睛】本题考查了平移,正确找出平移对应点是求平移距离的关键.8.(2022·湖南邵阳)下列四种图形中,对称轴条数最多的是()A.等边三角形B.圆C.长方形D.正方形【答案】B【分析】分别求出各个图形的对称轴的条数,再进行比较即可.【详解】解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B.【点睛】此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.9.(2022·江苏连云港)下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】A.是轴对称图形,故该选项正确,符合题意;B.不是轴对称图形,故该选项不正确,不符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;故选A【点睛】本题考查轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 10.(2022·四川遂宁)下面图形中既是轴对称图形又是中心对称图形的是( )科克曲线笛卡尔心形线阿基米德螺旋线赵爽弦图A .科克曲线B .笛卡尔心形线C .阿基米德螺旋线D .赵爽弦图【答案】A 【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A 、科克曲线既是轴对称图形又是中心对称图形,故本选项符合题意;B 、笛卡尔心形线是轴对称图形,不是中心对称图形,故本选项不符合题意;C 、阿基米德螺旋线不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D 、赵爽弦图不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:A .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.(2022·新疆)平面直角坐标系中,点P (2,1)关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1-D .()2,1--【答案】B【分析】直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.【详解】解:点P(2,1)关于x轴对称的点的坐标是(2,-1).故选:B.【点睛】本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.12.(2022·天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形的概念对各项分析判断即可得解.【详解】A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确.故选:D.【点睛】本题考查轴对称图形,理解轴对称图形的概念是解答的关键.13.(2022·天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.AB AN⊥∠=∠D.MN AC∥C.AMN ACN=B.AB NC【答案】C【分析】根据旋转的性质,对每个选项逐一判断即可.【详解】解:∵将△ABM绕点A逆时针旋转得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故选项A不符合题意;∵△ABM≌△ACN,∴∠ACN =∠B ,而∠CAB 不一定等于∠B ,∴∠ACN 不一定等于∠CAB ,∴AB 与CN 不一定平行,故选项B 不符合题意;∵△ABM ≌△ACN ,∴∠BAM =∠CAN ,∠ACN =∠B ,∴∠BAC =∠MAN ,∵AM =AN ,AB =AC ,∴△ABC 和△AMN 都是等腰三角形,且顶角相等,∴∠B =∠AMN ,∴∠AMN =∠ACN ,故选项C 符合题意;∵AM =AN ,而AC 不一定平分∠MAN ,∴AC 与MN 不一定垂直,故选项D 不符合题意;故选:C .【点睛】本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.14.(2022·江苏扬州)如图,在ABC ∆中,AB AC <,将ABC 以点A 为中心逆时针旋转得到ADE ,点D 在BC 边上,DE 交AC 于点F .下列结论:①AFE DFC △△;②DA 平分BDE ∠;③CDF BAD ∠=∠,其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③【答案】D【分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【详解】解:∵将ABC 以点A 为中心逆时针旋转得到ADE ,∴ADE ABC ≌,E C ∴∠=∠,AFE DFC ∠=∠,∴AFE DFC △△,故①正确;ADE ABC ≌,AB AD ∴=,ABD ADB ∴∠=∠,ADE ABC ∠=∠,ADB ADE ∴∠=∠,∴DA 平分BDE ∠,故②正确;ADE ABC ≌,BAC DAE ∴∠=∠,BAD CAE ∴∠=∠,AFE DFC △△,CAE CDF ∴∠=∠,CDF BAD ∠=∠∴,故③正确故选D【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.15.(2022·四川南充)如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ''△,点B '恰好落在CA 的延长线上,3090∠=︒∠=︒,B C ,则BAC '∠为( )A .90︒B .60︒C .45︒D .30【答案】B 【分析】根据直角三角形两锐角互余,求出BAC ∠的度数,由旋转可知BAC B AC ''∠=∠,在根据平角的定义求出BAC '∠的度数即可.【详解】∵3090∠=︒∠=︒,B C ,∴90903060BAC B ∠=︒-∠=︒-︒=︒,∵由旋转可知60B A BAC C ''∠=︒∠=,∴618060860100C B A BA BA C C '''=︒-∠=︒-︒-︒=︒∠∠-,故答案选:B .【点睛】本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题的关键. 16.(2022·山东泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,ABC ∆经过平移后得到111A B C ∆,若AC 上一点(1.2,1.4)P 平移后对应点为1P ,点1P 绕原点顺时针旋转180,对应点为2P ,则点2P 的坐标为( )A .(2.8,3.6)B . 2.8,6()3.--C .(3.8,2.6)D .( 3.8, 2.6)--【答案】A 【详解】分析:由题意将点P 向下平移5个单位,再向左平移4个单位得到P 1,再根据P 1与P 2关于原点对称,即可解决问题.详解:由题意将点P 向下平移5个单位,再向左平移4个单位得到P 1.∵P (1.2,1.4),∴P 1(﹣2.8,﹣3.6).∵P 1与P 2关于原点对称,∴P 2(2.8,3.6). 故选A .点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.(2022·湖北宜昌)将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是( ) A .B .C .D .【答案】D 【分析】中心对称图形的定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,根据中心对称图形的定义逐项判定即可.【详解】解:根据中心对称图形定义,可知符合题意,故选:D .【点睛】本题考查中心对称图形,掌握中心对称图形定义,能根据定义判定图形是否是中心对称图形是解决问题的关键.18.(2022·湖南常德)如图,在Rt ABC △中,90ABC ∠=︒,30ACB ∠=︒,将ABC 绕点C 顺时针旋转60︒得到DEC ,点A 、B 的对应点分别是D ,E ,点F 是边AC 的中点,连接BF ,BE ,FD .则下列结论错误的是( )A .BE BC =B .BF DE ∥,BF DE =C .90DFC ∠=︒D .3DG GF =【答案】D【分析】根据旋转的性质可判断A ;根据直角三角形的性质、三角形外角的性质、平行线的判定方法可判断B ;根据平行四边形的判定与性质以及全等三角形的判定与性质可判断C ;利用等腰三角形的性质和含30°角的直角三角形的性质可判断D .【详解】A .∵将△ABC 绕点C 顺时针旋转60°得到△DEC ,∴∠BCE =∠ACD =60°,CB =CE ,∴△BCE 是等边三角形,∴BE =BC ,故A 正确;B .∵点F 是边AC 中点,∴CF =BF =AF =12AC ,∵∠BCA =30°,∴BA =12AC ,∴BF =AB =AF =CF ,∴∠FCB =∠FBC =30°,延长BF 交CE 于点H ,则∠BHE =∠HBC +∠BCH =90°,∴∠BHE =∠DEC =90°,∴BF //ED ,∵AB =DE ,∴BF =DE ,故B 正确.C .∵BF ∥ED ,BF =DE ,∴四边形BEDF 是平行四边形,∴BC =BE =DF ,∵AB =CF , BC =DF ,AC =CD ,∴△ABC ≌△CFD ,∴=90DFC ABC ∠=∠︒,故C 正确;D .∵∠ACB =30°, ∠BCE =60°,∴∠FCG =30°,∴FG =12CG ,∴CG =2FG .∵∠DCE =∠CDG =30°,∴DG =CG ,∴DG =2FG .故D 错误.故选D .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,含30°角的直角边等于斜边的一半,以及平行四边形的判定与性质等知识,综合性较强,正确理解旋转性质是解题的关键. 19.(2022·湖南常德)国际数学家大会每四年举行一届,下面四届国际数学家大会会标中是中心对称图形的是( ) A . B .C .D .【答案】B【分析】根据中心对称的概念对各图形分析判断即可得解.【详解】解:A 不是中心对称图形,故A 错误;B 是中心对称图形,故B 正确;C 不是中心对称图形,故C 错误;D 不是中心对称图形,故D 错误;故选B .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180︒后两部分重合,理解并掌握如何判断中心对称图形的条件是解题的关键.20.(2022·河北)题目:“如图,⊥B =45°,BC =2,在射线BM 上取一点A ,设AC =d ,若对于d 的一个数值,只能作出唯一一个⊥ABC ,求d 的取值范围.”对于其答案,甲答:2d ≥,乙答:d =1.6,丙答:d =则正确的是( )A .只有甲答的对B .甲、丙答案合在一起才完整C .甲、乙答案合在一起才完整D .三人答案合在一起才完整【答案】B 【分析】过点C 作CA BM '⊥于A ',在A M '上取A A BA ''''=,发现若有两个三角形,两三角形的AC 边关于A C '对称,分情况分析即可【详解】过点C 作CA BM '⊥于A ',在A M '上取A A BA ''''=⊥⊥B =45°,BC =2,CA BM '⊥⊥BA C '是等腰直角三角形⊥A C BA ''==⊥A A BA ''''=⊥2A C ''=若对于d 的一个数值,只能作出唯一一个⊥ABC通过观察得知:点A 在A '点时,只能作出唯一一个⊥ABC (点A 在对称轴上),此时d = 点A 在A M ''射线上时,只能作出唯一一个⊥ABC (关于A C '对称的AC 不存在),此时2d ≥,即甲的答案, 点A 在BA ''线段(不包括A '点和A ''点)上时,有两个⊥ABC (二者的AC 边关于A C '对称);选:B【点睛】本题考查三角形的存在性质,勾股定理,解题关键是发现若有两个三角形,两三角形的AC 边关于A C '对称21.(2022·山西)2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度下列航天图标,其文字上方的图案是中心对称图形的是( )A .B .C .D .【答案】B【分析】利用中心对称图形的定义直接判断.【详解】解:根据中心对称图形的定义,四个选项中,只有B 选项的图形绕着某点旋转180°后能与原来的图形重合,故选B .【点睛】本题考查中心对称图形的判定,掌握中心对称图形的定义是解题的关键.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.22.(2022·河南)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB x ∥轴,交y 轴于点P .将⊥OAP 绕点O 顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A 的坐标为( )A .)1-B .(1,-C .()1-D .( 【答案】B【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴,⊥AP =1, AO =2,⊥OP A =90°,⊥OP⊥A (1,第1次旋转结束时,点A -1);第2次旋转结束时,点A 的坐标为(-1,;第3次旋转结束时,点A 的坐标为(1);第4次旋转结束时,点A 的坐标为(1;⊥将⊥OAP 绕点O 顺时针旋转,每次旋转90°,⊥4次一个循环,⊥2022÷4=505……2,⊥经过第2022次旋转后,点A 的坐标为(-1,,故选:B【点睛】本题考查正多边形与圆,规律型问题,坐标与图形变化﹣旋转等知识,解题的关键是学会探究规律的方法,属于中考常考题型.23.(2022·四川宜宾)如图,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC 内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP的延长线上,且AP 的长为2,则2CE = )A .①②④B .①②③C .①③④D .①②③④ 【答案】B【分析】证明BAD CAE ≌,即可判断①,根据①可得ADB AEC ∠=∠,由180ADC AEC ∠+∠=︒可得,,,A D C E 四点共圆,进而可得DAC DEC ∠=∠,即可判断②,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,证明FAH FCE ∽,根据相似三角形的性质可得45CF AF =,即可判断③,将APC △绕A 点逆时针旋转60度,得到AB P ''△,则APP '是等边三角形,根据当,,,B P P C ''共线时,PA PB PC ++取得最小值,可得四边形ADCE 是正方形,勾股定理求得DP , 根据CE AD AP PD ==+即可判断④. 【详解】解:ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,,,AB AC AD AE BAD CAE ∴==∠=∠BAD CAE ∴△≌△BD CE ∴=故①正确;BAD CAE ≌ADB AEC ∴∠=∠180ADC AEC ∴∠+∠=︒,,,A D C E ∴四点共圆,CD CD =DAC DEC ∴∠=∠故②正确;如图,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,BAD CAE ≌,45,45ACE ABD ACB ∴∠=∠=︒∠=︒90DCE ∴∠=︒FC AH ∴∥2BD CD =,BD CE =1tan2DC DEC CE ∴∠==,13CD BC = 设6BC a =,则2DC a =,132AG BC a ==,24EC DC a == 则32GD GC DC a a a =-=-= FC AH ∥1tan 2GD H GH ∴==22GH GD a ∴==325AH AG GH a a a ∴=+=+= AH ⊥CE ,FAH FCE ∴∽CF CE AF AH ∴=4455CF a AF a ∴==则45CF AF =;故③正确 如图,将ABP 绕A 点逆时针旋转60度,得到AB P ''△,则APP '是等边三角形,PA PB PC PP P B PC B C '''+++∴'+=≥,当,,,B P P C ''共线时,PA PB PC ++取得最小值,此时180********CPA APP '∠=-∠=︒-=︒︒︒,180********APB AP B AP P ∠=∠=︒-∠=︒-︒='''︒,360360*********BPC BPA APC ∠=︒-∠-∠=︒-︒-︒=︒,此时120APB BPC APC ∠=∠=∠=︒,AC AB AB '==,AP AP '=,APC AP B ''∠=∠,AP B APC ''∴≌,PC P B PB ''∴==,60APP DPC '∠=∠=︒,DP ∴平分BPC ∠,PD BC ∴⊥,,,,A D C E 四点共圆,90AEC ADC ∴∠=∠=︒,又AD DC BD ==,BAD CAE ≌,AE EC AD DC ∴===,则四边形ADCE 是菱形,又90ADC ∠=︒,∴四边形ADCE 是正方形,9060150B AC B AP PAC P AP ''''∠=∠+∠+∠=︒+︒=︒,则'B A BA AC ==,()1180152B ACB B AC '''∠=∠=︒-∠=︒,30PCD ∠=︒,DC ∴=,DC AD =,2AP =,则)12AP AD DP DP =-==,1DP ∴==,2AP =,3CE AD AP PD ∴==+=,故④不正确,故选B .【点睛】本题考查了旋转的性质,费马点,圆内接四边形的性质,相似三角形的性质与判定,全等三角形的性质与判定,勾股定理,解直角三角形,正方形的性质与判定,掌握以上知识是解题的关键.二.填空题24.(2022·云南)点A (1,-5)关于原点的对称点为点B ,则点B 的坐标为______.【答案】(-1,5)【分析】根据若两点关于坐标原点对称,横纵坐标均互为相反数,即可求解.【详解】解:∵点A (1,-5)关于原点的对称点为点B ,∴点B 的坐标为(-1,5).故答案为:(-1,5)【点睛】本题主要考查了平面直角坐标系内点关于原点对称的特征,熟练掌握若两点关于坐标原点对称,横纵坐标均互为相反数是解题的关键.25.(2022·湖南湘潭)如图,一束光沿CD 方向,先后经过平面镜OB 、OA 反射后,沿EF 方向射出,已知120AOB ∠=︒,20CDB ∠=︒,则∠=AEF _________.【答案】40°##40度【分析】根据入射角等于反射角,可得,CDB EDO DEO AEF ∠=∠∠=∠,根据三角形内角和定理求得40OED ∠=︒,进而即可求解.【详解】解:依题意,,CDB EDO DEO AEF ∠=∠∠=∠,⊥120AOB ∠=︒,20CDB ∠=︒,20CDB EDO ∴∠=∠=︒,⊥18040OED ODE AOB ∠=-∠-∠=︒,∴40AEF DEO ∠=∠=︒.故答案为:40.【点睛】本题考查了轴对称的性质,三角形内角和定理的应用,掌握轴对称的性质是解题的关键. 26.(2022·浙江丽水)一副三角板按图1放置,O 是边()BC DF 的中点,12cm BC =.如图2,将ABC 绕点O 顺时针旋转60︒,AC 与EF 相交于点G ,则FG 的长是___________cm .【答案】3【分析】BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,根据锐角三角函数即可得DE ,FE ,根据旋转的性质得ONF △是直角三角形,根据直角三角形的性质得3ON =,即3NC =,根据角之间的关系得CNG △是等腰直角三角形,即3NG NC ==cm ,根据90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒得FON FED △∽△,即ON FN DE DF=,解得FN =,即可得. 【详解】解:如图所示,BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,在Rt EDF 中,12tan tan 60DF DE EDF ===∠︒12sin sin 60DF EF EDF ===∠︒∵△ABC 绕点O 顺时针旋转60°,∴60BOD NOF ∠=∠=︒,∴90NOF F ∠+∠=︒,∴18090FNO NOF F ∠=︒-∠-∠=︒,∴ONF △是直角三角形, ∴132ON OF ==(cm ), ∴3NC OC ON =-=(cm ),∵90FNO ∠=︒,∴18090GNC FNO ∠=︒-∠=︒,∴NGC 是直角三角形,∴18045NGC GNC ACB ∠=-∠-∠=︒,∴CNG △是等腰直角三角形,∴3NG NC ==cm ,∵90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒,∴FON FED △∽△, 即ON FN DE DF=,12FN =,FN =∴3FG FN NG =-=(cm ),故答案为:3.【点睛】本题考查了直角三角形的性质,相似三角形的判定与性质,旋转的性质,解题的关键是掌握这些知识点.27.(2022·河南)如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O '处,得到扇形A O B '''.若⊥O =90°,OA =2,则阴影部分的面积为______.【答案】3π+【分析】设A O '与扇形AOB 交于点C ,连接OC ,解Rt OCO ',求得60O C COB '=∠=︒,根据阴影部分的面积为()OCO A O B OCB S S S ''''--扇形扇形,即可求解.【详解】如图,设A O '与扇形AOB 交于点C ,连接OC ,如图O '是OB 的中点11122OO OB OA '∴===, OA =2, AOB ∠=90°,将扇形AOB 沿OB 方向平移,90A O O ''∴∠=︒1cos 2OO COB OC '∴∠==60COB ∴∠=︒sin 60O C OC '∴=︒=∴阴影部分的面积为()OCO A O B OCB S S S''''--扇形扇形OCO AOB OCB S S S ''=-+扇形扇形22906012213603602ππ=⨯-⨯+⨯3π=故答案为:3π【点睛】本题考查了解直角三角形,求扇形面积,平移的性质,求得60COB ∠=︒是解题的关键.28.(2022·河南)如图,在Rt⊥ABC 中,⊥ACB =90°,AC BC ==D 为AB 的中点,点P 在AC 上,且CP =1,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ .当⊥ADQ =90°时,AQ 的长为______.【分析】连接CD ,根据题意可得,当⊥ADQ =90°时,Q 点在CD 上,且1CQ CP ==,勾股定理求得AQ 即可.【详解】如图,连接CD ,在Rt⊥ABC 中,⊥ACB =90°,AC BC ==4AB ∴=,CD AD ⊥,122CD AB ∴==,根据题意可得,当⊥ADQ =90°时,Q 点在CD 上,且1CQ CP ==,211DQ CD CQ ∴=-=-=,在Rt ADQ △中,AQ =【点睛】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点Q 的位置是解题的关键.29.(2022·浙江金华)如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C ''',连结CC ',则四边形AB C C ''的周长为_____cm .【答案】8+【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cm ACB A BC ∠=︒∠=︒=,∴AB =2BC =4,∴∵把ABC 沿AB 方向平移1cm ,得到A B C ''',∴1CC '=,=4+1=5AB ', =2B C BC ''=,∴四边形的周长为:1528++=+8+【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键. 30.(2022·四川德阳)如图,直角三角形ABC 纸片中,90ACB ∠=︒,点D 是AB 边上的中点,连接CD ,将ACD △沿CD 折叠,点A 落在点E 处,此时恰好有CE AB ⊥.若1CB =,那么CE =______.【分析】根据D 为AB 中点,得到AD =CD =BD ,即有∠A =∠DCA ,根据翻折的性质有∠DCA =∠DCE ,CE =AC ,再根据CE⊥AB,求得∠A=∠BCE,即有∠BCE=∠ECD=∠DCA=30°,则有∠A=30°,在Rt△ACB中,即可求出AC,则问题得解.【详解】∵∠ACB=90°,∴∠A+∠B=90°,∵D为AB中点,∴在直角三角形中有AD=CD=BD,∴∠A=∠DCA,根据翻折的性质有∠DCA=∠DCE,CE=AC,∵CE⊥AB,∴∠B+∠BCE=90°,∵∠A+∠B=90°,∴∠A=∠BCE,∴∠BCE=∠ECD=∠DCA,∵∠BCE+∠ECD+∠DCA=∠ACB=90°,∴∠BCE=∠ECD=∠DCA=30°∴∠A=30°,∴在Rt△ACB中,BC=1,则有13 tan tan30BCACA===∠∴CE AC==【点睛】本题考查了翻折的性质、直角三角形斜边中线的性质、等边对等角以及解直角三角形的知识,求出∠BCE=∠ECD=∠DCA=30°是解答本题的关键.31.(2022·山东泰安)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是__________________.【答案】23π 【分析】连接OO ′,BO ′,根据旋转的性质得到AO AO '=,OA OB =,O B OB ''=,60OAO '∠=︒,120AOB AO B ''∠=∠=︒,推出△OAO ′是等边三角形,得到60AOO '∠=︒,因为∠AOB =120°,所以60O OB '∠=︒,则OO B '是等边三角形,得到120AO B '∠=︒,得到30O B B O BB ''''∠=∠=︒,90B BO '∠=︒,根据直角三角形的性质得24B O OB '==,根据勾股定理得B B '=,用B OB '△的面积减去扇形O OB '的面积即可得.【详解】解:如图所示,连接OO ′,BO ′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,∴AO AO '=,OA OB =,O B OB ''=,60OAO '∠=︒,120AOB AO B ''∠=∠=︒∴△OAO ′是等边三角形,∴60AOO '∠=︒,OO OA '=,∴点O '在⊙O 上,∵∠AOB =120°,∴60O OB '∠=︒,∴OO B '是等边三角形,∴120AO B '∠=︒,∵120AO B ''∠=︒,∴120B O B ''∠=︒, ∴11(180)(180120)3022O B B O BB B O B ''''''∠=∠=︒-∠=⨯︒-︒=︒,∴180180306090B BO OB B B OB '''∠=︒-∠-∠=︒-︒-︒=︒,∴24B O OB '==,在Rt B OB '中,根据勾股定理得,B B '=∴图中阴影部分的面积=2160222=223603B OB O OB S S ''⨯-=⨯⨯扇形ππ,故答案为:23π. 【点睛】本题考查了圆与三角形,旋转的性质,勾股定理,解题的关键是掌握这些知识点.32.(2022·湖南怀化)已知点A (﹣2,b )与点B (a ,3)关于原点对称,则a ﹣b =______.【答案】5【分析】根据平面直角坐标系中,关于原点对称的点横、纵坐标都互为相反数,求出a ,b 的值即可.【详解】∵点A (﹣2,b )与点B (a ,3)关于原点对称,∴2a =,3b =-,∴()235a b -=--=故答案为:5.【点睛】本题考查平面直角坐标系中,关于原点对称的点的坐标的特点,掌握特殊位置关系的点的坐标变化是解答本题的关键.33.(2022·浙江台州)如图,△ABC 的边BC 长为4cm .将△ABC 平移2cm 得到△A ′B ′C ′,且BB ′⊥BC ,则阴影部分的面积为______2cm .【答案】8【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A ′B ′C ′=S △ABC ,BC =B ′C ′,BC ⊥B ′C ′,⊥四边形B ′C ′CB 为平行四边形, ⊥BB ′⊥BC ,⊥四边形B ′C ′CB 为矩形,⊥阴影部分的面积=S △A ′B ′C ′+S 矩形B ′C ′CB -S △ABC =S 矩形B ′C ′CB =4×2=8(cm 2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.三.解答题34.(2022·湖南湘潭)如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为()1,1A -,()4,0B -,()2,2C -.将ABC 绕原点O 顺时针旋转90︒后得到111A B C △.(1)请写出1A、1B、1C三点的坐标:1A_________,1B_________,1C_________(2)求点B旋转到点1B的弧长.【答案】(1)(1,1);(0,4);(2,2)(2)2π【分析】(1)将⊥ABC绕着点O按顺时针方向旋转90°得到⊥A1B1C1,点A1,B1,C1的坐标即为点A,B,C 绕着点O按顺时针方向旋转90°得到的点,由此可得出结果.(2)由图知点B旋转到点1B的弧长所对的圆心角是90º,OB=4,根据弧长公式即可计算求出.(1)解:将⊥ABC绕着点O按顺时针方向旋转90°得到⊥A1B1C1,点A1,B1,C1的坐标即为点A,B,C绕着点O 按顺时针方向旋转90°得到的点,所以A1(1,1);B1(0,4);C1(2,2)(2)解:由图知点B旋转到点1B的弧长所对的圆心角是90度,OB=4,⊥点B旋转到点1B的弧长=904 180π⨯⨯=2π【点睛】本题考查点的旋转变换和弧长公式,解题的关键是熟练掌握旋转变换的定义和弧长公式.35.(2022·湖北武汉)如图是由小正方形组成的96⨯网格,每个小正方形的顶点叫做格点.ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D ,E 分别是边AB ,AC 与网格线的交点.先将点B 绕点E 旋转180︒得到点F ,画出点F ,再在AC 上画点G ,使DG BC ∥;(2)在图(2)中,P 是边AB 上一点,BAC α∠=.先将AB 绕点A 逆时针旋转2α,得到线段AH ,画出线段AH ,再画点Q ,使P ,Q 两点关于直线AC 对称.【答案】(1)作图见解析(2)作图见解析【分析】(1)取格点,作平行四边形,利用平行四边形对角顶点关于对角线交点对称即可求点F ;平行四边形对边在网格中与格线的交点等高,连接等高点即可作出DG BC ∥;(2)取格点,作垂直平分线即可作出线段AH ;利用垂直平分线的性质,证明三角形全等,作出P ,Q 两点关于直线AC 对称(1)解:作图如下:取格点F ,连接AF ,AF BC ∥且AF BC =,所以四边形ABCF 是平行四边形,连接 BF ,与AC 的交点就是点E ,所以BE =EF ,所以点F 即为所求的点;连接CF ,交格线于点M ,因为四边形ABCF 是平行四边形,连接DM 交AC 于一点,该点就是所求的G 点;(2)解:作图如下:。
专题20图形的旋转(30题)一、单选题1.(2023·江苏无锡·统考中考真题)如图,ABC 中,55BAC ∠=︒,将ABC 逆时针旋转(055),αα︒<<︒得到ADE V ,DE 交AC 于F .当40α=︒时,点D 恰好落在BC 上,此时AFE ∠等于()A .80︒B .85︒C .90︒D .95︒【答案】B 【分析】根据旋转可得B ADB ADE ∠=∠=∠,再结合旋转角40α=︒即可求解.【详解】解:由旋转性质可得:55BAC DAE ∠=∠=︒,AB AD =,∵40α=︒,∴15DAF ∠=︒,70B ADB ADE ∠=∠=∠=︒,∴85AFE DAF ADE ∠=∠+∠=︒,故选:B .【点睛】本题考查了几何—旋转问题,掌握旋转的性质是关键.2.(2023·天津·统考中考真题)如图,把ABC 以点A 为中心逆时针旋转得到ADE V ,点B ,C 的对应点分别是点D ,E ,且点E 在BC 的延长线上,连接BD ,则下列结论一定正确的是()A .CAE BED∠=∠B .AB AE =C .ACE ADE ∠=∠D .CE BD=【答案】A 【分析】根据旋转的性质即可解答.【详解】根据题意,由旋转的性质,可得AB AD =,AC AE =,BC DE =,故B 选项和D 选项不符合题意,=ABC ADE∠∠ =ACE ABC BAC行+∴=ACE ADE BAC 行+,故C 选项不符合题意,=ACB AED行 =ACB CAE CEA行+ =AED CEA BED行+∴=CAE BED 行,故A 选项符合题意,故选:A .【点睛】本题考查了旋转的性质,熟练掌握旋转的性质和三角形外角运用是解题的关键.3.(2023·四川宜宾·统考中考真题)如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形,把ADE 以A 为中心顺时针旋转,点M 为射线BD 、CE 的交点.若3AB =,1AD =.以下结论:①BD CE =;②BD CE ⊥;③当点E 在BA 的延长线上时,332MC -=;④在旋转过程中,当线段MB 最短时,MBC 的面积为12.其中正确结论有()A .1个B .2个C .3个D .4个【答案】D 【分析】证明BAD CAE ≌即可判断①,根据三角形的外角的性质得出②,证明DCM ECA ∠∠∽得出3123MC-=,即可判断③;以A 为圆心,AD 为半径画圆,当CE 在A 的下方与A 相切时,MB 的值最小,可得四边形AEMD 是正方形,在Rt MBC 中22MC BC MB =-21=+,然后根据三角形的面积公式即可判断④.【详解】解:∵ABC 和ADE 是以点A 为直角顶点的等腰直角三角形,∴,,90BA CA DA EA BAC DAE ==∠=∠=︒,∴BAD CAE ∠=∠,∴BAD CAE ≌,∴ABD ACE ∠=∠,BD CE =,故①正确;设ABD ACE α∠=∠=,∴45DBC α∠=︒-,∴454590EMB DBC BCM DBC BCA ACE αα∠=∠+∠=∠+∠+∠=︒-+︒+=︒,∴BD CE ⊥,故②正确;当点E 在BA 的延长线上时,如图所示∵DCM ECA ∠=∠,90DMC EAC ∠=∠=︒,∴DCM ECA∠∠∽∴MC CD AC EC=∵3AB =,1AD =.∴31CD AC AD =-=-,222CE AE AC =+=∴3123MC-=∴332MC -=,故③正确;④如图所示,以A 为圆心,AD 为半径画圆,∵90BMC ∠=︒,∴当CE 在A 的下方与A 相切时,MB 的值最小,90ADM DAE AEM ∠=∠=∠=︒∴四边形AEMD 是矩形,又AE AD =,∴四边形AEMD 是正方形,∴1MD AE ==,∵222BD EC AC AE ==-=,∴21MB BD MD =-=-,在Rt MBC 中,22MC BC MB =-∴PB 取得最小值时,222MC AB AC MB =+-()2332121=+--=+∴()()1112121222BMC S MB MC =⨯=-+= 故④正确,故选:D .【点睛】本题考查了旋转的性质,相似三角形的性质,勾股定理,切线的性质,垂线段最短,全等三角形的性质与判定,正方形的性质,熟练掌握以上知识是解题的关键.4.(2023·山东聊城·统考中考真题)如图,已知等腰直角ABC ,90ACB ∠=︒,2AB =,点C 是矩形ECGF与ABC 的公共顶点,且1CE =,3CG =;点D 是CB 延长线上一点,且2CD =.连接BG ,DF ,在矩形ECGF绕点C 按顺时针方向旋转一周的过程中,当线段BG 达到最长和最短时,线段DF 对应的长度分别为m 和n ,则m n 的值为()A .2B .3C .10D .13【答案】D 【分析】根据锐角三角函数可求得1AC BC ==,当线段BG 达到最长时,此时点G 在点C 的下方,且B ,C ,G 三点共线,求得4BG =,5DG =,根据勾股定理求得26DF =,即26m =,当线段BG 达到最短时,此时点G 在点C 的上方,且B ,C ,G 三点共线,则2BG =,1DG =,根据勾股定理求得2DF =,即2n =,即可求得13m n=.【详解】∵ABC 为等腰直角三角形,2AB =,∴2sin 45212AC BC AB ==⋅︒=⨯=,当线段BG 达到最长时,此时点G 在点C 的下方,且B ,C ,G 三点共线,如图:则4BG BC CG =+=,5DG DB BG =+=,在Rt DGF △中,22225126DF DG GF =+=+=,即26m =,当线段BG 达到最短时,此时点G 在点C 的上方,且B ,C ,G 三点共线,如图:则2BG CG BC =-=,1DG BG DB =-=,在Rt DGF △中,2222112DF DG GF =+=+=,即2n =,故26132m n ==,故选:D .【点睛】本题考查了锐角三角函数,勾股定理等,根据旋转推出线段BG 最长和最短时的位置是解题的关键.二、填空题5.(2023·江苏连云港·统考中考真题)以正五边形ABCDE 的顶点C 为旋转中心,按顺时针方向旋转,使得新五边形A B CD E ''''的顶点D ¢落在直线BC 上,则正五边ABCDE 旋转的度数至少为______°.【答案】72【分析】依据正五边形的外角性质,即可得到DCF ∠的度数,进而得出旋转的角度.【详解】解:∵五边形ABCDE 是正五边形,∴530726DCF ∠÷=︒=︒,∴新五边形A B CD E ''''的顶点D ¢落在直线BC 上,则旋转的最小角度是72︒,故答案为:72.【点睛】本题主要考查了正多边形、旋转性质,关键是掌握正多边形的外角和公式的运用.6.(2023·湖南张家界·统考中考真题)如图,AO 为BAC ∠的平分线,且50BAC ∠=︒,将四边形ABOC 绕点A 逆时针方向旋转后,得到四边形AB O C ''',且100OAC '∠=︒,则四边形ABOC 旋转的角度是______.【答案】75︒【分析】根据角平分线的性质可得25BAO OAC ==︒∠∠,根据旋转的性质可得50BAC B AC ''∠=∠=︒,25B AO O AC ''''==︒∠∠,求得75OAO '∠=︒,即可求得旋转的角度.【详解】∵AO 为BAC ∠的平分线,50BAC ∠=︒,∴25BAO OAC ==︒∠∠,∵将四边形ABOC 绕点A 逆时针方向旋转后,得到四边形AB O C ''',∴50BAC B AC ''∠=∠=︒,25B AO O AC ''''==︒∠∠,∴1002575OAO OAC O AC ''''∠=∠-∠=︒-︒=︒,故答案为:75︒.【点睛】本题考查了角平分线的性质,旋转的性质,熟练掌握以上性质是解题的关键.7.(2023·湖南常德·统考中考真题)如图1,在Rt ABC △中,90ABC ∠=︒,8AB =,6BC =,D 是AB 上一点,且2AD =,过点D 作DE BC ∥交AC 于E ,将ADE V 绕A 点顺时针旋转到图2的位置.则图2中BD CE的值为__________.【答案】45【分析】首先根据勾股定理得到2210AC AB BC =+=,然后证明出ADE ABC △△∽,得到AD AE AB AC =,进而得到AD AB AE AC=,然后证明出ABD ACE ∽,利用相似三角形的性质求解即可.【详解】∵在Rt ABC △中,90ABC ∠=︒,8AB =,6BC =,∴2210AC AB BC =+=∵DE BC∥∴90ADE ABC ∠=∠=︒,AED ACB∠=∠∴ADE ABC△△∽∴AD AE AB AC =∴AD AB AE AC=∵BAC DAE∠=∠∴BAC CAD DAE CAD∠+∠=∠+∠∴BAD CAE∠=∠∴ABD ACE∽∴84105BD AB CD AC ===.故答案为:45.【点睛】此题考查了相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质和判定定理.8.(2023·江苏无锡·统考中考真题)已知曲线12C C 、分别是函数2(0),(0,0)k y x y k x x x=-<=>>的图像,边长为6的正ABC 的顶点A 在y 轴正半轴上,顶点B 、C 在x 轴上(B 在C 的左侧),现将ABC 绕原点O 顺时针旋转,当点B 在曲线1C 上时,点A 恰好在曲线2C 上,则k 的值为__________.【答案】6【分析】画出变换后的图像即可(画AOB 即可),当点A 在y 轴上,点B 、C 在x 轴上时,根据ABC 为等边三角形且AO BC ⊥,可得13OB OA =,过点A 、B 分别作x 轴垂线构造相似,则BFO OEA ∽ ,根据相似三角形的性质得出3AOE S =△,进而根据反比例函数k 的几何意义,即可求解.【详解】当点A 在y 轴上,点B 、C 在x 轴上时,连接AO ,ABC 为等边三角形且AO BC ⊥,则30BAO ∠=︒,∴tan tan 30BAO ∠=︒=33OB OA =,如图所示,过点,A B 分别作x 轴的垂线,交x 轴分别于点,E F ,AO BO ⊥,90BFO AEO AOB ∠=∠=∠=︒,∴90BOF AOE EAO ∠=︒-∠=∠,∴BFO OEA ∽ ,∴213BFO AOE S OB S OA ⎛⎫== ⎪⎝⎭ ,∴212BFO S -== ,∴3AOE S =△,∴6k =.【点睛】本题考查了反比例函数的性质,k 的几何意义,相似三角形的性质与判定,正确作出辅助线构造相似三角形是解题关键.9.(2023·辽宁·统考中考真题)如图,线段8AB =,点C 是线段AB 上的动点,将线段BC 绕点B 顺时针旋转120°得到线段BD ,连接CD ,在AB 的上方作Rt DCE ∆,使90,30DCE E ∠=∠= ,点F 为DE 的中点,连接AF ,当AF 最小时,BCD ∆的面积为___________.【答案】3【分析】连接CF BF ,,BF,CD 交于点P ,由直角三角形的性质及等腰三角形的性质可得BF 垂直平分CF ,60ABF ∠=︒为定角,可得点F 在射线BF 上运动,当AF BF ⊥时,AF 最小,由含30度角直角三角形的性质即可求解.【详解】解:连接CF BF ,,BF,CD 交于点P ,如图,∵90DCE ∠= ,点F 为DE 的中点,∴FC FD =,∵30E ∠= ,∴60FDC ∠=︒,∴FCD 是等边三角形,∴60DFC FCD ∠=∠=︒;∵线段BC 绕点B 顺时针旋转120°得到线段BD ,∴BC BD =,∵FC FD =,∴BF 垂直平分CF ,60ABF ∠=︒,∴点F 在射线BF 上运动,∴当AF BF ⊥时,AF 最小,此时9030FAB ABF ∠=︒-∠=︒,∴142BF AB ==;∵1302BFC DFC ∠=∠=︒,∴90FCB BFC ABF ∠=∠+∠=︒,∴122BC BF ==,∵112PB BC ==,∴由勾股定理得223PC BC PB =-=,∴223CD PC ==,∴11231322BCD S CD PB =⋅=⨯⨯=△;故答案为:3.【点睛】本题考查了等腰三角形性质,含30度直角三角形的性质,斜边中线性质,勾股定理,线段垂直平分线的判定,勾股定理,旋转的性质,确定点F 的运动路径是关键与难点.10.(2023·江西·统考中考真题)如图,在ABCD Y 中,602B BC AB ∠=︒=,,将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP ,连接PC ,PD .当PCD 为直角三角形时,旋转角α的度数为_______.【答案】90︒或270︒或180︒【分析】连接AC ,根据已知条件可得90BAC ∠=︒,进而分类讨论即可求解.【详解】解:连接AC ,取BC 的中点E ,连接AE ,如图所示,∵在ABCD Y 中,602B BC AB ∠=︒=,,∴12BE CE BC AB ===,∴ABE 是等边三角形,∴60BAE AEB ∠=∠=︒,AE BE =,∴AE EC=∴1302EAC ECA AEB ∠=∠=∠=︒,∴90BAC ∠=︒∴AC CD ⊥,如图所示,当点P 在AC 上时,此时90BAP BAC ∠=∠=︒,则旋转角α的度数为90︒,当点P 在CA 的延长线上时,如图所示,则36090270α=︒-︒=︒当P 在BA 的延长线上时,则旋转角α的度数为180︒,如图所示,∵PA PB CD ==,PB CD ∥,∴四边形PACD 是平行四边形,∵AC AB⊥∴四边形PACD 是矩形,∴90PDC ∠=︒即PDC △是直角三角形,综上所述,旋转角α的度数为90︒或270︒或180︒故答案为:90︒或270︒或180︒.【点睛】本题考查了平行四边形的性质与判定,等边三角形的性质与判定,矩形的性质与判定,旋转的性质,熟练掌握旋转的性质是解题的关键.11.(2023·上海·统考中考真题)如图,在ABC 中,35C ∠=︒,将ABC 绕着点A 旋转(0180)αα︒<<︒,旋转后的点B 落在BC 上,点B 的对应点为D ,连接AD AD ,是BAC ∠的角平分线,则α=________.【答案】1103⎛⎫︒ ⎪⎝⎭【分析】如图,AB AD =,BAD ∠=α,根据角平分线的定义可得CAD BAD α∠=∠=,根据三角形的外角性质可得35ADB α∠=︒+,即得35B ADB α∠=∠=︒+,然后根据三角形的内角和定理求解即可.【详解】解:如图,根据题意可得:AB AD =,BAD ∠=α,∵AD 是BAC ∠的角平分线,∴CAD BAD α∠=∠=,∵35ADB C CAD α∠=∠+∠=︒+,AB AD =,∴35B ADB α∠=∠=︒+,则在ABC 中,∵180C CAB B ∠+∠+∠=︒,∴35235180αα︒++︒+=︒,解得:1103α⎛⎫=︒ ⎪⎝⎭;故答案为:1103⎛⎫︒ ⎪⎝⎭【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形的外角性质以及三角形的内角和等知识,熟练掌握相关图形的性质是解题的关键.12.(2023·湖南郴州·统考中考真题)如图,在Rt ABC △中,90BAC ∠=︒,3cm AB =,=60B ∠︒.将ABC 绕点A 逆时针旋转,得到AB C ''△,若点B 的对应点B '恰好落在线段BC 上,则点C 的运动路径长.....是___________cm (结果用含π的式子表示).【答案】3π【分析】由于AC 旋转到AC ',故C 的运动路径长是CC '的圆弧长度,根据弧长公式求解即可.【详解】以A 为圆心作圆弧CC ',如图所示.在直角ABC 中,=60B ∠︒,则30C ∠=︒,则()2236cm BC AB ==⨯=.∴()22226333cm AC BC AB =-=-=.由旋转性质可知,AB AB '=,又=60B ∠︒,∴ABB ' 是等边三角形.∴60BAB '∠=︒.由旋转性质知,60CAC '∠=︒.故弧CC '的长度为:()602333cm 3603AC πππ⨯⨯⨯=⨯=;故答案为:3π【点睛】本题考查了含30︒角直角三角形的性质、勾股定理、旋转的性质、弧长公式等知识点,解题的关键是明确C 点的运动轨迹.13.(2023·内蒙古·统考中考真题)如图,在Rt ABC △中,90,3,1ACB AC BC ∠=︒==,将ABC 绕点A 逆时针方向旋转90︒,得到AB C ''△.连接BB ',交AC 于点D ,则AD DC 的值为________.【答案】5【分析】过点D 作DF AB ⊥于点F ,利用勾股定理求得10AB =,根据旋转的性质可证ABB ' 、DFB △是等腰直角三角形,可得DF BF =,再由1122ADB S BC AD DF AB =⨯⨯=⨯⨯ ,得=10AD DF ,证明AFD ACB ,可得DF AF BC AC =,即3AF DF =,再由=10AF DF -,求得10=4DF ,从而求得52AD =,12CD =,即可求解.【详解】解:过点D 作DF AB ⊥于点F ,∵90ACB ∠=︒,3AC =,1BC =,∴223110AB =+=,∵将ABC 绕点A 逆时针方向旋转90︒得到AB C ''△,∴==10AB AB ',90BAB '∠=︒,∴ABB ' 是等腰直角三角形,∴45ABB '∠=︒,又∵DF AB ⊥,∴45FDB ∠=︒,∴DFB △是等腰直角三角形,∴DF BF =,∵1122ADB S BC AD DF AB =⨯⨯=⨯⨯ ,即=10AD DF ,∵90C AFD ∠=∠=︒,CAB FAD ∠=∠,∴AFD ACB ,∴DF AF BC AC=,即3AF DF =,又∵=10AF DF -,∴10=4DF ,∴105=10=42AD ⨯,51=3=22CD -,∴52==512AD CD ,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.14.(2023·黑龙江绥化·统考中考真题)已知等腰ABC ,120A ∠=︒,2AB =.现将ABC 以点B 为旋转中心旋转45︒,得到A BC ''△,延长C A ''交直线BC 于点D .则A D '的长度为_______.【答案】423423+-或【分析】根据题意,先求得23BC =,当ABC 以点B 为旋转中心逆时针旋转45︒,过点B 作BE A B '⊥交A D '于点E ,当ABC 以点B 为旋转中心顺时针旋转45︒,过点D 作DF BC '⊥交BC '于点F ,分别画出图形,根据勾股定理以及旋转的性质即可求解.【详解】解:如图所示,过点A 作AM BC ⊥于点M ,∵等腰ABC ,120BAC ∠=︒,2AB =.∴30ABC ACB ∠=∠=︒,∴112AM AB ==,223BM CM AB AM ==-=,∴23BC =,如图所示,当ABC 以点B 为旋转中心逆时针旋转45︒,过点B 作BE A B '⊥交A D '于点E ,∵120BAC ∠=︒,∴60DA B '∠=︒,30A EB '∠=︒,在Rt A BE ' 中,24A E A B ''==,2223BE A E A B ''=-=,∵等腰ABC ,120BAC ∠=︒,2AB =.∴30ABC ACB ∠=∠=︒,∵ABC 以点B 为旋转中心逆时针旋转45︒,∴45ABA '∠=︒,∴180********DBE ∠=︒-︒-︒-︒=︒,1804530105A BD '∠=︒-︒-︒=︒在A BD ' 中,1801806010515D DA B A BD ∠=︒-∠-∠=︒-︒-︒=''︒,∴D EBD ∠=∠,∴23EB ED ==,∴423A D A E DE ''=+=+,如图所示,当ABC 以点B 为旋转中心顺时针旋转45︒,过点D 作DF BC '⊥交BC '于点F ,在BFD △中,45BDF CBC ∠'=∠=︒,∴DF BF=在Rt DC F ' 中,30C '∠=︒∴3'3DF FC =∴323BC BF BF =+=∴33DF BF ==-∴2623DC DF '==-∴6232423A D C D A C ''''=-=--=-,综上所述,A D '的长度为423-或423+,故答案为:423-或423+.【点睛】本题考查了旋转的性质,勾股定理,含30度角的直角三角形的性质,熟练掌握旋转的性质,分类讨论是解题的关键.15.(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中,90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起,边BC 与EF 重合,CD 与AB 相交于点G (如图1),此时线段CG 的长是___________,现将DEF 绕点()C F 按顺时针方向旋转(如图2),边EF 与AB 相交于点H ,连结DH ,在旋转0︒到60︒的过程中,线段DH 扫过的面积是___________.【答案】6662-;1218318π-+【分析】如图1,过点G 作GH BC ⊥于H ,根据含30︒直角三角形的性质和等腰直角三角形的性质得出3BH GH =,GH CH =,然后由12BC =可求出GH 的长,进而可得线段CG 的长;如图2,将DEF 绕点C 顺时针旋转60︒得到11D E F ,1FE 与AB 交于1G ,连接1D D ,1AD ,22D E F 是DEF 旋转0︒到60︒的过程中任意位置,作1DN CD ⊥于N ,过点B 作1BM D D ⊥交1D D 的延长线于M ,首先证明1CDD 是等边三角形,点1D 在直线AB 上,然后可得线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积,求出DN 和BM ,然后根据线段DH 扫过的面积111121D DB CD D D DB D D D CD D S S S S S =+=-+ 弓形扇形列式计算即可.【详解】解:如图1,过点G 作GH BC ⊥于H ,∵3045ABC DEF DFE ∠=︒∠=∠=︒,,90GHB GHC ∠=∠=︒,∴3BH GH =,GH CH =,∵312BC BH CH GH GH =+=+=,∴636GH =-,∴()226366662CG GH ==⨯-=-;如图2,将DEF 绕点C 顺时针旋转60︒得到11D E F ,1FE 与AB 交于1G ,连接1D D ,由旋转的性质得:1160E CB DCD ∠=∠=︒,1CD CD =,∴1CDD 是等边三角形,∵30ABC ∠=︒,∴190CG B ∠=︒,∴112CG BC =,∵1CE BC =,∴1112CG CE =,即AB 垂直平分1CE ,∵11CD E 是等腰直角三角形,∴点1D 在直线AB 上,连接1AD ,22D E F 是DEF 旋转0︒到60︒的过程中任意位置,则线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积,∵12BC EF ==,∴2622DC DB BC ===,∴1162D C D D ==,作1DN CD ⊥于N ,则132ND NC ==,∴()()222211623236DN D D ND =-=-=,过点B 作1BM D D ⊥交1D D 的延长线于M ,则90M ∠=︒,∵160D DC ∠=︒,90CDB ∠=︒,∴118030BDM D DC CDB ∠=︒-∠-∠=︒,∴1322BM BD ==,∴线段DH 扫过的面积112D DB D D D S S =+ 弓形,111CD D D DB CD D S S S =-+ 扇形,()26062116236623236022π⋅=-⨯⨯+⨯⨯,1218318π=-+,故答案为:6662-,1218318π-+.【点睛】本题主要考查了旋转的性质,含30︒直角三角形的性质,二次根式的运算,解直角三角形,等边三角形的判定和性质,勾股定理,扇形的面积计算等知识,作出图形,证明点1D 在直线AB 上是本题的突破点,灵活运用各知识点是解题的关键.三、解答题16.(2023·北京·统考中考真题)在ABC 中、()045B C αα∠=∠=︒<<︒,AM BC ⊥于点M ,D 是线段MC 上的动点(不与点M ,C 重合),将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1,当点E 在线段AC 上时,求证:D 是MC 的中点;(2)如图2,若在线段BM 上存在点F (不与点B ,M 重合)满足DF DC =,连接AE ,EF ,直接写出AEF ∠的大小,并证明.【答案】(1)见解析(2)90AEF ∠=︒,证明见解析【分析】(1)由旋转的性质得DM DE =,2MDE α∠=,利用三角形外角的性质求出C DEC α∠=∠=,可得DE DC =,等量代换得到DM DC =即可;(2)延长FE 到H 使FE EH =,连接CH ,AH ,可得DE 是FCH V 的中位线,然后求出B ACH ∠∠=,设DM DE m ==,CD n =,求出2BF m CH ==,证明()SAS ABF ACH ≅ ,得到AF AH =,再根据等腰三角形三线合一证明AE FH ⊥即可.【详解】(1)证明:由旋转的性质得:DM DE =,2MDE α∠=,∵C α∠=,∴D DEC M E C α∠-∠∠==,∴C DEC ∠=∠,∴DE DC =,∴DM DC =,即D 是MC 的中点;(2)90AEF ∠=︒;证明:如图2,延长FE 到H 使FE EH =,连接CH ,AH ,∵DF DC =,∴DE 是FCH V 的中位线,∴DE CH ∥,2CH DE =,由旋转的性质得:DM DE =,2MDE α∠=,∴2FCH α∠=,∵B C α∠=∠=,∴ACH α∠=,ABC 是等腰三角形,∴B ACH ∠∠=,AB AC =,设DM DE m ==,CD n =,则2CH m =,CM m n =+,∴DF CD n ==,∴FM DF DM n m =-=-,∵AM BC ⊥,∴BM CM m n ==+,∴()2BF BM FM m n n m m =-=+--=,∴CH BF =,在ABF △和ACH 中,AB AC B ACH BF CH =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABF ACH ≅ ,∴AF AH =,∵FE EH =,∴AE FH ⊥,即90AEF ∠=︒.【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.17.(2023·四川自贡·统考中考真题)如图1,一大一小两个等腰直角三角形叠放在一起,M ,N 分别是斜边DE ,AB 的中点,2,4DE AB ==.(1)将CDE 绕顶点C 旋转一周,请直接写出点M ,N 距离的最大值和最小值;(2)将CDE 绕顶点C 逆时针旋转120︒(如图2),求MN 的长.【答案】(1)最大值为3,最小值为1(2)7【分析】(1)根据直角三角形斜边上的中线,得出,CM CN 的值,进而根据题意求得最大值与最小值即可求解;(2)过点N 作NP MC ⊥,交MC 的延长线于点P ,根据旋转的性质求得120MCN ∠=︒,进而得出60NCP ∠=︒,进而可得1CP =,勾股定理解Rt ,Rt NCP MCP ,即可求解.【详解】(1)解:依题意,112CM DE ==,122CN AB ==,当M 在NC 的延长线上时,,M N 的距离最大,最大值为123CM CN +=+=,当M 在线段CN 上时,,M N 的距离最小,最小值为211CN CN -=-=;(2)解:如图所示,过点N 作NP MC ⊥,交MC 的延长线于点P ,∵CDE 绕顶点C 逆时针旋转120︒,∴120BCE ∠=︒,∵45BCN ECM ∠=∠=︒,∴120MCN BCM ECM BCE ∠=∠-∠=∠=︒,∴60NCP ∠=︒,∴30CNP ∠=︒,∴112CP CN ==,在Rt CNP 中,223NP NC CP =-=,在Rt MNP △中,112MP MC CP =+=+=,∴22347MN NP MP =+=+=.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,旋转的性质,含30度角的直角三角形的性质,熟练掌握旋转的性质,勾股定理是解题的关键.18.(2023·四川达州·统考中考真题)如图,网格中每个小正方形的边长均为1,ABC 的顶点均在小正方形的格点上.(1)将ABC 向下平移3个单位长度得到111A B C △,画出111A B C △;(2)将ABC 绕点C 顺时针旋转90度得到222A B C △,画出222A B C △;(3)在(2)的运动过程中请计算出ABC 扫过的面积.【答案】(1)见解析(2)见解析(3)552π+【分析】(1)先作出点A 、B 、C 平移后的对应点1A ,1B 、1C ,然后顺次连接即可;(2)先作出点A 、B 绕点C 顺时针旋转90度的对应点2A ,2B ,然后顺次连接即可;(3)证明ABC 为等腰直角三角形,求出1522ABC S AB BC =⨯= ,()22901053602CAA S p p ⨯==扇形,根据旋转过程中ABC 扫过的面积等于ABC 的面积加扇形1CAA 的面积即可得出答案.【详解】(1)解:作出点A 、B 、C 平移后的对应点1A ,1B 、1C ,顺次连接,则111A B C △即为所求,如图所示:(2)解:作出点A 、B 绕点C 顺时针旋转90度的对应点2A ,2B ,顺次连接,则222A B C △即为所求,如图所示:(3)解:∵22125AB =+=,223110AC =+=,22125BC =+=,∴AB BC =,∵()()()222551010+==,∴222AB BC AC +=,∴ABC 为等腰直角三角形,∴1522ABC S AB BC =⨯= ,根据旋转可知,290ACA ∠=︒,∴()22901053602CAA S p p ⨯==扇形,∴在旋转过程中ABC 扫过的面积为2552ABC CAA S S S p +=+= 扇形.【点睛】本题主要考查了平移、旋转作图,勾股定理逆定理,扇形面积计算,解题的关键是作出平移或旋转后的对应点.19.(2023·辽宁·统考中考真题)在Rt ABC ∆中,90°ACB ∠=,CA CB =,点O 为AB 的中点,点D 在直线AB 上(不与点,A B 重合),连接CD ,线段CD 绕点C 逆时针旋转90°,得到线段CE ,过点B 作直线l BC ⊥,过点E 作EF l ⊥,垂足为点F ,直线EF 交直线OC 于点G .(1)如图,当点D 与点O 重合时,请直接写出线段AD 与线段EF 的数量关系;(2)如图,当点D 在线段AB 上时,求证:2CG BD BC +=;(3)连接DE ,CDE 的面积记为1S ,ABC 的面积记为2S ,当:1:3EF BC =时,请直接写出12S S 的值.【答案】(1)22EF AD =(2)见解析(3)59或179【分析】(1)可先证BCD BCE ≌,得到BD BE =,根据锐角三角函数,可得到BE 和EF 的数量关系,进而得到线段AD 与线段EF 的数量关系.(2)可先证ACD GEC ≌△△,得到DA CG =,进而得到CG BD DA BD AB +=+=,问题即可得证.(3)分两种情况:①点D 在线段AB 上,过点C 作CN 垂直于FG ,交FG 于点N ,过点E 作EM 垂直于BC ,交BC 于点M ,设EF a =,利用勾股定理,可用含a 的代数式表示EC ,根据三角形面积公式,即可得到答案.②点D 在线段BA 的延长线上,过点E 作EJ 垂直于BC ,交BC 延长线于点J ,令EF 交AC 于点I ,连接BE ,设EF b =,可证CDA CEB ≌,进一步证得EBJ 是等腰直角三角形,EJ BJ =,利用勾股定理,可用含b 的代数式表示EC ,根据三角形面积公式,即可得到答案【详解】(1)解:22EF AD =.理由如下:如图,连接BE .根据图形旋转的性质可知CD CE =.由题意可知,ABC 为等腰直角三角形,CD 为等腰直角三角形ABC 斜边AB 上的中线,45BCD ∴∠=︒,AD BD =.又90DCE ∠=︒,45BCE ∴∠=︒.在BCD △和BCE 中,CD CE BCD BCE BC BC =⎧⎪∠=∠⎨⎪=⎩BCD BCE ∴ ≌.=BD BE ∴,45CBE CBD ∠=∠=︒.45EBF ∴∠=︒.2·sin 2EF BE EBF BE ∴=∠=.22EF AD ∴=.(2)解:CO 为等腰直角三角形ABC 斜边AB 上的中线,AO BO ∴=.90ACD DCB BCE DCB ∠+∠=∠+∠=︒ ,ACD BCE ∠∠∴=.BC l ⊥ ,EF l ⊥,BC EF ∴∥.45G OCB ∴∠=∠=︒,GEC BCE ∠=∠.G A ∴∠=∠,ACD GEC ∠=∠.在ACD 和GEC 中,ACD GEC A G CD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩ACD GEC ∴≌△△.DA CG ∴=.2CG BD DA BD AB BC ∴+=+==.(3)解:当点D 在线段AB 延长线上时,不满足条件:1:3EF BC =,故分两种情况:①点D 在线段AB 上,如图,过点C 作CN 垂直于FG ,交FG 于点N ;过点E 作EM 垂直于BC ,交BC 于点M .设EF a =,则3BC AC a ==.根据题意可知,四边形BFEM 和CMEN 为矩形,GCN 为等腰直角三角形.EF BM a ∴==,2CM NE a ==.由(2)证明可知ACD GEC ≌△△,3AC GE a ∴==.NG NC a ∴==.NC EM a ∴==.根据勾股定理可知()222225CE EM CM a a a =+=+=,CDE 的面积1S 与ABC 的面积2S 之比()()221222115522119322CE a S S BC a ===②点D 在线段BA 的延长线上,过点E 作EJ 垂直于BC ,交BC 延长线于点J ,令EF 交AC 于点I ,连接BE ,由题意知,四边形FBJE ,FBCI 是矩形,∵90DCE ACB ∠=∠=︒∴DCE ACE ACB ACE∠-∠=∠-∠即DCA ECB∠=∠又∵CD CE =,CA CB=∴CDA CEB≌∴DAC EBC∠=∠而180********DAC CAB Ð=°-Ð=°-°=°∴135EBC ∠=︒18045EBJ EBC Ð=°-Ð=°∴EBJ 是等腰直角三角形,EJ BJ=设EF b =,则3BC IF b ==,EJ BJ CI b===∴4EI EF IF b=+=Rt CIE 中,2222(4)17CE CI EI b b b=+=+=CDE 的面积1S 与ABC 的面积2S 之比()()22122211171722119322CE b S S BC b ===【点睛】本题主要考查全等三角形的判定及性质、勾股定理以及图形旋转的性质,灵活利用全等三角形的判定及性质是解题的关键.20.(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板ABC 绕点A 逆时针旋转θ到达AB C ''△的位置,那么可以得到:AB AB '=,AC AC '=,BC B C ''=;BAC B AC ''∠=∠,ABC AB C ''∠=∠,ACB AC B ''∠=∠()刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键;故数学就是一门哲学.【问题解决】(1)上述问题情境中“()”处应填理由:____________________;(2)如图,小王将一个半径为4cm ,圆心角为60︒的扇形纸板ABC 绕点O 逆时针旋转90︒到达扇形纸板A B C '''的位置.①请在图中作出点O ;②如果=6cm BB ',则在旋转过程中,点B 经过的路径长为__________;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置,另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止,此时,两个纸板重叠部分的面积是多少呢?如图所示,请你帮助小李解决这个问题.【答案】问题解决(1)旋转前后的图形对应线段相等,对应角相等(2)①见解析;②32πcm 2问题拓展:288π3cm 33⎛⎫- ⎪⎝⎭【分析】问题解决(1)根据旋转性质得出旋转前后的图形对应线段相等,对应角相等;(2)①分别作BB '和AA '的垂直平分线,两垂直平分线的交点即为所求点O ;②根据弧长公式求解即可;问题拓展,连接PA ',交AC 于M ,连接PA ,PD ,AA ',由旋转得30PA B ''∠=︒,4PA PA '==,在Rt PAM 和Rt A DM ' 中求出A M '和DM 的长,可以求出A DP B DP B A P S S S ''''=- 阴影部分扇形,再证明ADP A DP ' ≌,即可求出最后结果.【详解】解:【问题解决】(1)旋转前后的图形对应线段相等,对应角相等(2)①下图中,点O 为所求②连接OB ,OB ',扇形纸板ABC 绕点O 逆时针旋转90︒到达扇形纸板A B C '''的位置,90BOB '∴∠=︒,OB OB '=,6cm BB '= ,设cm OB OB x '==,2226x x ∴+=,32cm OB OB '∴==,在旋转过程中,点B 经过的路径长为以点O 为圆心,圆心角为90︒,OB 为半径的所对应的弧长,∴点B 经过的路径长903232cm 1802ππ⨯⨯==;【问题拓展】解:连接PA ',交AC 于M ,连接PA ,PD ,AA '如图所示1302PAC BAC ∴∠=∠=︒.由旋转得30PA B ''∠=︒,4PA PA '==.在Rt PAM 中,sin 4sin 302A M PM PA PAM '==⋅∠=⨯︒=.在Rt A DM ' 中,1302DA M B A C ''''∠=∠=︒ ,243cos cos303A M A D DA M ''∴==='∠︒,1142332233DM A D '==⨯=.11243432233A DP S DM A P ''∴=⋅=⨯⨯=△.230π44π3603B A P S ''⨯⨯==扇形.44π333A DP B DP B A P S S S ''''∴=-=-△阴影部分扇形,在ADP △和A DP '△中,24233333AD AM DM A D '=-=-== ,又30PAD PA D '∠=∠=︒ ,PA PA '=,ADP A DP '∴ ≌.又PAC B A P S S ''= 扇形扇形,B DP CDP S S '∴=阴影部分阴影部分,24488=22π3π3cm 3333B DP S S '⎛⎫⎛⎫∴=⨯-=- ⎪ ⎪⎝⎭⎝⎭阴影部分阴影部分.【点睛】本题考查了旋转的性质,弧长公式,解直角三角形,三角形全等的性质与判定,解题的关键是抓住图形旋转前后的对应边相等,对应角相等,正确作出辅助线构造出直角三角形.21.(2023·浙江绍兴·统考中考真题)在平行四边形ABCD 中(顶点,,,A B C D 按逆时针方向排列),12,10,AB AD B ==∠为锐角,且4sin 5B =.(1)如图1,求AB 边上的高CH 的长.(2)P 是边AB 上的一动点,点,C D 同时绕点P 按逆时针方向旋转90︒得点,C D ''.①如图2,当点C '落在射线CA 上时,求BP 的长.②当AC D ''△是直角三角形时,求BP 的长.【答案】(1)8(2)①347BP =;②6BP =或82±【分析】(1)利用正弦的定义即可求得答案;(2)①先证明PQC CHP '△≌△,再证明AQC AHC '△∽△,最后利用相似三角形对应边成比例列出方程即可;②分三种情况讨论完成,第一种:C '为直角顶点;第二种:A 为直角顶点;第三种,D ¢为直角顶点,但此种情况不成立,故最终有两个答案.【详解】(1)在ABCD Y 中,10BC AD ==,在Rt BCH 中,4sin 1085CH BC B ==⨯=.(2)①如图1,作CH BA ⊥于点H ,由(1)得,226BH BC CH =-=,则1266AH =-=,作C Q BA '⊥交BA 延长线于点Q ,则90CHP PQC ∠'=∠=︒,∴90C PQ PC Q '∠+∠='︒.∵90C PQ CPH ∠+∠='︒∴PC Q CPH ∠=∠'.由旋转知PC PC '=,∴PQC CHP '△≌△.设BP x =,则8,6,4PQ CH C Q PH x QA PQ PA x ====-=-=-'.∵,C Q AB CH AB '⊥⊥,∴C Q CH '∥,∴AQC AHC '△∽△,∴C Q QA CH HA =',即6486x x --=,∴347x =,∴347BP =.②由旋转得,PCD PC D CD C D'''='△≌△,CD C D ⊥'',又因为AB CD ,所以C D AB ''⊥.情况一:当以C '为直角顶点时,如图2.∵C D AB ''⊥,∴C '落在线段BA 延长线上.∵PC PC ⊥',∴PC AB ⊥,由(1)知,8PC =,∴6BP =.情况二:当以A 为直角顶点时,如图3.设C D ''与射线BA 的交点为T ,作CH AB ⊥于点H .∵PC PC ⊥',∴90CPH TPC ∠'+∠=︒,∵C D AT ''⊥,∴90PC T TPC ∠'+∠='︒,∴CPH PC T ∠=∠'.又∵90,CHP PTC PC C P∠=∠=='︒',∴CPH PC T '△≌△,∴,8C T PH PT CH '===.设C T PH t '==,则6AP t =-,∴2AT PT PA t=-=+∵90,C AD C D AB ∠=︒''⊥'',∴ATD C TA '' ∽,∴AT C T TD TA='',∴2AT C T TD '=⋅',∴()2(2)12t t ι+=-,化简得2420t t -+=,解得22t =±,∴82BP BH HP =+=±.情况三:当以D ¢为直角顶点时,点P 落在BA 的延长线上,不符合题意.综上所述,6BP =或82±.【点睛】本题考查了平行四边形的性质,正弦的定义,全等的判定及性质,相似的判定及性质,理解记忆相关定义,判定,性质是解题的关键.22.(2023·四川南充·统考中考真题)如图,正方形ABCD 中,点M 在边BC 上,点E 是AM 的中点,连接ED ,EC .(1)求证:ED EC =;(2)将BE 绕点E 逆时针旋转,使点B 的对应点B '落在AC 上,连接MB '.当点M 在边BC 上运动时(点M 不与B ,C 重合),判断CMB ' 的形状,并说明理由.(3)在(2)的条件下,已知1AB =,当45DEB ∠'=︒时,求BM 的长.【答案】(1)见解析(2)等腰直角三角形,理由见解析(3)23BM =-【分析】(1)根据正方形的基本性质以及“斜中半定理”等推出EAD EBC ≌,即可证得结论;(2)由旋转的性质得EB EB AE EM '===,从而利用等腰三角形的性质推出90MB C '∠=︒,再结合正方形对角线的性质推出B M B C ''=,即可证得结论;(3)结合已知信息推出CME AMC ∽,从而利用相似三角形的性质以及勾股定理进行计算求解即可.【详解】(1)证:∵四边形ABCD 为正方形,∴90BAD ABC ∠=∠=︒,AD BC =,∵点E 是AM 的中点,∴EA EB =,∴EAB EBA ∠=∠,∴BAD EAB ABC EBA ∠-∠=∠-∠,即:EAD EBC ∠=∠,在EAD 与EBC 中,EA EB EAD EBC AD BC =⎧⎪∠=∠⎨⎪=⎩∴()SAS EAD EBC ≌,∴ED EC =;(2)解:'CMB 为等腰直角三角形,理由如下:由旋转的性质得:EB EB '=,∴EB AE EM '==,∴EAB EB A ''∠=∠,EMB EB M ''∠=∠,∵180EAB EB A EMB EB M ''''∠+∠+∠+∠=︒,∴90EB A EB M ''∠+∠=︒,即:90AB M '∠=︒,∴90MB C '∠=︒,∴9045B MC ACB '∠=︒-∠=︒,∴45B MC ACB '∠=∠=︒,∴B M B C ''=,∴'CMB 为等腰直角三角形;(3)解:如图所示,延长BE 交AD 于点F ,∵EAB EBA ∠=∠,EAB EB A ''∠=∠,∴2MEB EAB ∠=∠,2MEB EAB ''∠=∠,∴22290BEB MEB MEB EAB EAB BAB ''''∠=∠+∠=∠+∠=∠=︒,∵45DEB ∠'=︒,∴45DEF B EF DEB ''∠=∠-∠=︒,∵EAD EBC ≌,∴AED BEC ∠=∠,∵AEF BEM ∠=∠,∴45DEF CEM ∠=∠=︒,∵45ACM ∠=︒,∴CEM ACM ∠=∠,∵CME AMC ∠=∠,∴CME AMC ∽,∴CM EM AM CM=,∴2CM AM EM = ,∵12EM AM =,∴2212CM AM =,设BM x =,则1CM x =-,22221AM AB BM x =+=+,∴()()221112x x -=+,解得:123x =-,223x =+(不合题意,舍去),∴23BM =-.【点睛】本题考查正方形的性质,旋转的性质,全等三角形和相似三角形的判定与性质等,理解并熟练运用基本图形的证明方法和性质,掌握勾股定理等相关计算方式是解题关键.23.(2023·江苏扬州·统考中考真题)【问题情境】在综合实践活动课上,李老师让同桌两位同学用相同的两块含30︒的三角板开展数学探究活动,两块三角板分别记作ADB 和,90,30A D C ADB A D C B C ∠=∠=︒∠''''=∠=︒△,设2AB =.【操作探究】。
中考数学复习几何旋转解答题专题练习1.如图,在△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°能与△DEC重合,点F是边AC中点.(1)求证:△CFD≌△ABC;(2)连接BE,求证:四边形BEDF是平行四边形.2.如图,在Rt△ABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点C,A 的对应点分别为E,F.点E落在BA上,连接AF.(1)若∠BAC=40°,求∠BAF的度数;(2)若AC=8,BC=6,求AF的长.3.如图①,△ABC和△ECD都是等边三角形.(1)若B、C、E在同一条直线上,AC与BD相交于点N,AE与CD相交于点M,BD 与AE相交于点O,试判断AE与BD的数量关系为;∠AOB度数为;(2)将△ECD绕点C顺时针旋转,B、C、E不在一条直线上时,如图②,则(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.4.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A,B的对应点分别是点D,E.(1)如图①,当点E恰好在AC边上时,连接AD,求∠ADE的度数;(2)如图②,当α=60°时,若点F为AC边上的动点,当∠FBC为何值时,四边形BFDE 为平行四边形?请说出你的结论并加以证明.5.如图,在△ABC中,AB=,BC=3,∠B=45°,将△ABC绕点A按顺时针旋转一定角度得到△ADE.当点B的对应点D恰好落在BC边上时,求CD的长.6.如图,矩形ABCD中,BC=4,将矩形ABCD绕点C顺时针旋转得到矩形A'B'C'D'.当点B'恰好落在边AD上时,旋转角为α,连接BB'.若∠AB'B=75°,求旋转角α及AB的长.7.如图,在Rt△ABC中,∠C=90°,∠CBA=32°,如果△ABC绕点B顺时针旋转至△EBD,使点D落在AB边上,连接AE,求∠EAB的度数.8.如图,在正方形ABCD中,射线AE与边CD交于点E,将射线AE绕点A顺时针旋转,与CB的延长线交于点F,BF=DE,连接FE.(1)求证:AF=AE;(2)若∠DAE=30°,DE=2,直接写出△AEF的面积.9.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C′的位置,使得CC′∥AB,求∠CC'A的度数.10.如图,将△ABC绕点A逆时针旋转30°得到△AB′C′,且B′,C′两点分别与B,C两点对应,延长BC与B′C′边交于点E,求∠CEC′的度数.11.如图,Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转得到△AED,且点D在边BC上.(1)若∠DAC=50°,则∠ABE=度;(2)求证:BE⊥BC;(3)若点D是BC的中点,AC=2,求BE的值.12.如图,正方形ABCD的边长为4,连接对角线AC,点E为BC边上一点,将线段AE 绕点A逆时针旋转45°得到线段AF,点E的对应点F恰好落在边CD上,过F作FM⊥AC 于点M.(1)求证:BE=FM;(2)求BE的长度.13.如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,CQ,求证:AP=CQ.14.正方形ABCD中,点F为正方形ABCD内的点,△BFC绕着点B按逆时针方向旋转90°后与△BEA重合.(1)如图①,若正方形ABCD的边长为2,BE=1,FC=,求证:AE∥BF.(2)如图②,若点F为正方形ABCD对角线AC上的点(点F不与点A、C重合),试探究AE、AF、BF之间的数量关系并加以证明.15.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD,AC,DE相交于点P.(1)求证:△ADB是等边三角形;(2)直接写出∠APD的度数.16.已知:如图1,∠AOB=30°,∠BOC=∠AOC.(1)求∠AOC的度数;(2)如图2,若射线OP从OA开始绕点O以每秒旋转10的速度逆时针旋转,同时射线OQ从OB开始绕点O以每秒旋转6°的速度逆时针旋转;其中射线OP到达OC后立即改变运动方向,以相同速度绕O点顺时针旋转,当射线OQ到达OC时,射线OP,OQ同时停止运动,设旋转的时间为t秒,当∠POQ=10°时,试求t的值;(3)如图3,若射线OP从OA开始绕O点逆时针旋转一周,作OM平分∠AOP,ON 平分∠COP,试求在运动过程中,∠MON的度数是多少?(请直接写出结果)17.将两块全等的三角板按如图1所示摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中的△ABC按顺时针方向旋转45°得图2,A1C与AB交于点P1,A1B1与BC 交于点Q,求证:CP1=CQ;(2)在图2中,若AP1=2,求CQ的长.18.如图,将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,使点A的对应点C落在AB边上,过点D作DE∥AB,交AO的延长线于点E,求证:∠BCO=∠E.19.如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图②位置,使点G落在BC的延长线上,DE交BC于点L.已知旋转开始时,即图①位置∠CDG=37°,求正方形EFGH从图①位置旋转至图②位置时,旋转角的度数.(2)旋转至如图③位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL、EN、GM之间满足的数量关系,并给予证明.20.将正方形ABCD的边AB绕点A逆时针旋转至AB1,记旋转角为α,连接BB1,过点D 作DE垂直于直线BB1,垂足为点E,连接DB1,CE.(1)如图1,当α=60°时,△DEB1的形状为,连接BD,可求出的值为;(2)当0°<α<360°且α≠90°时,(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由.21.如图,在矩形ABCD中,AD=8,AB=6,将△ADC绕点A按顺时针旋转到△AEF(A,B,E在同一直线上),连接CF,求CF的大小.22.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,若AE=1,BE=.(1)求EF的长;(2)当EC=时,求∠AEB的度数.23.如图,在△ABC中,BA=BC,∠ABC=40°,将△ABC绕点B按逆时针方向旋转100°,得到△DBE,连接AD,CE交于点F.(1)求证:△ABD≌△CBE;(2)求∠AFC的度数.24.如图①,在等边三角形ABC中,点D、E分别在边AB、AC上,AD=AE,连接BE、CD,点M、N、P分别是BE、CD、BC的中点,连接DE、PM、PN、MN.(1)观察猜想:图①中△PMN是三角形(填“等腰”或“等边”);(2)探究证明:如图②,△ADE绕点A按逆时针方向旋转,其他条件不变,则△PMN 的形状是否发生改变?并说明理由.25.如图,将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,点B与点E对应,点E恰好落在AD边上,BH⊥CE交于点H,求证:CG=BH.26.如图,等边三角形ABC的外部有一点P,且∠BP A=30°,将AP绕点B逆时针旋转60°得到CQ,连接BQ.(1)求证:△ABP≌△CBQ;(2)若AP=4,BP=3,求P,C两点之间的距离.27.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,求BD的长.28.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.(1)求证:GE=FE;(2)若DF=3,求BE的长为.29.如图,△ABC是等腰三角形,其中AB=BC,将△ABC绕顶点B逆时针旋转50°到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别相交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=50°时,判断四边形A1BCE的形状并说明理由.30.在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,猜想P A和DC的数量关系并说明理由;(2)如图2,当α=120°时,猜想P A和DC的数量关系并说明理由.31.如图1,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠EDF=36°,∠ABC =40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,记∠ADF为α(0<α<180°),在旋转过程中:(1)如图2,当∠α=时,DE∥BC,当∠α=时,DE⊥BC;(2)如图3,当顶点C在△DEF内部时,边DF、DE分别交BC、AC的延长线于点M、N.①此时∠α的度数范围是;②∠1与∠2度数的和是否变化?若不变,求出∠1与∠2度数和;若变化,请说明理由.③若使得∠2≥2∠1,求∠α的度数范围.32.如图1,将三角板ABC与三角板ADE摆放在一起;如图2,其中∠ACB=30°,∠DAE =45°,∠BAC=∠D=90°.固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).操作发现:(1)在旋转过程中,当α为度时,AD∥BC,当α为度时,AD⊥BC;(2)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;拓展应用:当0°<α<45°时,连接BD,利用图3探究∠BDE+∠CAE+∠DBC值的大小变化情况,并说明理由.33.在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点B逆时针旋转一个角度α后得到△DBE,点A,C的对应点分别为点D,E.(1)如图1,若点D恰好落在边BC的延长线上,连接CE,求∠DEC的度数.(2)如图2,若α=60°,F为BD的中点,连接CD,CF,EF,请判断四边形CDEF是什么特殊的四边形,并说明理由.34.如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)试判断AD与OD的位置关系,并说明理由;(3)若OB=2,OC=3,求AO的长(直接写出结果).参考答案1.如图,在△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°能与△DEC重合,点F是边AC中点.(1)求证:△CFD≌△ABC;(2)连接BE,求证:四边形BEDF是平行四边形.【解答】证明:(1)∵点F是边AC中点,∴CF=AC,∵∠BCA=30°,∴BA=AC,∠A=60°,∴AB=CF,∵将△ABC绕点C顺时针旋转60°得到△DEC,∴AC=CD,∠ACD=60°,∴∠ACB=∠DCE,在△CFD和△ABC中,,∴△CFD≌△ABC(SAS);(2)延长BF交CE于点G,由(1)得,FC=BF,∴∠BCF=∠FBC=30°,∵∠BCE=60°,∴∠BCE+∠CBG=∠BGE=90°,∵∠DEC=∠ABC=90°∴∠BGE=∠DEC,∴BF∥ED,∵BF=AC=AB,AB=DE,∴BF=DE,∴四边形BEDF是平行四边形.2.如图,在Rt△ABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点C,A 的对应点分别为E,F.点E落在BA上,连接AF.(1)若∠BAC=40°,求∠BAF的度数;(2)若AC=8,BC=6,求AF的长.【解答】解:(1)在Rt△ABC中,∠C=90°,∠BAC=40°,∴∠ABC=50°,∵将△ABC绕着点B逆时针旋转得到△FBE,∴∠EBF=∠ABC=50°,AB=BF,∴∠BAF=∠BF A=(180°﹣50°)=65°;(2)∵∠C=90°,AC=8,BC=6,∴AB=10,∵将△ABC绕着点B逆时针旋转得到△FBE,∴BE=BC=6,EF=AC=8,∴AE=AB﹣BE=10﹣6=4,∴AF===4.3.如图①,△ABC和△ECD都是等边三角形.(1)若B、C、E在同一条直线上,AC与BD相交于点N,AE与CD相交于点M,BD 与AE相交于点O,试判断AE与BD的数量关系为AE=BD;∠AOB度数为60°;(2)将△ECD绕点C顺时针旋转,B、C、E不在一条直线上时,如图②,则(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.【解答】解:(1)∵△ABC是等边三角形,∴AC=BC,∠BAC=∠ACB=60°,∵△ECD是等边三角形,∴CE=CD,∠DCE=60°,∴∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,在△ABO中,∠AOB=180°﹣(∠BAO+∠ABO)=180°﹣(∠BAO+∠CBO+∠ABC)=180°﹣(∠BAC+∠ABC)=180°﹣(60°+60°)=60°,∴∠AOB=60°,故答案为:AE=BD,60°;(2)成立.证明:∵△ABC和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,又∵∠ANO=∠BNC,∴180°﹣∠CAE﹣∠ANO=180°﹣∠CBD﹣∠BNC,∴∠AOB=∠ACB=60°.4.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A,B的对应点分别是点D,E.(1)如图①,当点E恰好在AC边上时,连接AD,求∠ADE的度数;(2)如图②,当α=60°时,若点F为AC边上的动点,当∠FBC为何值时,四边形BFDE 为平行四边形?请说出你的结论并加以证明.【解答】解:(1)∵将△ABC绕点C顺时针旋转一定的角度α得到△DEC,E点在AC 上,∴CA=CD,∠ECD=∠BCA=30°,∴∠CAD=∠CDA==75°,又∵∠DEC=∠ABC=90°,∴∠ADE=90°﹣75°=15°;(2)∠FBC=30°时,四边形BFDE为平行四边形,∴∠FBC=∠ACB=30°,∴∠ABF=∠A=60°,∴BF=CF=AF,∴△ABF是等边三角形,∴BF=AB,∵将△ABC绕点C顺时针旋转60°得到△DEC,∴DE=AB,△BCE是等边三角形,∠DEC=∠ABC=90°,∴∠CBE=∠BEC=60°,∴∠EBF=∠EBC﹣∠FBC=30°,∴∠DEB+∠EBF=180°,∴DE=BF,DE∥BF,∴四边形BFDE为平行四边形.5.如图,在△ABC中,AB=,BC=3,∠B=45°,将△ABC绕点A按顺时针旋转一定角度得到△ADE.当点B的对应点D恰好落在BC边上时,求CD的长.【解答】解:∵由旋转的性质可知AD=AB=,∴∠B=∠BDA=45°.∴∠DAB=90°.∴DB==2.∴CD=BC﹣DB=3﹣2=1,故DC的长为1.6.如图,矩形ABCD中,BC=4,将矩形ABCD绕点C顺时针旋转得到矩形A'B'C'D'.当点B'恰好落在边AD上时,旋转角为α,连接BB'.若∠AB'B=75°,求旋转角α及AB的长.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠CBB'=∠AB'B=75°,由旋转的性质得:CB=CB',∴∠CB'B=∠CBB'=75°,∴∠BCB'=180°﹣75°﹣75°=30°,即旋转角α为30°;作B'E⊥BC于E,如图所示:则AB=B'E=CB'=2.7.如图,在Rt△ABC中,∠C=90°,∠CBA=32°,如果△ABC绕点B顺时针旋转至△EBD,使点D落在AB边上,连接AE,求∠EAB的度数.【解答】解:由旋转可知:∠EBA=∠CBA=32°,AB=EB,∴∠EAB=∠AEB=(180°﹣32°)=74°.8.如图,在正方形ABCD中,射线AE与边CD交于点E,将射线AE绕点A顺时针旋转,与CB的延长线交于点F,BF=DE,连接FE.(1)求证:AF=AE;(2)若∠DAE=30°,DE=2,直接写出△AEF的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°,在△ABF与△ADE中,,∴△ABF≌△ADE(SAS),∴AF=AE;(2)解:由(1)知,△ABF≌△ADE,∴∠BAF=∠DAE,∴∠BAF+∠BAE=∠DAE+∠BAE=90°,∴∠F AE=90°,∴△AEF是等腰直角三角形,在Rt△ADE中,∠D=90°,∠DAE=30°,DE=2,∴AE=2DE=4,∴△AEF的面积=×4×4=8.9.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C′的位置,使得CC′∥AB,求∠CC'A的度数.【解答】解:∵CC′∥AB,∴∠ACC′=∠BAC=70°,∵△ABC绕点A旋转到△AB'C′的位置,∴AC′=AC,∴∠CC′A=∠ACC′=70°,10.如图,将△ABC绕点A逆时针旋转30°得到△AB′C′,且B′,C′两点分别与B,C两点对应,延长BC与B′C′边交于点E,求∠CEC′的度数.【解答】解:设BE与AB′交于F,∵将△ABC绕点A逆时针旋转30°得到△AB′C′,∴∠B′=∠B,∠BAB′=30°,∵∠AFB=∠B′FE,∴∠BEB′=∠BAB′=30°,∴∠CEC′=180°﹣∠BEB′=150°.11.如图,Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转得到△AED,且点D在边BC上.(1)若∠DAC=50°,则∠ABE=65度;(2)求证:BE⊥BC;(3)若点D是BC的中点,AC=2,求BE的值.【解答】解:(1)∵将△ABC绕点A顺时针旋转得到△AED,∴AB=AE,∠DAE=∠CAB,∴∠AEB=∠ABE,∠EAB=∠CAD=50°,∴∠ABE==65°,故答案为:65;(2)证明:∵将△ABC绕点A顺时针旋转得到△AED,∴AD=AC,∴∠ADC=∠C=x,∴∠DAC=180°﹣2x,由旋转的性质得∠EAB=∠DAC=180°﹣2x,AE=AB,∴∠EBA=,∵∠BAC=90°,∴∠ABC=90°﹣x,∴∠EBC=∠EBA+∠ABC=x+(90°﹣x)=90°,即BE⊥BC;(3)由旋转的性质得AD=AC=2,∵∠BAC=90°,点D是BC的中点,∴BD=DC=AD=2,∴BC=4,∵DE=BC=4,∴BE==2.12.如图,正方形ABCD的边长为4,连接对角线AC,点E为BC边上一点,将线段AE 绕点A逆时针旋转45°得到线段AF,点E的对应点F恰好落在边CD上,过F作FM⊥AC 于点M.(1)求证:BE=FM;(2)求BE的长度.【解答】(1)证明:∵将线段AE绕点A逆时针旋转45°得到线段AF,∴AE=AF,∠EAF=∠CAB=45°,∴∠F AC=∠EAB,在△ABE和△AMF中,∴△ABE≌△AMF(AAS),∴BE=FM;(2)∵四边形ABCD是正方形,∴AC=AB=4,∠ACD=45°,∵将线段AE绕点A逆时针旋转45°得到线段AF,∴AM=AB=4,∴CM=4﹣4,∵FM⊥AC,∠ACD=45°,∴∠ACD=∠CFM,∴FM=CM=4﹣4,∴BE=4﹣4.13.如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,CQ,求证:AP=CQ.【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将BP绕点B顺时针旋转90°到BQ,∴BP=BQ,∠PBQ=90°,∴∠PBQ=∠ABC,∴∠ABP=∠CBQ,在△ABP和△CBQ中,,∴△ABP≌△CBQ(SAS),∴AP=CQ.14.正方形ABCD中,点F为正方形ABCD内的点,△BFC绕着点B按逆时针方向旋转90°后与△BEA重合.(1)如图①,若正方形ABCD的边长为2,BE=1,FC=,求证:AE∥BF.(2)如图②,若点F为正方形ABCD对角线AC上的点(点F不与点A、C重合),试探究AE、AF、BF之间的数量关系并加以证明.【解答】(1)证明:∵△BFC绕着点B按逆时针方向旋转90°后与△BEA重合,∴△BFC≌△BEA,∴BE=BF=1,∠EBF=∠ABC=90°,∠AEB=∠BFC,∵,BC2=22=4,∴BF2+FC2=BC2,∴∠BFC=90°=∠AEB,∴∠AEB+∠EBF=180°,∴AE∥BF;(2)解:AE2+AF2=2BF2,理由如下:∵AC是正方形ABCD的角平分线,∴∠BCA=∠BAC=45°,∴∠EAF=45°+45°=90°,∴AE2+AF2=EF2,∵△BFC绕着点B按逆时针方向旋转90°后与△BEA重合,∴BE=BF,∠EBF=90°,∴2BF2=EF2,∴AE2+AF2=2BF2.15.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD,AC,DE相交于点P.(1)求证:△ADB是等边三角形;(2)直接写出∠APD的度数60°.【解答】解:(1)∵将△ABC绕点B顺时针旋转60°得△DBE,∴AB=DB,∠ABD=60°,∴△ADB是等边三角形;(2)如图:∵点C的对应点E恰好落在AB的延长线上,∴∠ABD=∠BDE+∠E,由(1)知△ADB是等边三角形,∴∠BDE+∠E=∠ABD=60°,∵将△ABC绕点B顺时针旋转60°得△DBE,∴∠BDE=∠BAP,∴∠BAP+∠E=60°,∴∠APD=∠BAP+∠E=60°;故答案为:60°.16.已知:如图1,∠AOB=30°,∠BOC=∠AOC.(1)求∠AOC的度数;(2)如图2,若射线OP从OA开始绕点O以每秒旋转10的速度逆时针旋转,同时射线OQ从OB开始绕点O以每秒旋转6°的速度逆时针旋转;其中射线OP到达OC后立即改变运动方向,以相同速度绕O点顺时针旋转,当射线OQ到达OC时,射线OP,OQ同时停止运动,设旋转的时间为t秒,当∠POQ=10°时,试求t的值;(3)如图3,若射线OP从OA开始绕O点逆时针旋转一周,作OM平分∠AOP,ON 平分∠COP,试求在运动过程中,∠MON的度数是多少?(请直接写出结果)【解答】解:(1)∠BOC=∠AOC,∠BOC+∠AOB=∠AOC,∴∠AOB=∠AOC,∵∠AOB=30°,∴∠AOC=120°;(2)由(1)知,∠AOC=120°,∠BOC=90°,①OP逆时针运动时,即0≤t≤12时,由OP,OQ的运动可知,∠AOP=10°t,∠BOQ=6°t,OP,OQ相遇前,如图2(1),∠AOQ=∠AOP+∠POQ=∠AOB+∠BOQ,即10°t+10°=30°+6°t,解得t=5,OP,OQ相遇后,如图2(2),∠AOP=∠AOB+∠BOQ+∠POQ,即10°t=30°+6°t+10°,解得t=10;②OP顺时针旋转时,∠COP=10°t﹣120°,∠BOQ=6°t,OP,OQ相遇前,如图(3),∠BOC=∠COP+∠BOQ+∠POQ,即90°=10°t﹣120°+6°t+10°,解得t=12.5,OP,OQ相遇后,如图(4),∠BOC=∠COP+∠BOQ﹣∠POQ,即90°=10°t﹣120°+6°t ﹣10°,解得t=13.75,综上,当t的值为5,10,12.5或13.75时,∠POQ=10°.(3)由(1)知∠AOC=120°,根据射线OP的运动,需要分四种情况,①当射线OP与OA重合前,如图3(1),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠POM+∠PON=∠AOP+∠COP=∠AOC=60°;②当射线OP与OA重合后,∠AOP=180°前,如图3(2),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠POM﹣∠PON=∠AOP﹣∠COP=∠AOC=60°;③∠CON=180°前,如图3(3),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠POM+∠PON=∠AOP+∠COP=(360°﹣∠AOC)=120°;④OP与OQ重合前,如图3(4),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠PON﹣∠POM=∠COP+∠AOP=∠AOC=60°;综上,∠MON的度数为60°或120°.17.将两块全等的三角板按如图1所示摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中的△ABC按顺时针方向旋转45°得图2,A1C与AB交于点P1,A1B1与BC 交于点Q,求证:CP1=CQ;(2)在图2中,若AP1=2,求CQ的长.【解答】(1)证明:∵∠B1CB=45°,∠B1CA1=90°,∴∠B1CQ=∠BCP1=45°;又B1C=BC,∠B1=∠B,∴△B1CQ≌△BCP1(ASA),∴CQ=CP1;(2)解:如图:作P1D⊥AC于D,∵∠A=30°,∴P1D=AP1;∵∠P1CD=45°,∴=sin45°=,∴CP1=P1D=AP1;又AP1=2,CQ=CP1,∴CQ=.18.如图,将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,使点A的对应点C落在AB边上,过点D作DE∥AB,交AO的延长线于点E,求证:∠BCO=∠E.【解答】证明:∵将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,∴AO=CO,∴∠A=∠ACO,∵AB∥DE,∴∠A+∠E=180°,又∵∠ACO+∠BCO=180°,∴∠BCO=∠E.19.如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图②位置,使点G落在BC的延长线上,DE交BC于点L.已知旋转开始时,即图①位置∠CDG=37°,求正方形EFGH从图①位置旋转至图②位置时,旋转角的度数.(2)旋转至如图③位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL、EN、GM之间满足的数量关系,并给予证明.【解答】解:(1)由图①知,∠ADB=∠DBC=37°,如图②,连接BD,则BD=DG,∴∠DGB=∠DBG=37°,∴∠CDG=90°﹣∠DGC=90°﹣37°=53°,∴旋转角为:53°﹣37°=16°;(2)DL=EN+GM,理由如下:过点G作GK∥BM,交DE于K,∵四边形EFGD是正方形,∴∠DEF=∠GDE,DE=DG,∴∠EDN=∠DGK,∴△DKG≌△END(ASA),∴EN=DK,∵GK∥ML,KL∥GM,∴四边形KLMG是平行四边形,∴GM=KL,∴DL=EN+GM.20.将正方形ABCD的边AB绕点A逆时针旋转至AB1,记旋转角为α,连接BB1,过点D 作DE垂直于直线BB1,垂足为点E,连接DB1,CE.(1)如图1,当α=60°时,△DEB1的形状为等腰直角三角形,连接BD,可求出的值为;(2)当0°<α<360°且α≠90°时,(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由.【解答】解:(1)如图1,∵AB绕点A逆时针旋转至AB′,∴AB=AB',∠BAB'=α=60°,∴△ABB'是等边三角形,∴∠BB'A=60°,∴∠DAB'=∠BAD﹣∠BAB'=90°﹣60°=30°,∵AB'=AB=AD,∴∠AB'D=∠ADB',∴∠AB'D==75°,∴∠DB'E=180°﹣60°﹣75°=45°,∵DE⊥B'E,∴∠B'DE=90°﹣45°=45°,∴△DEB'是等腰直角三角形;连接BD,∵四边形ABCD是正方形,∴∠BDC=45°,∴,同理,∴,∵∠BDB'+∠B'DC=45°,∠EDC+∠B'DC=45°,∴∠BDB'=∠EDC,∴△BDB'∽△CDE,∴==,故答案为:等腰直角三角形,;(3)(1)中的两个结论仍然成立.理由如下:连接BD,∵AB=AB',∠BAB'=α,∴∠AB'B=90°﹣,∵∠B'AD=α﹣90°,AD=AB',∴∠AB'D=135°﹣,∴∠EB'D=∠AB'D﹣∠AB'B=135°﹣﹣(90°﹣)=45°,∵DE⊥BB',∴∠EDB'=∠EB'D=45°,∴△DEB'是等腰直角三角形;∴=,∵四边形ABCD是正方形,∴,∠BDC=45°,∴,∵∠EDB'=∠BDC,∴∠EDB'+∠EDB=∠BDC+∠EDB,即∠B'DB=∠EDC,∴△B'DB∽△EDC,∴==,21.如图,在矩形ABCD中,AD=8,AB=6,将△ADC绕点A按顺时针旋转到△AEF(A,B,E在同一直线上),连接CF,求CF的大小.【解答】解:∵AD=8,AB=6,∠D=90°,∴AC===10,∵△ADC按逆时针方向绕点A旋转到△AEF,∴∠EAF=∠DAC,AF=AC=10,∴∠EAF+∠EAC=∠DAC+∠EAC,∴∠F AC=∠BAD,又∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠F AC=90°,∴△F AC是等腰直角三角形,∴CF=AC=10.22.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,若AE=1,BE=.(1)求EF的长;(2)当EC=时,求∠AEB的度数.【解答】解:(1)∵△ABE绕点B顺时针旋转90°得到△CBF,∴△ABE≌△CBF,∴BE=BF=,AE=CF=1,∠EBF=90°,∠AEB=∠BFC,∴△BEF为等腰直角三角形,∴EF=BE=2;(2)在△CEF中,CE=,CF=1,EF=2,∵CF2+EF2=12+22=5,CE2=5,∴CF2+EF2=CE2,∴△CEF为直角三角形,∴∠EFC=90°,∴∠BFC=∠BFE+∠CFE=135°,∴∠AEB=135°.23.如图,在△ABC中,BA=BC,∠ABC=40°,将△ABC绕点B按逆时针方向旋转100°,得到△DBE,连接AD,CE交于点F.(1)求证:△ABD≌△CBE;(2)求∠AFC的度数.【解答】(1)证明:∵△ABC绕点B按逆时针方向旋转100°,∴∠ABC=∠DBE=40°,∴∠ABD=∠CBE=100°,又∵BA=BC,∴AB=BC=BD=BE,在△ABD与△CBE中,,∴△ABD≌△CBE(SAS).(2)解:∵∠ABD=∠CBE=100°,BA=BC=BD=BE,∴∠BAD=∠ADB=∠BCE=∠BEC=40°.∵∠ABE=∠ABD+∠DBE=140°,∴∠AFE=360°﹣∠ABE﹣∠BAD﹣∠BEC=140°,∴∠AFC=180°﹣∠AFE=40°.24.如图①,在等边三角形ABC中,点D、E分别在边AB、AC上,AD=AE,连接BE、CD,点M、N、P分别是BE、CD、BC的中点,连接DE、PM、PN、MN.(1)观察猜想:图①中△PMN是等边三角形(填“等腰”或“等边”);(2)探究证明:如图②,△ADE绕点A按逆时针方向旋转,其他条件不变,则△PMN 的形状是否发生改变?并说明理由.【解答】解:(1)结论:△PMN是等边三角形.理由:如图1中,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∵AD=AE,∴BD=EC,∵PB=PC,CN=ND,BM=EM,∴PN∥BD,PM∥EC,PN=BD,PM=EC,∴PM=PN,∠NPC=∠ABC=60°,∠MPB=∠ACB=60°,∴∠MPN=60°,∴△PMN是等边三角形,故答案为等边.(2)△PMN的形状不发生改变,仍为等边三角形,理由如下:如图2中,连接BD,CE.由旋转可得∠BAD=∠CAE,∵△ABC是等边三角形,∴AB=AC,∠ACB=∠ABC=60°又∵AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵M是BE的中点,P是BC的中点,∴PM是△BCE的中位线,∴PM=CE,且PM∥CE.同理可证PN=BD且PN∥BD,∴PM=PN,∠MPB=∠ECB,∠NPC=∠DBC,∴∠MPB+∠NPC=∠ECB+∠DBC=(∠ACB+∠ACE)+(∠ABC﹣∠ABD)=∠ACB+∠ABC=120°,∴∠MPN=60°,∴△PMN是等边三角形.25.如图,将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,点B与点E对应,点E恰好落在AD边上,BH⊥CE交于点H,求证:CG=BH.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,AB=CD,∴∠DEC=∠BCH,∵∠D=90°,BH⊥AC,∴∠D=∠BHC,由旋转得,CE=CB,CD=CG,在△EDC和△CHB中,,∴△EDC≌△CHB(AAS),∴BH=CD=CG.26.如图,等边三角形ABC的外部有一点P,且∠BP A=30°,将AP绕点B逆时针旋转60°得到CQ,连接BQ.(1)求证:△ABP≌△CBQ;(2)若AP=4,BP=3,求P,C两点之间的距离.【解答】解:(1)设CQ与AP交于D点,AB与CQ交于E点,∵将AP绕点B逆时针旋转60°得到CQ,∴AP=CQ,∠ADC=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠ADC=∠ABC,∵∠AED=∠BEC,∴∠BAP=∠BCQ,在△ABP与△CBQ中,∴△ABP≌△CBQ(SAS),(2)连接PQ,PC,由△ABP≌△CBQ得:PB=BQ,∠PBA=∠CBQ,∠BP A=∠BQC=30°,QC=AP=4,∴∠QBP=∠ABC=60°,∴△PBQ为等边三角形,∴∠PQB=60°,PQ=BQ=3,∴∠PQC=∠PQB+∠BQC=60°+30°=90°,∴PC2=PQ2+QC2,∴PC===5.27.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,求BD的长.【解答】解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD==.∴BD的长为.28.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.(1)求证:GE=FE;(2)若DF=3,求BE的长为2.【解答】(1)证明:∵将△ADF绕点A顺时针旋转90°得到△ABG,∴△ADF≌△ABG,∴DF=BG,∠DAF=∠BAG,∵∠DAB=90°,∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠BAG+∠EAB=45°,∴∠EAF=∠EAG,在△EAG和△EAF中,,∴△EAG≌△EAF(SAS),∴GE=FE,(2)解:设BE=x,则GE=BG+BE=3+x,CE=6﹣x,∴EF=3+x,∵CD=6,DF=3,∴CF=3,∵∠C=90°,∴(6﹣x)2+32=(3+x)2,解得,x=2,即BE=2,29.如图,△ABC是等腰三角形,其中AB=BC,将△ABC绕顶点B逆时针旋转50°到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别相交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=50°时,判断四边形A1BCE的形状并说明理由.【解答】(1)证明:∵AB=BC,∴∠A=∠C,∵△A1BC1是由△ABC绕顶点B逆时针旋转而得,∴∠A=∠A1=∠C,∠A1BD=∠CBC1,AB=A1B,在△BCF和△BA1D中,,∴△BCF≌△BA1D(ASA);(2)解:四边形A1BCE是菱形.∵△ABC是等腰三角形,∠C=50°,∴∠A=∠C1=∠C=50°,又∵△BCF≌△BA1D,∴∠CBF=∠A1BD=50°,∴∠C1=∠CBF,∠A=∠A1BD,∴A1E∥BC,A1B∥EC,即四边形A1BCE是平行四边形,又∵A1B=BC,∴四边形A1BCE是菱形.30.在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,猜想P A和DC的数量关系并说明理由;(2)如图2,当α=120°时,猜想P A和DC的数量关系并说明理由.【解答】(1)解:P A=DC,理由如下:如图1中,∵将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,∴PB=PD,∵AB=AC,PB=PD,∠BAC=∠BPD=60°,∴△ABC,△PBD是等边三角形,∴∠ABC=∠PBD=60°,∴∠PBA=∠DBC,在△PBA和△DBC中,,∴△PBA≌△DBC(SAS),∴P A=DC;(2)解:CD=P A;理由如下:如图2中,∵AB=AC,PB=PD,∠BAC=∠BPD=120°,∴BC=2BA•cos30°=BA,BD=2BP•cos30°=BP,∴,∵∠ABC=∠PBD=30°,∴∠ABP=∠CBD,∴△CBD∽△ABP,∴=,∴CD=P A.31.如图1,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠EDF=36°,∠ABC =40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,记∠ADF为α(0<α<180°),在旋转过程中:(1)如图2,当∠α=4°时,DE∥BC,当∠α=94°时,DE⊥BC;(2)如图3,当顶点C在△DEF内部时,边DF、DE分别交BC、AC的延长线于点M、N.①此时∠α的度数范围是49°<α<85°;②∠1与∠2度数的和是否变化?若不变,求出∠1与∠2度数和;若变化,请说明理由.③若使得∠2≥2∠1,求∠α的度数范围.【解答】解:(1)当DE∥BC时,如图(1),∵DE∥BC,∴∠EDA=∠B=40°,∵∠FDE=36°,∴∠α=∠EDA﹣∠FDE=40°﹣36°=4°,∴∠α=4°时,DE∥BC.当DE⊥BC时,如图(2),∵DE⊥BC,∴∠BGD=90°,∵∠B=40°,∠GDA是△GDB的一个外角,∴∠GDA=∠B+∠BGD=40°+90°=130°,∵∠EDF=36°,∴∠α=∠GDA﹣∠FDE=130°﹣36°=94°,∴∠α=94°时,DE⊥BC.故答案为:4°;94°.(2)①∵∠ACB=90°,CD平分∠ACB,∴∠BCD=45°,∵∠ABC=40°,∴∠ADC=∠ABC+∠BCD=40°+45°=85°,当ED经过点C时,∠α=∠ADC﹣∠EDF=85°﹣36°=49°,当FD经过点C时,∠α=∠ADC=85°,∴顶点C在△DEF内部时,49°<α<85°.∠1与∠2度数的和不发生变化,理由如下:延长DC至点H,∵∠NCH、∠MCH分别是△NCD和△MCD的外角,∴∠NCH=∠2+∠NDC,∠MCH=∠1+∠MDC,∴∠NCH+∠MCH=∠2+∠1+∠NDC+∠MDC,∴∠NCM=∠1+∠2+∠NDM,∵∠NCM=∠ACB=90°,∠NDM=∠FDE=36°,∴90°=∠1+∠2+36°,∴∠1+∠2=54°.③∵∠ABC=40°,∠ACB﹣90°,∴∠A=180°﹣40°﹣90°=50°,∵∠ADF是△MBD的外角∴∠α=∠ABC+∠1=40°+∠1,∵∠2≥2∠1,∠1+∠2=54°,∴54°﹣∠1≥2∠1,∴∠1≤18°,∴α≤58°,又∵49°<α<85°,∴49°<α≤58°.32.如图1,将三角板ABC与三角板ADE摆放在一起;如图2,其中∠ACB=30°,∠DAE =45°,∠BAC=∠D=90°.固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).操作发现:(1)在旋转过程中,当α为15度时,AD∥BC,当α为105度时,AD⊥BC;(2)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;拓展应用:当0°<α<45°时,连接BD,利用图3探究∠BDE+∠CAE+∠DBC值的大小变化情况,并说明理由.【解答】解:(1)如图(1),记DE与AC的交点为点F,DE与BC的交点为点G,∵AD∥BC,∴∠DAF=∠C=30°,∵∠DAE=45°,∴∠CAE=15°,即α=15°,如图(2),记AD与BC的交点为F,∵AD⊥BC,∴∠ADF=90°,∴∠DAC=180°﹣∠AFC﹣∠C=180°﹣90°﹣30°=60°,∴∠CAE=∠DAC+∠EAD=60°+45°=105°,即α=105°,故答案为:15,105.(2)①当AD∥BC时,如图1所示,由(1)得,α=15°;②当DE∥BC时,如图2所示,由(1)得,AD⊥BC,∴∠AFC=90°,∵∠ADE=90°,∴DE∥BC,∴α=105°;③当DE∥AB时,如图3所示,α=45°;④当DE∥AC时,如图4所示,α=∠EAD+∠BAC=45°+90°=135°;⑤∠EAC+∠C=180°,∵∠C=30°,∴∠EAC=150°,即α=150°;综上所述:旋转角α的所有可能的度数是:15°,45°,105°,135°,150°.拓展应用:当0°<α<45°,∠BDE+∠CAE+∠DBC=105°,保持不变,理由如下:如图6,设BD分别交AC、AE于点M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180°,∵∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,∴∠E+∠BDE+∠CAE+∠C+∠DBC=180°,∵∠C=30°,∠E=45°,∴∠BDE+∠CAE+∠DBC=105°.33.在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点B逆时针旋转一个角度α后得到△DBE,点A,C的对应点分别为点D,E.(1)如图1,若点D恰好落在边BC的延长线上,连接CE,求∠DEC的度数.(2)如图2,若α=60°,F为BD的中点,连接CD,CF,EF,请判断四边形CDEF是什么特殊的四边形,并说明理由.【解答】解:(1)如图1,∵∠ACB=90°,∠ABC=30°,∴∠A=60°,由旋转得∠D=∠A=60°,BE=BC,∠DBE=∠ABC=30°,∴∠BCE=∠BEC=(180°﹣30°)=75°,∴∠DEC=∠BCE﹣∠D=75°﹣60°=15°.(2)四边形CDEF是菱形,理由如下:如图2,∵△ABC绕点B逆时针旋转一个角度α得到△DBE,∴∠CBE=α=60°,∠DBE=∠ABC=30°,∠DEB=∠ACB=90°,∴∠DBC=30°,∴∠DBE=∠DBC,∵BD=BD,BE=BC,∴△DBE≌△DBC(SAS),∴∠BED=∠BCD=90°,∴CD=BD,ED=BD,∵F为BD的中点,∴CF=BD,EF=BD,∴CD=ED=CF=EF,∴四边形CDEF是菱形.34.如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)试判断AD与OD的位置关系,并说明理由;(3)若OB=2,OC=3,求AO的长(直接写出结果).【解答】解:(1)由旋转的性质得,CD=CO,∠ACD=∠BCO,∴∠ACD+∠ACO=∠BCO+∠ACO,即∠DCO=∠ACB,∵三角形ABC是等边三角形,∴∠ACB=60°,∴∠DCO=60°,∴△OCD为等边三角形,∴∠ODC=60°;(2)AD与OD的位置关系是:AD⊥OD,理由如下:由(1)知∠ODC=60°,∵将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC﹣∠ODC=90°,∴AD⊥OD;(3)由旋转的性质得,AD=OB=2,∵△OCD为等边三角形,∴OD=OC=3,在Rt△AOD中,由勾股定理得:AO===.。
旋转一.半角模型“半角”旋转模型,经常会出现在等腰直角三角形、正方形中,在一般的等腰三角形中也会有涉及.二.等腰三角形旋转模型等腰三角形的旋转模型比较多,此模型需要注意的是利用“全等三角形”的性质进行边与角的转化,证明的基本思想“SAS”.1.一般等腰三角形的旋转2.等边三角形的旋转3.等腰直角三角形的旋转三.对角互补模型四边形对角互补模型多数题目给出的条件会以四边形或三角形等旋转为载体.四.旋转相似模型共顶点相似的一般三角形模型:如图,图中ABD ACE∆∆∽,得到AB AD BDAC AE CE==,ABD ACE∠=∠,ADB AEC∠=∠,BAD CAE∠=∠,则有ABC ADE∆∆∽.一.考点:1.旋转全等模型;2.旋转相似模型;3.旋转中的轨迹与最值问题;二.重难点:1.这类题的关键是找到题目中所给的特殊条件,结合问题所要证明或者求解的边长角度问题,再去选择是要构造旋转全等还是通过已经得到的旋转全等的性质进一步证明.2.观察图形发现旋转得到的相似;3.通过添加辅助线构造旋转相似或者去挖掘隐含的相似图形.三.易错点:1.在利用旋转构造全等的时候注意辅助线的做法问题;2.构造旋转全等时候一定要有相等边长的条件.3.全等是相似的一个特例,旋转有时候也会出现全等,注意和旋转全等的区别和联系.题模一:旋转与全等例1.1.1已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.【答案】图2成立,证明见解析,图3不成立,图3中AE、CF、EF的关系是AE﹣CF=EF【解析】∵AB⊥AD,BC⊥CD,AB=BC,AE=CF,在△ABE和△CBF中,∴△ABE≌△CBF(SAS);∴∠ABE=∠CBF,BE=BF;∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴AE=12BE,CF=12BF;∵∠MBN=60°,BE=BF,∴△BEF为等边三角形;∴AE+CF=12BE+12BF=BE=EF;图2成立,图3不成立.证明图2.延长DC至点K,使CK=AE,连接BK,在△BAE和△BCK中,则△BAE≌△BCK,∴BE=BK,∠ABE=∠KBC,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠KBC=60°,∴∠KBF=∠FBE=60°,在△KBF和△EBF中,∴△KBF≌△EBF,∴KF=EF,∴KC+CF=EF,即AE+CF=EF.图3不成立,AE、CF、EF的关系是AE﹣CF=EF.例1.1.2(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD.求证:EF=BE+FD;(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【答案】(1)证明见解析(2)成立(3)EF=BE﹣FD 【解析】(1)延长EB到G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF=12∠BAD.∴∠GAE=∠EAF.又AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.(3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=12∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.例 1.1.3如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.【答案】(1)见解析(2)见解析(3)△ACN仍为等腰直角三角形【解析】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,延长AB交NE于点F,∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°﹣180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.例1.1.4如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,2,求AG、MN的长.【答案】(1)见解析(2)MN2=ND2+DH2;理由见解析(3)AG=12;2【解析】(1)证明:∵△AEB由△AED翻折而成,∴∠ABE=∠AGE=90°,∠BAE=∠EAG,AB=AG,∵△AFD由△AFG翻折而成,∴∠ADF=∠AGF=90°,∠DAF=∠FAG,AD=AG,∵∠EAG+∠FAG=∠EAF=45°,∴∠ABE=∠AGE=∠BAD=∠ADC=90°,∴四边形ABCD 是矩形,∵AB=AD ,∴四边形ABCD 是正方形;(2)MN 2=ND 2+DH 2,理由:连接NH ,∵△ADH 由△ABM 旋转而成,∴△ABM ≌△ADH ,∴AM=AH ,BM=DH ,∵由(1)∠BAD=90°,AB=AD ,∴∠ADH=∠ABD=45°,∴∠NDH=90°,∴△AMN ≌△AHN ,∴MN=NH ,∴MN 2=ND 2+DH 2;(3)设AG=BC=x ,则EC=x ﹣4,CF=x ﹣6,在Rt △ECF 中,∵CE 2+CF 2=EF 2,即(x ﹣4)2+(x ﹣6)2=100,x 1=12,x 2=﹣2(舍去)∴AG=12,∵AG=AB=AD=12,∠BAD=90°,∴22AB AD +221212+2,∵2,∴MD=BD ﹣2﹣22,设NH=y,在Rt△NHD中,∵NH2=ND2+DH2,即y2=(2y)2+(22,解得2,即2.题模二:旋转与相似例1.2.1如图1,点P在正方形ABCD的对角线AC上,正方形的边长是a,Rt△PEF的两条直角边PE、PF分别交BC、DC于点M、N.(1)操作发现:如图2,固定点P,使△PEF绕点P旋转,当PM⊥BC时,四边形PMCN是正方形.填空:①当AP=2PC时,四边形PMCN的边长是________;②当AP=nPC时(n是正实数),四边形PMCN的面积是___________.(2)猜想论证如图3,改变四边形ABCD的形状为矩形,AB=a,BC=b,点P在矩形ABCD的对角线AC上,Rt△PEF 的两条直角边PE、PF分别交BC、DC于点M、N,固定点P,使△PEF绕点P旋转,则PMPN=__________.(3)拓展探究如图4,当四边形ABCD满足条件:∠B+∠D=180°,∠EPF=∠BAD时,点P在AC上,PE、PF分别交BC,CD于M、N点,固定P点,使△PEF绕点P旋转,请探究PMPN的值,并说明理由.【答案】(1)①13a②()221an+(2)ab(3)见解析【解析】(1)①如图2,∵PM⊥BC,AB⊥BC ∴△PMC∽△ABC又∵AP=2PC∴PMAB=13,即PMa=13∴PM=13a,即正方形PMCN的边长是13a②当AP=nPC时(n是正实数),PMAB=11n+∴PM=11n+a∴四边形PMCN的面积=(11n+a)2=()221an+(2)如图3,过P作PG⊥BC于G,作PH⊥CD于H,则∠PGM=∠PHN=90°,∠GPH=90°∵Rt△PEF中,∠FPE=90°∴∠GPM=∠HPN∴△PGM∽△PHN由PG∥AB,PH∥AD可得,PG CP PH AB CA AD==∵AB=a,BC=b∴PG PHa b=,即PGPH=ab(3)如图4,过P作PG∥AB,交BC于G,作PH∥AD,交CD于H,则∠HPG=∠DAB ∵∠EPF=∠BAD∴∠EPF=∠GPH,即∠EPH+∠HPN=∠EPH+∠GPM∴∠HPN=∠GPM∵∠B+∠D=180°∴∠PGC+∠PHC=180°又∵∠PHN+∠PHC=180°∴∠PGC=∠PHN∴△PGM∽△PHN由PG∥AB,PH∥AD可得,PG CP PH AB CA AD==即PG AB PH AD=②∴由①②可得,PMPN=ABAD例1.2.2数学活动课上,小颖同学用两块完全一样的透明等腰直角三角板ABC、DEF进行探究活动.操作:使点D落在线段AB的中点处并使DF过点C(如图1),然后将其绕点D顺时针旋转,直至点E落在AC的延长线上时结束操作,在此过程中,线段DE与AC或其延长线交于点K,线段BC与DF相交于点G(如图2,3).探究1:在图2中,求证:△ADK∽△BGD.探究2:在图2中,求证:KD平分∠AKG.探究3:①在图3中,KD仍平分∠AKG吗?若平分,请加以证明;若不平分,请说明理由.②在以上操作过程中,若设AC=BC=8,KG=x,△DKG的面积为y,请求出y与x的函数关系式,并直接写出x的取值范围.【答案】探究1:见解析;探究2:见解析;探究3:①KD仍平分∠AKG②y=2x,其中≤≤4838x【解析】探究1,∵∠KAD=∠KDG=∠DBG=45°,∴∠KDA+∠BDG=135°.∵∠BDG+∠BGD=135°,∴∠KDA=∠BGD,∴△ADK∽△BGD;探究2,∵△ADK∽△BGD,∵点D是线段AB的中点,∴BD=AD,∵∠KAD=∠KDG=45°,∴△ADK∽△DCK,∴∠AKD=∠DKC,∴KD平分∠AKG.探究3,①KD仍平分∠AKG.理由如下:∵同探究1可得△ADK∽△BGD,同探究2可得,△ADK∽△DGK,∴∠AKD=∠DKG,∴KD仍平分∠AKG;②如图,过点D作DM⊥AC于点M,DN⊥KG于点N,由①知线段KD平分∠AKG,∴DM=DN.∵AC=BC=8,点D是线段AB的中点,∠KAD=45°,∴DM=DN=4.∵KG=x,∴S△DKG=y=12×4x=2x,对于图3的情况同理可得y=2x,综上所示,y=2x,其中38.题模三:旋转中的轨迹与最值问题例1.3.1如图,点P是平行四边形ABCD对角线BD上的动点,点M为AD的中点,已知AD=8,AB=10,∠ABD=45°,把平行四边形ABCD绕着点A按逆时针方向旋转,点P的对应点是点Q,则线段MQ的长度的最大值与最小值的差为.【答案】18﹣2【解析】如图,作AP1⊥BD垂足为P1,∵∠DBA=45°,AB=10,∴∠P1AB=∠DBA=45°,AP1=P12,∵AM=MD=12AD=4,当AP1旋转到与射线AD的重合时(点P1与点E重合),ME就是MQ最小值24,当点P2与B重合时,旋转到与DA的延长线重合时(点P2与点F重合),此时MF就是MQ最大值=AM+AF=14,∴MQ的最大值与最小值的差=14﹣(2﹣4)=18﹣2故答案为18﹣2例 1.3.2如图,菱形ABCD中,AB=2,∠C=60°,我们把菱形ABCD的对称中心O称作菱形的中心.菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O所经过的路径长为______;经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为______.(结果都保留π)【答案】3231+nπ【解析】∵菱形ABCD中,AB=2,∠C=60°,∴△ABD是等边三角形,BO=DO=1,223AD DO-第一次旋转的弧长6033ππ⨯=∵第一、二次旋转的弧长和60360323ππ⨯⨯=,第三次旋转的弧长为:601 1803ππ⨯=∵3n÷3=n,故经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为:n 23π+3π)231+nπ.例1.3.3如图1,点O为正方形ABCD的中心.(1)将线段OE绕点O逆时针方向旋转90︒,点E的对应点为点F,连结EF,AE,BF,请依题意补全图1;(2)根据图1中补全的图形,猜想并证明AE与BF的关系;(3)如图2,点G是OA中点,△EGF是等腰直角三角形,H是EF的中点,90EGF∠=︒,22AB=2GE=,△EGF绕G点逆时针方向旋转α角度,请直接写出旋转过程中BH的最大值.【答案】(1)见解析(2)AE⊥BF(3)25+【解析】(1)正确画出图形;………………1分(2)延长EA 交OF 于点H ,交BF 于点G …2分∵O 为正方形ABCD 的中心,∴OB OA =,∠AOB =90……3分∵OE 绕点O 逆时针旋转90角得到OF∴∠AOB =∠EOF =90∴∠EOA =∠FOB ……4分在△EOA 和△FOB 中,∴BF AE =.……5分∴∠OFB +∠FHG =90∴AE ⊥BF ……6分(3)BH 的最大值为25+……8分随练1.1 在ABC ∆中,2AB BC ==,90ABC ∠=︒,BD 为斜边AC 上的中线,将ABD ∆绕点D 顺时针旋转α(0180α︒<<︒)得到EFD ∆,其中点A 的对应点为点E ,点B 的对应点为点F ,BE 与FC 相交于点H .(1)如图1,直接写出BE 与FC 的数量关系:____________;(2)如图2,M 、N 分别为EF 、BC 的中点.求证:MN =__________;(3)连接BF ,CE ,如图3,直接写出在此旋转过程中,线段BF 、CE 与AC 之间的数量关系:____________________________.【答案】 (1)BE FC =;(2)22FC ;(3)222BF CE AC +=. 【解析】 (1)BE FC =;(2)证明:如图,∵AB BC =,90ABC ∠=︒,BD 为斜边中线,∴12BD AD CD AC ===,BD AC ⊥ ∵EFD ∆是由ABD ∆旋转得到的,∴DE DF DB DC ===,90EDF ADB BDC ∠=∠=∠=︒∴EDF BDF BDC BDF ∠+∠=∠+∠,即BDE FDC ∠=∠,∴BDE FDC ∆∆≌,∴BE FC =且12∠=∠又∵34∠=∠,∴90FHE FDE ∠=∠=︒ ,即BE CF ⊥连接BF ,取BF 中点G ,连接MG 、NG .∵M 为EF 中点,G 为BF 中点,N 为BC 中点又∵EB FC =,BE FC ⊥∴MG NG =,90MGN ∠=︒,∴MGN ∆为等腰直角三角形,∴2MN =. (3)222BF CE AC +=.随练1.2 在菱形ABCD 中,120BAD ∠=︒,4AB =,把一个含60°角的三角板与这个菱形叠合,使三角板的60°角的顶点与点A 重合,两边分别落在AB 、AC 上.将三角板绕点A 按逆时针旋转,设旋转角为α.(1)如图①,当060α︒<<︒时,三角板的两边分别与菱形的两边BC 、CD 相交于点E 、F ,请你通过观察或测量写出图中现有的两组相等线段(菱形的边和对角线除外).(2)如图②,当60120α︒<<︒时,三角板的两边分别与BC 、CD 的延长线相交于点E 、F ,你在(1)中得到的结论还成立吗?若成立,请你选择一组加以证明;若不成立,请你说明理由.(3)当060α︒<<︒时,三角板的两边分别与菱形的两边BC 、CD 相交于点E 、F ,请你求出这个三角板与这个菱形重合部分的面积.【答案】 见解析【解析】 (1)BE CF =,AE AF =,CE DF =.写出两组即可.(2)(1)中的结论仍然成立.如图,BE CF =的结论仍然成立.证明如下:∵在菱形ABCD 中,120BAD ∠=︒,又由题意可知,60EAF ∠=︒,∴BAE CAF ∠=∠.在△BAE 和△CAF 中,∴△BAE ≌△CAF .∴BE CF =.(3)当060α︒<<︒时,三角板与这个菱形重合部分的面积就是四边形AECF 的面积.由题意可证△BAE ≌△CAF .∴四边形AECF 的面积就是△ABC 的面积.∵4AB =,∴所求图形的面积为43随练1.3如图1所示,在正方形ABCD和正方形CGEF中,点B、C、G在同一条直线上,M是线段AE的中点,DM的延长线交EF于点N,连接FM,易证:DM=FM,DM⊥FM(无需写证明过程)(1)如图2,当点B、C、F在同一条直线上,DM的延长线交EG于点N,其余条件不变,试探究线段DM与FM有怎样的关系?请写出猜想,并给予证明;(2)如图3,当点E、B、C在同一条直线上,DM的延长线交CE的延长线于点N,其余条件不变,探究线段DM与FM有怎样的关系?请直接写出猜想.【答案】(1)DM=FM,DM⊥FM(2)DM⊥FM,DM=FM【解析】(1)如图2,DM=FM,DM⊥FM,证明:连接DF,NF,∵四边形ABCD和CGEF是正方形,∴AD∥BC,BC∥GE,∴AD∥GE,∴∠DAM=∠NEM,∵M是AE的中点,∴AM=EM,在△MAD与△MEN中,∴△MAD≌△MEN,∴DM=MN,AD=EN,∵AD=CD,∴CD=NE,∵CF=EF,∠DCF=∠DCB=90°,在△DCF与△NEF中,∴△DCF≌△NEF,∴DF=NF,∠CFD=∠EFN,∵∠EFN+∠NFC=90°,∴∠DFC+∠CFN=90°,∴∠DFN=90°,∴DM⊥FM,DM=FM(2)猜想:DM⊥FM,DM=FM,证明如下:如图3,连接DF,NF,连接DF,NF,∵四边形ABCD是正方形,∴AD∥BC,∵点E、B、C在同一条直线上,∴AD∥CN,∴∠ADN=∠MNE,在△MAD与△MEN中,∴△MAD≌△MEN,∴DM=MN,AD=EN,∵AD=CD,∴CD=NE,∵CF=EF,∵∠DCF=90°+45°=135°,∠NEF=180°﹣45°=135°,∴∠DCF=∠NEF,在△DCF与△NEF中,∴△MAD≌△MEN,∴DF=NF,∠CFD=∠EFN,∵∠CFD+∠EFD=90°,∴∠NFE+∠EFD=90°,∴∠DFN=90°,∴DM ⊥FM ,DM=FM .随练 1.4 已知:在ABC △中,AB AC =,点D 为BC 边的中点,点F 在AB 上,连结DF 并延长到点E ,使BAE BDF ∠=∠,点M 在线段DF 上,且ABE DBM ∠=∠.(1)如图,当45ABC ∠=°时, 求证:2AE MD =;(2)如图,当60ABC ∠=°时,则线段AE MD 、之间的数量关系为____________;(3)在(2)的条件下,延长BM 到P ,使MP BM =,连接CP ,若727AB AE ==,,求tan EAB ∠的值.【答案】 (1)见解析(2)2AE MD =(33 【解析】 该题考查的是四边形综合.(1)如图,连结AD又∵45ABC ∠=°∴cos BD AB ABC =∠即2AB BD =∴△ABE ∽△DBM(2)与(1)类似可知△DBM ∽△ABE ,又60ABC ∠=︒,(3)如图2连结AD 、EP ,∵△ABE ∽△DBM又∵BM MP =∴△BEP 等边三角形∴EM BP ⊥即90BMD ∠=︒在Rt △AEB 中,27AE =7AB =, tan EAB ∠的值为3随练 1.5 在等边ABC ∆的两边AB ,AC 所在直线上分别有两点M N D ,,为ABC ∆外一点,且60MDN ∠=︒,120BDC ∠=︒,BD CD =,探究:当点M N ,分别在直线AB AC ,上移动时,BM NC MN ,,之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.(1)如图①,当点M N ,在边AB AC ,上,且DM DN =时,BM NC MN ,,之间的数量关系式_________;此时Q L=__________ (2)如图②,当点M N ,在边AB AC ,上,且DM DN ≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;(3)如图③,当点M N ,分别在边AB CA ,的延长线上时,若AN x =,则Q =_________(用x L ,表示)【答案】 见解析【解析】 (Ⅰ)BM 、NC 、MN 之间的数量关系BM NC MN +=.此时23Q L =. (Ⅱ)猜想:结论仍然成立.证明:如图,延长AC 至E ,使CE BM =,连结DE .∵BD CD =,且120BDC ∠=︒.又△ABC 是等边三角形,∴90MBD NCD ∠=∠=︒.在△MBD 与△ECD 中,BM CE MBD ECD BD DC =⎧⎪∠=∠⎨⎪=⎩∴△MBD ≌△ECD (SAS).∴DM DE =,BDM CDE ∠=∠.在△MDN 与△EDN 中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩∴△MDN ≌△EDN (SAS).△AMN 的周长Q AM AN MN =++而等边△ABC 的周长3L AB =(Ⅲ)如图③,当M 、N 分别在AB 、CA 的延长线上时,若AN x =,则223Q x L=+(用x、L表示).随练1.6(1)正方形ABCD中,对角线AC与BD相交于点O,如图1,请直接猜想并写出AO与CD 之间的数量关系:;(2)如图2,将(1)中的△BOC绕点B逆时针旋转得到△BO1C1,连接AO1,DC1,请猜想线段AO1与DC1的数量关系,并证明你的猜想;(3)如图3,矩形ABCD和Rt△BEF有公共顶点,且∠BEF=90°,∠EBF=∠ABD=30°,则AEDF=______.【答案】(1)AO=2CD.理由如下:∵四边形ABCD为正方形,∴AO=OC=OD,∠ODC=∠OCD=45°,∠DOC=90°,∴AO=CO=2 CD,故答案为AO=2 CD;(2)∵四边形ABCD为正方形,∴AB=BC,AC=BD,OB=OC,∠OBC=∠ABO=45°,∠BOC=90°,∴△ABC和△OBC都是等腰直角三角形,∵△BOC绕点B逆时针方向旋转得到△BO1C1,∴∠O1BC1=∠OBC=45°,OB=O1B,BC1=BC,∴BC121,∵∠1+∠3=45°,∠2+∠3=45°,∴∠1=∠2,∴△BDC1∽△BAO1,(3)在R t△EBF中,cos∠EBF=EB FB在R t△ABD中,cos∠ABD=AD BD,∵∠EBF=∠ABD=30°,∵∠EBF+∠FBA=∠ABD+∠FBA,即∠EBA=∠FBD,∴△AEB∽△FBD,故答案为3【解析】(1)根据正方形的性质得AO=OC=OD,∠ODC=∠OCD=45°,∠DOC=90°,由勾股定理得到AO与CD之间的数量关系;(2)如图2根据正方形的性质得AB=BC,AC=BD,OB=OC,∠OBC=∠ABO=45°,∠BOC=90°,得到△ABC和△OBC都是等腰直角三角形,求出AC=2AB BC=2BO,得到BD=2AB,因为△BOC绕点B逆时针方向旋转得到△BO1C1,所以∠O1BC1=∠OBC=45°,OB=O1B,BC1=BC,BC1=2BO1,由∠1+∠3=45°,∠2+∠3=45°,得到∠1=∠2,于是得到△BDC1∽△BAO1,求出结论;(3)如图3在R t△ABD中,cos∠ABD=ABBD,在Rt△EBF中,cos∠EBF=EBFB因为∠EBF=∠ABD=30°得到BE ADBF BD=3,再由∠EBF+∠FBA=∠ABD+∠FBA,得到∠EBA=∠FBD,△AEB∽△FBD,由相似的性质得到解.解:(1)AO=2CD.理由如下:如图1,∵四边形ABCD为正方形,∴AO=OC=OD,∠ODC=∠OCD=45°,∠DOC=90°,∴AO=CO=2 CD,故答案为AO=2 CD;(2)如图2,∵四边形ABCD为正方形,∴AB=BC,AC=BD,OB=OC,∠OBC=∠ABO=45°,∠BOC=90°,∴△ABC和△OBC都是等腰直角三角形,∵△BOC绕点B逆时针方向旋转得到△BO1C1,∴∠O1BC1=∠OBC=45°,OB=O1B,BC1=BC,∴BC121,∵∠1+∠3=45°,∠2+∠3=45°,∴∠1=∠2,∴△BDC1∽△BAO1,(3)如图3 在R t△EBF中,cos∠EBF=EB FB在R t△ABD中,cos∠ABD=AD BD,∵∠EBF=∠ABD=30°,∵∠EBF+∠FBA=∠ABD+∠FBA,即∠EBA=∠FBD,∴△AEB∽△FBD,故答案为3.随练1.7如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF 相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是______.【答案】2【解析】如图点P运动的路径是以G为圆心的弧EF,在⊙G上取一点H,连接EH、FH.∵四边形AOCB是正方形,∴∠AOC=90°,∴∠AFP=12∠AOC=45°,∵EF是⊙O直径,∴∠EAF=90°,∴∠APF=∠AFP=45°,∴∠H=∠APF=45°,∴∠EGF=2∠H=90°,∵EF=4,GE=GF,∴2,∴EF的长9022π•2.随练1.8已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.【答案】(1)见解析;(2)①∠CMD=135°②2π【解析】(1)如图1中,∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∵△CEF是由△CAD旋转逆时针α得到,α=90°,∴CB与CE重合,∴∠CBE=∠A=45°,∴∠ABF=∠ABC+∠CBF=90°,∵BG=AD=BF,∴∠BGF=∠BFG=45°,∴∠A=∠BGF=45°,∴GF∥AC.(2)①如图2中,∵CA=CE,CD=CF,∴∠CAE=∠CEA,∠CDF=∠CFD,∵∠ACD=∠ECF,∴∠ACE=∠CDF,∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,∴∠CMF=∠CAD=45°,∴∠CMD=180°﹣∠CMF=135°.②如图3中,O是AC中点,连接OD、CM.∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90°,由①可知A、D、M、C四点共圆,∴当α从90°变化到180°时,点M 在以AC 为直径的⊙O 上,运动路径是弧CD ,∵OA=OC ,CD=DA ,∴DO ⊥AC ,∴∠DOC=90°,∴CD ∧的长=901180π=2π. ∴当α从90°变化到180°时,点M 运动的路径长为2π. 随练1.9 如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG=2OD ,OE=2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接AG ,DE .(1)求证:DE ⊥AG ;(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转α角(0°<α<360°)得到正方形OE ′F ′G ′,如图2.①在旋转过程中,当∠OAG ′是直角时,求α的度数;②若正方形ABCD 的边长为1,在旋转过程中,求AF ′长的最大值和此时α的度数,直接写出结果不必说明理由.【答案】 (1)如图1,延长ED 交AG 于点H ,∵点O 是正方形ABCD 两对角线的交点,∴OA=OD ,OA ⊥OD ,∵OG=OE ,在△AOG 和△DOE 中,∴△AOG ≌△DOE ,∴∠AGO=∠DEO ,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE ⊥AG ;(2)①α=30°;②α=315°.【解析】 (1)如图1,延长ED 交AG 于点H ,∵点O 是正方形ABCD 两对角线的交点,∴OA=OD ,OA ⊥OD ,∵OG=OE ,在△AOG 和△DOE 中,∴△AOG ≌△DOE ,∴∠AGO=∠DEO ,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE ⊥AG ;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=12OG=12OG′, ∴在Rt △OAG′中,sin ∠AG′O='OA OG =12, ∴∠AG′O=30°,∵OA ⊥OD ,OA ⊥AG′,∴OD ∥AG′,∴∠DOG′=∠AG′O=30°,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°﹣30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴2,∵OG=2OD,∴2∴OF′=2,∴2+2,∵∠COE′=45°,∴此时α=315°.作业1如图1,在△ABC中,∠BAC=90°,AB=AC.(1)若点M为AC上的任意一点,过M作MN⊥BC于点N,取BM的中点D,连接AD、DM,求证:AD=DN.(2)如图2,若M为BC上的任意一点,以线段CM为底边作等腰Rt△MCN,此时,取BM的中点D,连接AD、DN,则AD与DN有怎样的数量关系?说明理由.(3)如图3,在(2)的条件下将Rt△MNC绕C点旋转任意角度,连接BM,取BM的中点D,再连接AD、DN,则(2)中的结论仍然成立吗,它们之间又有怎样的位置关系?请说明理由.【答案】(1)见解析;(2)AD=DN;(3)AD=DN,AD⊥DN【解析】(1)证明:解法一:如图1中,延长AD到K,使得DK=AD,连接AN、KN、KM.在△ADB和△KDM中,∴△ADB≌△KDM,∴AB=KM=AC,∠BAD=∠MKD,∴AB∥KM,∴∠KMC=∠BAC=90°,∵AB=AC,∠BAC=90°,∴∠C=45°,∵MN⊥BC,∴∠MNC=90°,∠NMC=45°=∠KMC=∠C,∴MN=NC,在△ANC和△KNM中,∴△ANC≌△KNM,∴AN=KN,∠ANC=∠KNM,∴∠KNA=∠MNC=90°∵AD=DK,∴DN=AD=DK,即AD=DN.解法二:根据直角三角形斜边中线性质,可知AD=12BM,DN=12BM,由此即可证明.(2)如图2中,结论:AD=DN.理由:延长AD到K,使得DK=AD,连接AN、KN、KM.在△ADB和△KDM中,∴△ADB≌△KDM,∴AB=KM=AC,∠BAD=∠MKD,∴AB∥KM,∴∠KMN=∠B=45°,∵∠NMC=∠NCM=∠ACB=45°∴MN=NC,∠KMN=∠ACN=90°在△ANC和△KNM中,∴△ANC≌△KNM,∴AN=KN,∠ANC=∠KNM,∴∠KNA=∠MNC=90°∵AD=DK,∴DN=AD=DK,即AD=DN.(3)如图3中,结论:AD=DN,AD⊥DN.理由:延长AD到K,使得DK=AD,连接AN、KN、KM,延长KN交AC于G.在△ADB和△KDM中,∴△ADB≌△KDM,∴AB=KM=AC,∠BAD=∠MKD,∴AB∥KM,∴∠KGC=∠BAC=90°,∴∠ACN+∠NMG=180°,∵∠KMN+∠NMG=180°,∴∠ACN=∠NMK,在△ANC和△KNM中,∴△ANC≌△KNM,∴AN=KN,∠ANC=∠KNM,∴∠KNA=∠MNC=90°∵AD=DK,∴DN=AD=DK,DN⊥AK,即AD=DN.AD⊥DN.作业2已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).【答案】(1)见解析(2)成立(3)见解析【解析】本题利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质.(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG.(1)证明:∵四边形ABCD是正方形,∴∠DCF=90°,在Rt△FCD中,∵G为DF的中点,∴CG=12 FD,同理,在Rt△DEF中,EG=12 FD,∴CG=EG.(1)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG;∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN,在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC,在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG.∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=12 MC,∴EG=CG.(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形,∵G为CM中点,∴EG=CG,EG⊥CG.作业3在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2;(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC相交于点N,连接MN,则MN2=AM2+BN2成立吗?答:____(填“成立”或“不成立”)【答案】(1)见解析;(2)不成立;(3)成立【解析】(1)证明:如图1,过A作AF⊥AC交CO延长线于F,连接MF,∵∠ACB=90°,∴BC∥AF,∴△BOC∽△AOF,∵O为AB中点,∴OA=OB,∴AF=BC,CO=OF,∵∠MOC=90°,∴OM是CF的垂直平分线,∴CM=MF,在Rt△AMF中,由勾股定理得:MF2=AM2+AF2=AM2+BC2,即MC2=AM2+BC2;(2)还成立,理由是:如图2,过A作AF⊥AC交CO延长线于F,连接MF,∵∠ACB=90°,∴BC∥AF,∴△BOC∽△AOF,∵OA=OB,∴AF=BC,CO=OF,∵∠MOC=90°,∴OM是CF的垂直平分线,∴CM=MF,在Rt△AMF中,由勾股定理得:MF2=AM2+AF2=AM2+BC2,即MC2=AM2+BC2;(3)成立.作业4在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.请直接写出AC1与BD1的数量关系和位置关系.(2)如图2,若四边形ABCD是菱形,AC=6,BD=8,判断AC1与BD1的数量关系和位置关系,并给出证明;(3)如图3,若四边形ABCD是平行四边形,AC=6,BD=12,连接DD1,设AC1=kBD1,请直接写出k 的值和AC12+(kDD1)2的值.【答案】(1)AC1⊥BD1(2)AC1=34BD1,AC1⊥BD1,理由见解析(3)AC12+(kDD1)2=36【解析】(1)AC1=BD1,AC1⊥BD1;理由:如图1,∵四边形ABCD是正方形,∴OC=OA=OD=OB,AC⊥BD,∴∠AOB=∠COD=90°,∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴OC1=OC,OD1=OD,∠COC1=∠DOD1,∴OC1=OD1,∠AOC1=∠BOD1=90°+∠AOD1,在△AOC 1和△BOD 1中1111AO OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩ ,∴△AOC 1≌△BOD 1(SAS );∴AC 1=BD 1,∵∠AOB=90°,∴∠OAB+∠ABP+∠OBD 1=90°,∴∠OAB+∠ABP+∠OAC 1=90°,∴∠APB=90°,则AC 1⊥BD 1;故AC 1 与BD 1的数量关系是:AC 1=BD 1;AC 1 与BD 1的位置关系是:AC 1⊥BD 1;(2)AC 1=34BD 1,AC 1⊥BD 1. 理由:∵四边形ABCD 是菱形,∴OC=OA=12AC ,OD=OB=12BD ,AC ⊥BD . ∵△C 1OD 1由△COD 绕点O 旋转得到,∴O C 1=OC ,O D 1=OD ,∠CO C 1=∠DO D 1.∴O C 1=OA ,O D 1=OB ,∠AO C 1=∠BO D 1,∴△AO C 1∽△BOD 1.∴∠O AC 1=∠OB D 1.又∵∠AOB=90°,∴∠O AB+∠ABP+∠OB D 1=90°.∴∠O AB+∠ABP+∠O AC 1=90°.∴∠APB=90°.∴AC 1⊥BD 1.∵△AO C 1∽△BOD 1,即AC 1=34BD 1,AC 1⊥BD 1.(3)如图3,与(2)一样可证明△AOC1∽△BOD1,∴k=12;∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴OD1=OD,而OD=OB,∴OD1=OB=OD,∴△BDD1为直角三角形,在Rt△BDD1中,BD12+DD12=BD2=144,∴(2AC1)2+DD12=144,∴AC12+(kDD1)2=36.作业5在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD 上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF=________度,线段BE、EF、FD之间的数量关系为________.(2)如图3,当但点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM⊥BC于点M,连接MN,求线段MN的长度.【答案】解:(一)(1):30 ,BE+DF=EF(2)BE﹣DF=EF(二)3【解析】解:(一)(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′,则∠1=∠2,BE=DE′,AE=AE′,∵∠BAD=60°,∠EAF=30°,∴∠1+∠3=30°,∴∠2+∠3=30°,即∠FAE′=30°∴∠EAF=∠FAE′,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,即EF=DF+DE′,∴EF=DF+BE,即线段BE、EF、FD之间的数量关系为BE+DF=EF,故答案为:30,BE+DF=EF;(2)如图3,在BE上截取BG=DF,连接AG,在△ABG和△ADF中,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,且AG=AF,∵∠DAF+∠DAE=30°,∴∠BAG+∠DAE=30°,∵∠BAD=60°,∴∠GAE=60°﹣30°=30°,∴∠GAE=∠FAE,在△GAE和△FAE中,∴△GAE≌△FAE(SAS),∴GE=FE,又∵BE﹣BG=GE,BG=DF,∴BE﹣DF=EF,即线段BE、EF、FD之间的数量关系为BE﹣DF=EF;(二)如图4,将△ABE 绕点A 逆时针旋转60°得到△A ′B ′E ′,则AE=AE ′,∠EAE ′=60°,∴△AEE ′是等边三角形,又∵∠EAF=30°,∴AN 平分∠EAF ,∴AN ⊥EE ′,∴直角三角形ANE 中,AN 3AE = ∵在等边△ABC 中,AM ⊥BC ,∴∠BAM=30°, ∴AM 3AB =,且∠BAE+∠EAM=30°, 又∵∠MAN+∠EAM=30°,∴∠BAE=∠MAN ,∴△BAE ∽△MAN , ∴MN AM =BE AB ,即MN 31= ∴3. 作业6 探索绕公用顶点的相似多边形的旋转:(1)如图1,已知:等边ABC ∆和ADE ∆,根据__________(指出三角形的全等或相似),可得到CE 与BD 的大小关系为:__________.(2)如图2,正方形ABCD 和正方形AEFG ,求:FCEB 的值;(3)如图3,矩形ABCD 和矩形AEFG ,AB kBC =,AE kEF =,求:FCEB 的值.【答案】 (1)全等,相等;(223)21k +.【解析】 解:(1)如图1,ABC ∆和ADE ∆都是等边三角形,在AEC ∆和ADB ∆中,AE ADCAE BADAC AB =⎧⎪∠=∠⎨=⎪⎩,AEC ADB ∴∆≅∆,CE BD ∴=;(2)如图2,四边形ABCD 和四边形AEFG 都是正方形,(3)连接FA 、CA ,如图3,四边形ABCD 和四边形AEFG 都是矩形,AB kBC =,AE kEF =,作业7 如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针转60°得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是( )A . 6B . 3C . 2D . 1.5【答案】D【解析】 取线段AC 的中点G ,连接EG ,如图所示.∵△ABC 为等边三角形,且AD 为△ABC 的对称轴,∴CD=CG=12AB=3,∠ACD=60°, ∵∠ECF=60°,∴∠FCD=∠ECG .在△FCD 和△ECG 中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩,∴△FCD ≌△ECG (SAS ),∴DF=GE .当EG ∥BC 时,EG 最小,∵点G 为AC 的中点,∴此时EG=DF=12CD=32. 作业8 已知等边△ABC 边长为2,放置在如图的水平桌面上,将△ABC 水平向右作无滑动翻滚,使△ABC 首次落回开始的位置,则等边△ABC 的中心O 经过的路径长为_________.【答案】433π.【解析】如图,过点C作CD⊥AB于D,则CD一定经过点O,∵CD=32BC=3,∴OC=23CD=233,根据等边三角形的性质,∠BCD=12∠ACB=12×60°=30°,∴每一次翻滚中心O旋转的角度为:180°﹣2×30°=120°,等边三角形翻滚3次翻滚一周,∴点O旋转的角度为:120°×3=360°,∴中心O经过的路径长是:2π•OC=2π×233=433π,故答案为:433π.作业9已知,点O是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是;②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.【答案】(1)①90°;②OA2+OB2=OC2;证明见解析(2)①α=β=120°,OA+OB+OC有最小值;图形见解析【解析】(1)①∠AOB=150°,∠BOC=120°,∴∠AOC=360°﹣120°﹣150°=90°,。
图形的变化——图形的旋转1一.选择题(共9小题)1.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)2.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70° B.65° C.60° D.55°3.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B.C.D.π4.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4 C.3 D.35.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A. B.C.D.6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30° B.60° C.90° D.150°7.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.18如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB.6πC.3πD.1.5π9.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30° B.40° C.50° D.60°二.填空题(共8小题)10.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=_________ .11如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E 的对应点为F,则∠EAF的度数是_________ .12.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为_________ .13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于_________ .14.如图,在△A BC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为_________ .15如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是_________ .16.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为_________ .17如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=_________ .三.解答题(共7小题)18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.19.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.20.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.21.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为_________ cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.22.正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是_________ ,∠AFB=∠_________(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.23.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.24.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.图形的变化——图形的旋转1参考答案与试题解析一.选择题(共9小题)1.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)考点:坐标与图形变化-旋转.专题:压轴题.分析:先根据图形确定出对称中心,然后根据中点公式列式计算即可得解.解答:解:由图可知,△ABC与△A′B′C′关于点(﹣1,0)成中心对称,设点P′的坐标为(x,y),所以,=﹣1,=0,解得x=﹣a﹣2,y=﹣b,所以,P′(﹣a﹣2,﹣b).故选C.点评:本题考查了坐标与图形变化﹣旋转,准确识图,观察出两三角形成中心对称,对称中心是(﹣1,0)是解题的关键.2如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70°B.65°C.60°D.55°考点:旋转的性质.专题:几何图形问题.分析:根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.解答:解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,由旋转的性质得∠B=∠A′B′C=65°.故选:B.点评:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.3.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B C.D.π考点:旋转的性质;弧长的计算.专题:几何图形问题.分析:利用锐角三角函数关系得出BC的长,进而利用旋转的性质得出∠BCB′=60°,再利用弧长公式求出即可.解答:解:∵在△ABC中,∠ACB=90°,∠ABC=30°,AB=2,∴cos30°=,∴BC=ABcos30°=2×=,∵将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,∴∠BCB′=60°,∴点B转过的路径长为:=π.故选:B.点评:此题主要考查了旋转的性质以及弧长公式应用,得出点B转过的路径形状是解题关键.4.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A. 6 B4C3D.3考点:旋转的性质.专题:几何图形问题.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.5.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B C D.考点:旋转的性质;正方形的性质.专题:几何图形问题.分析:连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.解答:解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,∴S△ADO=×OD•AD=,∴四边形AB1OD的面积是=2×=﹣1,故选:C.点评:本题考查了正方形性质,勾股定理等知识点,主要考查学生运用性质进行计算的能力,题目比较好,但有一定的难度.6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30°B60°C.90°D.150°考点:旋转的性质.专题:几何图形问题.分析:根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.解答:解:∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选:B.点评:本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.7.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1考点:旋转的性质.分析:连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.解答:解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选:C.点评:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.8.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB6πC.3πD.1.5π考点:旋转的性质;弧长的计算.专题:计算题.分析:根据弧长公式列式计算即可得解.解答:解:的长==1.5π.故选:D.点评:本题考查了旋转的性质,弧长的计算,熟记弧长公式是解题的关键.9.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°考点:旋转的性质.专题:计算题.分析:先根据平行线的性质得∠DCA=∠CAB=65°,再根据旋转的性质得∠BAE=∠CAD,AC=AD,则根据等腰三角形的性质得∠ADC=∠DCA=65°,然后根据三角形内角和定理计算出∠CAD=180°﹣∠ADC﹣∠DCA=50°,于是有∠BAE=50°.解答:解:∵DC∥AB,∴∠DCA=∠CAB=65°,∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD,∴∠ADC=∠DCA=65°,∴∠CAD=180°﹣∠ADC﹣∠DCA=50°,∴∠BAE=50°.故选:C.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.二.填空题(共8小题)10.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.考点:旋转的性质.分析:根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.解答:解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.点评:此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.11.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是60°.考点:旋转的性质;等边三角形的性质.专题:计算题.分析:根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF的度数.解答:解:∵将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,∴旋转角为60°,E,F是对应点,则∠EAF的度数为:60°.故答案为:60°.点评:此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.12如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为12﹣4.考点:旋转的性质;菱形的性质.分析:根据菱形的性质得出DO的长,进而求出S正方形DNMF,进而得出S△ADF即可得出答案.解答:解:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,∴∠AOE=45°,ED=1,∴AE=EO=,DO=﹣1,∴S正方形DNMF=2(﹣1)×2(﹣1)×=8﹣4,S△ADF=×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣4=12﹣4.故答案为:12﹣4.点评:此题主要考查了菱形的性质以及旋转的性质,得出正确分割图形得出DO的长是解题关键.13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1 .考点:旋转的性质;等腰直角三角形.专题:压轴题.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.14.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为 6 .考点:旋转的性质;相似三角形的判定与性质.专题:几何图形问题.分析:利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.解答:解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.点评:此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.15.如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是2π.考点:旋转的性质.分析:首先计算出圆的面积,根据图示可得阴影部分面积为半圆的面积,进而可得答案.解答:解:∵AB=4,∴BO=2,∴圆的面积为:π×22=4π,∴阴影部分的面积是:×4π=2π,故答案为:2π.点评:此题主要考查了旋转的性质,关键是掌握圆的面积公式.16.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为2﹣.考点:旋转的性质.专题:几何图形问题.分析:利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.解答:解:由题意可得出:∠BDC=45°,∠DA′E=90°,∴∠DEA′=45°,∴A′D=A′E,∵在正方形ABCD中,AD=1,∴AB=A′B=1,∴BD=,∴A′D=﹣1,∴在Rt△DA′E中,DE==2﹣.故答案为:2﹣.点评:此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.17.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672.考点:旋转的性质.专题:规律型.分析:由已知得AP1=,AP2=1+,AP3=2+;再根据图形可得到AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;每三个一组,由于2013=3×671,则AP2013=(2013﹣671)+671,然后把AP2013加上即可.解答:解:AP1=,AP2=1+,AP3=2+;AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;∵2013=3×671,∴AP2013=(2013﹣671)+671=1342+671,∴AP2014=1342+671+=1342+672.故答案为:1342+672.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.三.解答题(共7小题)18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.考点:旋转的性质;含30度角的直角三角形;直角三角形斜边上的中线;菱形的判定.专题:几何图形问题.分析:(1)利用旋转的性质得出AC=CD,进而得出△ADC是等边三角形,即可得出∠ACD的度数;(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案.解答:解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,∴AC=DC,∠A=60°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.点评:此题主要考查了菱形的判定以及旋转的性质和直角三角形斜边上的中线等于斜边的一半等知识,得出△DFC是等边三角形是解题关键.19如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.考点:旋转的性质;正方形的判定;平移的性质.专题:几何图形问题.分析:(1)根据旋转和平移可得∠DEB=∠AC B,∠GFE=∠A,再根据∠ABC=90°可得∠A+∠ACB=90°,进而得到∠DEB+∠GFE=90°,从而得到DE、FG的位置关系是垂直;(2)根据旋转和平移找出对应线段和角,然后再证明是矩形,后根据邻边相等可得四边形CBEG是正方形.解答:(1)解:FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.点评:此题主要考查了图形的旋转和平移,关键是掌握新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.20在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点对称的点A2、B2、C2的位置,然后顺次连接即可.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为4cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.考点:几何变换综合题.专题:几何综合题.分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案;(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,此时DP+EP值为最小,进而得出答案;(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.解答:解:(1)∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm,∵∠ACD=30°,∠DAC=90°,AC=12cm,∴CD=AC÷cos30°=12÷=12×=8(cm),∵点E为CD边上的中点,∴AE=DC=4cm.故答案为:4;(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE,∴△ADE为等边三角形,∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°,∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′,∴点E,D′关于直线AC对称,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′,∵△ADE是等边三角形,AD=AE=4,∴DD′=2×AD×=2×6=12,即DP+EP最小值为12cm;(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=4,在△ABD′和△CBD′中,,∴△ABD′≌△CBD′(SSS),∴∠D′BG=45°,∴D′G=GB,设D′G长为xcm,则CG长为(6﹣x)cm,在Rt△GD′C中x2+(6﹣x)2=(4)2,解得:x1=3﹣,x2=3+(不合题意舍去),∴点D′到BC边的距离为(3﹣)cm.点评:此题主要考查了全等三角形的判定与性质和锐角三角函数关系以及等边三角形的判定与性质等知识,利用垂直平分线的性质得出点E,D′关于直线AC对称是解题关键.22.正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是BF ,∠AFB=∠AED(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.考点:旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质.分析:(1)直接根据旋转的性质得到DE=BF,∠AFB=∠AED;(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,根据旋转的性质得∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,而∠PAQ=45°,则∠PAE=45°,再根据全等三角形的判定方法得到△APE≌△APQ,则PE=PQ,于是PE=PB+BE=PB+DQ,即可得到DQ+BP=PQ;(3)根据正方形的性质有∠ABD=∠ADB=45°,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,根据旋转的性质得∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK得到MN=MK,由于∠MBA+∠KBA=45°+45°=90°,得到△BMK为直角三角形,根据勾股定理得BK2+BM2=MK2,然后利用等相等代换即可得到BM2+DN2=MN2.解答:解:(1)∵△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,∵DE=BF,∠AFB=∠AED.故答案为BF,AED;(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,如图2,则∠D=∠ABE=90°,即点E、B、P共线,∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,∵∠PAQ=45°,∴∠PAE=45°,∴∠PAQ=∠PAE,在△APE和△APQ中∵,∴△APE≌△APQ,∴PE=PQ,而PE=PB+BE=PB+DQ,∴DQ+BP=PQ;(3)∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°,如图,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,则∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK得到MN=MK,∵∠MBA+∠KBA=45°+45°=90°,∴△BMK为直角三角形,∴BK2+BM2=MK2,∴BM2+DN2=MN2.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了三角形全等的判定与性质、正方形的性质以及勾股定理.23.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A 与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.考点:旋转的性质;等边三角形的性质;勾股定理的逆定理;正方形的性质.分析:(1)根据题意得出△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,进而得出∠PBQ=90°,再利用勾股定理得出∠PQC的度数,进而求出∠BQC的度数;(2)由题意可得出:△ABP绕点B顺时针方向旋转60°,才使点A与C重合,进而得出∠PP'C=90°,即可得出∠BPA的度数.解答:解:(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△P QC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.点评:此题主要考查了旋转的性质以及勾股定理逆定理和正方形的性质等知识,熟练利用勾股定理逆定理得出是解题关键.24.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质;菱形的判定.分析:(1)利用全等三角形的判定结合ASA得出答案;(2)利用全等三角形的性质对边相等得出答案;(3)首先得出四边形ABC1D是平行四边形,进而利用菱形的判定得出即可.解答:(1)证明:∵等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,∴AB=BC1=A1B=BC,∠ABE=∠C1BF,∠A=∠C1=∠A1=∠C,在△ABE和△C1BF中,,∴△ABE≌△C1BF(ASA);(2)证明:∵△ABE≌△C1BF,∴EB=BF.又∵A1B=CB,∴A1B﹣EB=CB﹣BF,∴EA1=FC;(3)答:四边形ABC1D是菱形.证明:∵∠A1=∠C=30°,∠ABA1=∠CBC1=30°,∠A1=∠C=∠ABA1=∠CBC1.∴AB∥C1D,AD∥BC1,∴四边形ABC1D是平行四边形∵AB=BC1,∴四边形ABC1D是菱形.点评:此题主要考查了旋转的性质、全等三角形的判定与性质以及菱形的判定等知识,利用旋转的性质得出对应边关系是解题关键.。
旋转变换通常结合全等三角形探索角的数量关系,线段与线段之间的位置关系与数量关系,经常作为作为中等偏难一点的题型出现.★★★○○○○旋转的性质有:①旋转角是对应点与旋转中心所连线段的夹角是旋转角;②旋转前后的图形全等;③对应点到旋转中心的距离相等.如图,△ABC绕点O逆时针方向旋转∠AOA′到△A′B′C′的位置,则①旋转角是∠AOA′=∠BOB′=∠COC′;②△ABC≌△A′B′C′;③OA=OA′,OB=OB′,OC=OC′.1.注意旋转的三要素:旋转中心,旋转方向,旋转角;2.抓住旋转只是改变图形的位置,不改变图形的形状和大小,即旋转前后的图形全等;3.能够用旋转解题的图形的基本特征是有公共端点且相等的两条线段,这个公共端点往往会是旋转中心.例1.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于( )A. 55°B. 70°C. 125°D. 155°【答案】C例2.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON 的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 1【答案】B学科@网【精细解读】因为角平分线上的点到角的两边的距离相等,所以存在着隐性的有公共端点的相等线段的特征,故可考虑过点P作∠AOB的两边的垂线,再结合旋转的性质求解.如图作PE⊥OA于E,PF⊥OB于F.例3.如图1,在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长.(2)如图3,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接P A、PB、PC,当AC=3,AB=6时,根据此图求P A+PB+PC的最小值.【答案】(1)33(2)37∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,22--;CE=CD DE=369=27=33(2)证明:如图所示,1.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是 ( )A. 6B. 6C. 3D. 3+3【答案】A【解析】试题解析:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′=,∴BC′=3-3,在等腰Rt△OBC′中,OB=BC′=3-3,在直角三角形OBC′中,OC′=(3-3)=6-3,∴OD′=3-OC′=3-3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3-3+3-3=6.故选A.2.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF =_________cm.【答案】233.如图,菱形ABCD中,边长为2,∠B=60°,将△ACD绕点C旋转,当AC(即A′C)与AB交于一点E,CD(即CD′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值,如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.【答案】2+3(每道试题10分,总计100分)1.如图,在□ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′,若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A. 130°B. 150°C. 160°D. 170°【答案】C【解析】根据平行四边形对角相等、邻角互补,得∠ABC=60°,∠DCB=120°,再由∠A′DC=10°,可运用三角形外角求出∠DA′B=130°,再根据旋转的性质得到∠BA′E′=∠BAE=30°,从而得到答案.解:∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°,∵∠ADA′=50°,∴∠A′DC=10°,∴∠DA′B=130°,∵AE⊥BC于点E,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=∠DA′B+∠BA′E′=160°.故选C.学科@网2.如图,中,,,将绕点顺时针旋转得到,当点、、三点共线时,旋转角为,连接,交于点.下面结论:①为等腰三角形;②;③;④中,正确的是()A. ①③④B. ①②④C. ②③④D. ①②③④【答案】B3.三角板ABC中,∠ACB=90°,∠B=30°,AC=3,三角板绕直角顶点C逆时针旋转,当点A的对应点A′落在AB边的起始位置上时即停止转动,则B点转过的路径长为()A. 32πB.433πC. 2πD. 3π【答案】C4.如图,将△ABC绕点B逆时针旋转60°得到△A′C′B,且BC=2,那么CC′的长是___________.【答案】2;【解析】试题解析:∵△ABC绕点B逆时针旋转60°得到△A′C′B,∴BC=BC′=2,∠CBC′=60°,∴△BCC′为等边三角形,∴CC′=BC=BC′=2.学科@网5.如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=12cm,将△ABC以点B为中心顺时针旋转,使点C 旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm2.(结果保留π).【答案】36π6.在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC=__________.【答案】7【解析】试题解析:∵∠ACB=90°,AC=1,BC=,∴tan∠ABC=,∴∠ABC=30°,∵△AOB绕点B顺时针方向旋转60°,∴∠A′BC=∠ABC+60°=30°+60°=90°,∴A′B⊥CB,∵∠ACB=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=∠BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C=,∴OA+OB+OC=A′O′+OO′+OC=A′C=.7.如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为____.【答案】9π8.如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,若AF=4,AB=7.(1)旋转中心为______;旋转角度为______;(2)DE的长度为______;(3)指出BE与DF的位置关系如何?并说明理由.【答案】(1)A,90°;(2)3;(3)BE⊥DF,理由见解析.9.如图(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD ⊥AE于D,CE⊥AE于E(1)试说明:BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果;(3)若直线AE绕A点旋转到图(3)位置时(BD>CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果,不需说明理由.【答案】(1)证明见解析;(2)DE=BD+CE;(3)DE=BD+CE.10.(1)探究:如图,四边形ABCD 中,已知AB AD =, 90BAD ∠=︒,点E F 、分别在边BC CD 、上, 45EAF ∠=︒;①如图1,若B ADC ∠∠、都是直角,把ABE 绕点A 逆时针旋转90︒至ADG ,使AB 与AD 重合,则能证得EF BE DF =+,请写出推理过程;②如图2,若B D ∠∠、不是直角,则当B D ∠∠、满足数量关系 时,仍有EF BE DF =+;(2)拓展:如图3,在ABC 中, 90BAC ∠=︒, 22AB AC ==,点D E 、均在边BC 上,且45DAE ∠=︒,若1BD =,求DE 的长.【答案】(1)①证明见解析; ②当∠B +∠ADC =180°时,EF =BE +DF ;(2) DE =53. 【解析】试题分析: (1)①根据旋转的性质得出AE =AG ,∠BAE =∠DAG ,BE =DG ,求出∠EAF =∠GAF =45°,根据SAS 推出△EAF ≌△GAF ,根据全等三角形的性质得出EF =GF ,即可求出答案;②根据旋转的性质得出AE =AG ,∠B =∠ADG ,∠BAE =∠DAG ,求出C 、D 、G 在一条直线上,根据SAS 推出△EAF ≌△GAF ,根据全等三角形的性质得出EF =GF ,即可求出答案;(2)根据等腰直角三角形性质好勾股定理求出∠ABC =∠C =45°,BC =4,根据旋转的性质得出AF =AE ,∠FBA =∠C =45°,∠BAF =∠CAE ,求出∠F AD =∠DAE =45°,证△F AD ≌△EAD ,根据全等得出DF =DE ,设DE =x ,则DF =x ,BF =CE =3−x ,根据勾股定理得出方程,求出x 即可.②当∠B +∠ADC =180°时,EF =BE +DF ;把△ACE 旋转到ABF 的位置,连接DF ,则∠F AB =∠CAE .∵∠BAC =90°,∠DAE =45°,∴∠BAD +∠CAE =45°,又∵∠F AB =∠CAE ,∴∠F AD =∠DAE =45°,则在△ADF 和△ADE 中, AD AD FAD DAE AF AE =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ADE ,∴DF =DE ,∠C =∠ABF =45°,∴∠BDF =90°,∴△BDF 是直角三角形,∴222BD BF DF +=,∴222BD CE DE +=. ∵∠BAC =90°,AB =AC =22,∴BC =4,∵BD =1,∴DC =3,EC =3-DE ,∴()2213DE DE +-=,解得DE =53.学科@网____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________。
专题22 图形的旋转考点总结【思维导图】【知识要点】知识点一旋转的基础旋转的概念:把一个平面图形绕着平面内某一点O转动一个角度,叫作图形的旋转.点O叫作旋转中心,转动的角叫作旋转角.如图形上的点P经过旋转变化点P',那么这两个点叫作这个旋转的对应点.如图所示,A OB''∆绕定点O逆时针旋转45︒得到的,其中点A与点A'叫作对应点,线段OB与∆是AOB线段OB'叫作对应线段,OAB∠与OA B'∠)的度数叫∠叫作对应角,点O叫作旋转中心,AOA'∠(或BOB'作旋转的角度. 【注意】1.图形的旋转由旋转中心、旋转方向与旋转的角度所决定.2.旋转中心可以是图形内,也可以是图形外。
【图形旋转的三要素】旋转中心、旋转方向和旋转角. 旋转的特征:➢ 对应点到旋转中心的距离相等;➢ 对应点与旋转中心所连线段的夹角等于旋转角; ➢ 旋转前、后的图形全等. 旋转作图的步骤方法:➢ 确定旋转中心、旋转方向、旋转角; ➢ 找出图形上的关键点;➢ 连接图形上的关键点与旋转中心,然后按旋转方向分别将它们旋转一定的角度,得到关键点的对应点; ➢ 按原图的顺序连接这些对应点,即得旋转后的图形. 平移、旋转、轴对称之间的联系:变化后不改变图形的大小和形状,对应线段相等、对应角相等。
平移、旋转、轴对称之间的区别: 1) 变化方式不同:平移:将一个图形沿某个方向移动一定距离。
旋转:将一个图形绕一个顶点沿某个方向转一定角度。
轴对称:将一个图形沿一条直线对折。
2) 对应线段、对应角之间的关系不同平移: 变化前后对应线段平行(或在一条直线上),对应点连线平行(或在一条直线上),对应角的两边平行(或在一条直线上)、方向一致。
旋转: 变化前后任意一对对应点与旋转中心的连线所称的角都是旋转角。
轴对称:对应线段或延长线如果相交,那么交点在对称轴上。
3)确定条件不同A平移:距离与方向旋转:旋转的三要素。
2012年全国中考数学试题分类解析汇编(159套63专题)专题54:图形的旋转变换一、选择题1. (2012天津市3分)将下列图形绕其对角线的交点逆时针旋转900,所得图形一定与原图形重合的是【 】(A )平行四边形 (B )矩形 (C )菱形 (D )正方形 【答案】D 。
【考点】旋转对称图形【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件:此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形。
故选D 。
2. (2012广东佛山3分)如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是【 】A .πB ..3+42π.11124π【答案】D 。
【考点】旋转的性质,勾股定理,等边三角形的性质,扇形面积。
【分析】因为旋转过程中这个三角板扫过的图形的面积分为三部分扇形ACA 1、 BCD 和△ACD 计算即可:在△ABC 中,∠ACB=90°,∠BAC=30°,AB=2,∴BC=12AB=1,∠B=90°-∠BAC=60°。
∴AC =∴AB C 1S B C A C 22∆=⨯⨯=设点B 扫过的路线与AB 的交点为D ,连接CD , ∵BC=DC,∴△BCD 是等边三角形。
∴BD=CD=1。
∴点D 是AB 的中点。
∴AC D AB C 11S S 2224∆∆==⨯=S 。
∴1AC D AC A BC D ABC S S S ∆∆=++扇形扇形的面扫过积26013113603604464124ππππ⨯⨯=+=++=+故选D 。
3. (2012广东汕头4分)如图,将△ABC 绕着点C 顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是【 】A .110° B.80° C.40° D.30° 【答案】B 。
旋转变换通常结合全等三角形探索角的数量关系,线段与线段之间的位置关系与数量关系,经常作为作为中等偏难一点的题型出现.旋转的性质有:①旋转角是对应点与旋转中心所连线段的夹角是旋转角;②旋转前后的图形全等;③对应点到旋转中心的距离相等.如图,△ABC绕点O逆时针方向旋转∠AOA′到△A′B′C′的位置,则①旋转角是∠AOA′=∠BOB′=∠COC′;②△ABC≌△A′B′C′;③OA=OA′,OB=OB′,OC=OC′.1.注意旋转的三要素:旋转中心,旋转方向,旋转角;2.抓住旋转只是改变图形的位置,不改变图形的形状和大小,即旋转前后的图形全等;3.能够用旋转解题的图形的基本特征是有公共端点且相等的两条线段,这个公共端点往往会是旋转中心.例1.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于( )A. 55°B. 70°C. 125°D. 155°【答案】C例2.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON 的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 1【答案】B学科@网【精细解读】因为角平分线上的点到角的两边的距离相等,所以存在着隐性的有公共端点的相等线段的特征,故可考虑过点P作∠AOB的两边的垂线,再结合旋转的性质求解.如图作PE⊥OA于E,PF⊥OB于F.例3.如图1,在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长.(2)如图3,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接P A、PB、PC,当AC=3,AB=6时,根据此图求P A+PB+PC的最小值.【答案】(1)33(2)37∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,22CE=CD DE=369=27=33--;(2)证明:如图所示,1.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是 ( )A. 6B. 6C. 3D. 3+3【答案】A【解析】试题解析:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′=,∴BC′=3-3,在等腰Rt△OBC′中,OB=BC′=3-3,在直角三角形OBC′中,OC′=(3-3)=6-3,∴OD′=3-OC′=3-3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3-3+3-3=6.故选A.2.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF =_________cm.【答案】33.如图,菱形ABCD中,边长为2,∠B=60°,将△ACD绕点C旋转,当AC(即A′C)与AB交于一点E,CD(即CD′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值,如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.【答案】2+3(每道试题10分,总计100分)1.如图,在□ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′,若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A. 130°B. 150°C. 160°D. 170°【答案】C【解析】根据平行四边形对角相等、邻角互补,得∠ABC=60°,∠DCB=120°,再由∠A′DC=10°,可运用三角形外角求出∠DA′B=130°,再根据旋转的性质得到∠BA′E′=∠BAE=30°,从而得到答案.解:∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°,∵∠ADA′=50°,∴∠A′DC=10°,∴∠DA′B=130°,∵AE⊥BC于点E,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=∠DA′B+∠BA′E′=160°.故选C.2.如图,中,,,将绕点顺时针旋转得到,当点、、三点共线时,旋转角为,连接,交于点.下面结论:①为等腰三角形;②;③;④中,正确的是()A. ①③④B. ①②④C. ②③④D. ①②③④【答案】B3.三角板ABC中,∠ACB=90°,∠B=30°,AC=23,三角板绕直角顶点C逆时针旋转,当点A的对应点A′落在AB边的起始位置上时即停止转动,则B点转过的路径长为()A. 32πB.433πC. 2πD. 3π【答案】C4.如图,将△ABC绕点B逆时针旋转60°得到△A′C′B,且BC=2,那么CC′的长是___________.【答案】2;【解析】试题解析:∵△ABC绕点B逆时针旋转60°得到△A′C′B,∴BC=BC′=2,∠CBC′=60°,∴△BCC′为等边三角形,∴CC′=BC=BC′=2.学科@网5.如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=12cm,将△ABC以点B为中心顺时针旋转,使点C 旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm2.(结果保留π).【答案】36π6.在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC=__________.【答案】7【解析】试题解析:∵∠ACB=90°,AC=1,BC=,∴tan∠ABC=,∴∠ABC=30°,∵△AOB绕点B顺时针方向旋转60°,∴∠A′BC=∠ABC+60°=30°+60°=90°,∴A′B⊥CB,∵∠ACB=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=∠BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C=,∴OA+OB+OC=A′O′+OO′+OC=A′C=.7.如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为____.【答案】9π8.如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,若AF=4,AB=7.(1)旋转中心为______;旋转角度为______;(2)DE的长度为______;(3)指出BE与DF的位置关系如何?并说明理由.【答案】(1)A,90°;(2)3;(3)BE⊥DF,理由见解析.9.如图(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD ⊥AE于D,CE⊥AE于E(1)试说明:BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果;(3)若直线AE 绕A 点旋转到图(3)位置时(BD >CE ),其余条件不变,问BD 与DE 、CE 的关系如何?请直接写出结果,不需说明理由.【答案】(1)证明见解析;(2)DE =BD +CE ;(3)DE =BD +CE .10.(1)探究:如图,四边形ABCD 中,已知AB AD =, 90BAD ∠=︒,点E F 、分别在边BC CD 、上, 45EAF ∠=︒;①如图1,若B ADC ∠∠、都是直角,把ABE V 绕点A 逆时针旋转90︒至ADG V ,使AB 与AD 重合,则能证得EF BE DF =+,请写出推理过程;②如图2,若B D ∠∠、不是直角,则当B D ∠∠、满足数量关系 时,仍有EF BE DF =+;(2)拓展:如图3,在ABC V 中, 90BAC ∠=︒, 22AB AC ==,点D E 、均在边BC 上,且45DAE ∠=︒,若1BD =,求DE 的长.【答案】(1)①证明见解析; ②当∠B +∠ADC =180°时,EF =BE +DF ;(2) DE =53. 【解析】试题分析: (1)①根据旋转的性质得出AE =AG ,∠BAE =∠DAG ,BE =DG ,求出∠EAF =∠GAF =45°,根据SAS 推出△EAF ≌△GAF ,根据全等三角形的性质得出EF =GF ,即可求出答案;②根据旋转的性质得出AE =AG ,∠B =∠ADG ,∠BAE =∠DAG ,求出C 、D 、G 在一条直线上,根据SAS 推出△EAF ≌△GAF ,根据全等三角形的性质得出EF =GF ,即可求出答案;(2)根据等腰直角三角形性质好勾股定理求出∠ABC =∠C =45°,BC =4,根据旋转的性质得出AF =AE ,∠FBA =∠C =45°,∠BAF =∠CAE ,求出∠F AD =∠DAE =45°,证△F AD ≌△EAD ,根据全等得出DF =DE ,设DE =x ,则DF =x ,BF =CE =3−x ,根据勾股定理得出方程,求出x 即可.②当∠B +∠ADC =180°时,EF =BE +DF ;把△ACE 旋转到ABF 的位置,连接DF ,则∠F AB =∠CAE .∵∠BAC =90°,∠DAE =45°,∴∠BAD +∠CAE =45°,又∵∠F AB =∠CAE ,∴∠F AD =∠DAE =45°,则在△ADF 和△ADE 中, AD AD FAD DAE AF AE =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ADE ,∴DF =DE ,∠C =∠ABF =45°,∴∠BDF =90°,∴△BDF 是直角三角形,∴222BD BF DF +=,∴222BD CE DE +=.∵∠BAC =90°,AB =AC =22,∴BC =4,∵BD =1,∴DC =3,EC =3-DE ,∴()2213DE DE +-=,解得DE =53.学科@网。
专题22 几何三大变换问题之旋转(中心对称)问题轴对称、平移、旋转是平面几何的三大变换。
旋转变换是指在同一平面内,将一个图形(含点、线、面)整体绕一固定点旋转一个定角,这样的图形变换叫做图形的旋转变换,简称旋转。
旋转由旋转中心、旋转的方向和角度决定。
经过旋转,旋转前后图形的形状、大小不变,只是位置发生改变;旋转前、后图形的对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上; 旋转前、后的图形对应点与旋转中心所连线段的夹角等于旋转角。
把一个图形绕着某一定点旋转一个角度360°/n(n 为大于1的正整数)后,与初始的图形重合,这种图形就叫做旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角。
特别地,中心对称也是旋转对称的一种的特别形式。
把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。
如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。
在初中数学以及日常生活中有着大量的旋转变换的知识,是中考数学的必考内容。
中考压轴题中旋转问题,包括直线(线段)的旋转问题;三角形的旋转问题;四边形旋转问题;其它图形的问题。
一. 直线(线段)的旋转问题1. 如图,直线l :y 3x 3=-+与y 轴交于点A ,将直线l 绕点A 顺时针旋转75º后,所得直线的解析式为【 】A .y 33=B .y x 3=+.y x 3=-+ D .y x 3=【答案】B 。
【考点】旋转的性质,待定系数法,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。
【分析】如图,由已知,可求直线y3x3=-+与x、y轴的交点分别为B(1,0),A(0,3),2.根据要求,解答下列问题:(1)已知直线l1的函数表达式为y x1=+,直接写出:①过原点且与l1垂直的直线l2的函数表达式;②过点(1,0)且与l1垂直的直线l2的函数表达式;(2)如图,过点(1,0)的直线l4向上的方向与x轴的正方向所成的角为600,①求直线l4的函数表达式;②把直线l4绕点(1,0)按逆时针方向旋转900得到的直线l5,求直线l5的函数表达式;(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线11y x55=-垂直的直线l6的函数表达式。
旋转变换构造全等三角形一 、选择题1.如下图,在线段AE 同侧作两个等边三角形ABC ∆和CDE ∆(120ACE ∠<°),点P与点M 分别是线段BE 和AD 的中点,则CPM ∆是( )A .钝角三角形B .直角三角形C .等边三角形D .非等腰三角形二 、填空题2.如图,以等腰直角三角形ABC 的斜边AB 为边作等边△ABD ,连结DC ,以DC 为边作等边△DCE ,B ,E 在C ,D 的同侧.若,2=AB 则BE =______.3.如图,把边长为1的正方形ABCD 绕顶点A 逆时针旋转30°到正方形A ′B ′C ′D ′,则它们的公共部分的面积等于______.三 、解答题4.已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.PMBCD EA求证:(1)AN BM =(2)CD CE =(3)CF 平分AFB ∠(4)CDE △是等边三角形.5.如图所示.正方形ABCD 中,在边CD 上任取一点Q ,连AQ ,过D 作DP ⊥AQ ,交AQ 于R ,交BC 于P ,正方形对角线交点为O ,连OP ,OQ .求证:OP ⊥OQ .6.如图,B ,C ,E 三点共线,且ABC ∆与DCE ∆是等边三角形,连结BD ,AE 分别交AC ,DC 于M ,N 点.求证:CM CN =.7.如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,D 是AN 中点,E是BM 中点,求证:CDE ∆是等边三角形.MDNE C BF A QRP O D CB AN ME DC B AM DNEC B A8.正方形ABCD 中,E 为上的一点,F 为CD 上的一点,BE DF EF +=,求EAF ∠的度数.9.如图,在△ABC 外面作正方形ABEF 与ACGH ,AD 为△ABC 的高,其反向延长线交FH 于M ,求证:(1)BH CF =;(2)MF MH =10.如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.请你证明:⑴AN BM =;⑵DE AB ∥;⑶CF 平分AFB ∠.11.请阅读下列材料:已知:如图1在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 、E 分别为线段BC 上两动点,若45DAE ∠=︒.探究线段BD 、DE 、EC 三条线段之间的数量关系. F E DC B A G FE D CB A MEFHGD CB A MDNE C BF A小明的思路是:把AEC ∆绕点A 顺时针旋转90︒,得到ABE '∆,连结E D ', 使问题得到解决.请你参考小明的思路探究并解决下列问题:⑴ 猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明;⑵ 当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图2,其它条件不变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明.图1AB CD E 图2A B C D E旋转变换构造全等三角形答案解析一 、选择题1.C;易得ACD BCE ∆∆≌.所以BCE ∆可以看成是ACD ∆绕着点C 顺时针旋转60︒而得到的.又M 为线段AD 中点,P 为线段BE 中点,故CP 就是CM 绕着点C 顺时针旋转60°而得.所以CP CM =且,60PCM ∠=°,故CPM ∆是等边三角形,选C .二 、填空题2.1;由题可知,BED △是由ACD △绕点D 旋转60得到的,所以1BE AC ==;设线段CD 与B C ''的交点为M ,则公共部分AB MD '的面积等于直角三角形ADM 和直角三角形AB M '的面积的和,因为是经过旋转后得到的公共部分,可容易得到ADM AB M '△≌△,又根据勾股定理容易得到1323ADM S =△,所以ADMB S '三 、解答题4.(1)∵ACM ∆、CBN ∆是等边三角形,∴MC AC =,CN CB =,ACN MCB ∠=∠∴ACN MCB ∆∆≌,∴AN BM =(2)ACD MCE ≌△△,∴CD CE =(3)往角两边作垂线,∵第一问已证ACN MCB ∆∆≌∴对应高相等,即角平分线到角两边距离相等(4)∵CD CE =又∵60CDE ∠=︒∴CDE △是等边三角形5.证:在正方形ABCD 中,因为AQ ⊥DP ,所以,在Rt △ADQ 与Rt △RDQ 中有∠RDQ=∠QAD .所以,在Rt △ADQ 与Rt △DCP 中有AD=DC ,∠ADQ=∠DCP=90°,∠QAD=∠PDC ,所以△ADQ ≌△DCP(ASA),DQ=CP .又在△DOQ 与△COP 中,DO=CO ,∠ODQ=∠OCP=45°,所以△DOQ ≌△COP(SAS),∠DOQ=∠COP .从而∠POQ=∠COP+∠COQ=∠DOQ+∠COQ=∠COD=90°,即OP ⊥OQ .【解析】欲证OP ⊥OQ ,即证明∠COP+∠COQ=90°.然而,∠COQ+∠QOD=90°,因此只需证明∠COP=∠DOQ 即可.这归结为证明△COP ≌△DOQ ,又归结为证明CP=DQ ,最后,再归结为证明△ADQ ≌△DCP 的问题.6.∵ABC ∆与DCE ∆都是等边三角形∴BC AC =,CD CE =及60ACB DCE ∠=∠=︒∵B ,C ,E 三点共线∴180BCD DCE ∠+∠=︒,180BCA ACE ∠+∠=︒∴120BCD ACE ∠=∠=︒在BCD ∆与ACE ∆中BC ACBCD ACE DC EC=⎧⎪∠=∠⎨⎪=⎩ ∴BCD ACE ∆∆≌,∴CAN CBM ∠=∠∵120BCD ACE ∠=∠=︒,60BCM NCE ∠=∠=︒∴60ACD ∠=︒在BCM ∆与ACN ∆中60BC ACBCM ACN CBM CAN=⎧⎪∠==︒⎨⎪∠=∠⎩ ∴BCM ACN ∆∆≌,∴CM CN =.7.∵ACN MCB ∆∆≌,∴AN BM =,ABM ANC ∠=∠又∵D 、E 分别是AN 、BM 的中点,∴BCE NCD ∆∆≌,∴CE CD =,BCE NCD ∠=∠∴60DCE NCD NCE BCE NCE NCB ∠=∠+∠=∠+∠=∠=∴CDE ∆是等边三角形8.延长CB ,在CB 的延长线上取一点G ,使得DF BG =,故AGB AFD ≌△ ,AGE AFE ≌△△,所以45EAF ∠=︒9.证明△ABH ≌△AFC ;(2)作P MD FP 于⊥,Q MD HQ 于⊥,先证△AFP ≌△BAD ,△ACD ≌△HAQ ,再证△FPM ≌△HQM10.此图是旋转中的基本图形.其中蕴含了许多等量关系.60MCN ∠=与三角形各内角相等,及平行线所形成的内错角及同位角相等;全等三角形推导出来的对应角相等…推到而得的:AFC BFC ∠=∠;AN BM =,CD CE =,AD ME =,ND BE =;AM CN ∥,CM BN ∥;DE AB ∥ACN MCB ∆∆≌,ADC MCE ∆∆≌,NDC BEC ∆∆≌;DEC ∆为等边三角形.⑴∵ACM ∆、CBN ∆是等边三角形,∴MC AC =,CN CB =,ACN MCB ∠=∠∴ACN MCB ∆∆≌,∴AN BM =⑵由ACN MCB ∆∆≌易推得NDC BEC ∆∆≌,所以CD CE =,又60MCN ∠=, 进而可得DEC ∆为等边三角形.易得DE AB ∥.⑶过点C 作CG AN ⊥于G ,CH BM ⊥于H ,由ACN MCB ∆∆≌, 利用AAS 进而再证BCH NCD ∆∆≌,可得AFC BFC ∠=∠,故CF 平分AFB ∠.11.⑴ 222DE BD EC =+证明:根据AEC ∆绕点A 顺时针旋转90︒得到ABE '∆∴AEC ABE '∆∆≌∴BE EC '=,AE AE '=,C ABE '∠=∠,EAC E AB '∠=∠在Rt ABC ∆中∵AB AC =∴45ABC ACB ∠=∠=︒∴90ABC ABE '∠+∠=︒即90E BD '∠=︒∴222E B BD E D ''+=又∵45DAE ∠=︒∴45BAD EAC ∠+∠=︒∴45E AB BAD '∠+∠=︒即45E AD '∠=︒∴AEDAED '∆∆≌ ∴DE DE '=∴222DE BD EC =+⑵ 关系式222DE BD EC =+仍然成立证明:将ADB ∆沿直线AD 对折,得AFD ∆,连FE ∴AFD ABD ∆∆≌∴AF AB =,FD DB =FAD BAD ∠=∠,AFD ABD ∠=∠又∵AB AC =,∴AF AC =∵45FAE FAD DAE FAD ∠=∠+∠=∠+︒()9045EAC BAC BAE DAE DAB DAB ∠=∠-∠=︒-∠-∠=︒+∠ ∴FAE EAC ∠=∠又∵AE AE =∴AFE ACE ∆∆≌∴FE EC =,45AFE ACE ∠=∠=︒180135AFD ABD ABC ∠=∠=︒-∠=︒∴1354590DFE AFD AFE ∠=∠-∠=︒-︒=︒∴在Rt DFE ∆中222DF FE DE +=即222DE BD EC =+E'E D C B AF E D CB A。
模型介绍★旋转动角问题三步解题技巧总结☑一.根据题意找到目标角度☑二.表示出目标角度1.角度一边动另一边不动,角度变大:目标角=起始角+速度×时间2.角度一边动另一边不动,角度变小:目标角=起始角-速度×时间3.角度一边动另一边不动,角度先变小后变大:变小:目标角=起始角-速度×时间变大:目标角=速度×时间-起始角4.角度两边都动,运动方向相同且变大目标角=起始角+速度差×时间5.角度两边都动,运动方向相同且变小目标角=起始角-速度差×时间6.角度两边都动,运动方向相反目标角=起始角+速度和×时间☑三.根据题意列方程求解例题精讲【例1】.如图,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD,当OC边与OB边重合时,∠COD从图中的位置绕点O顺时针旋转n°(0<n<126),则n°=51°或69°.时,∠MON=2∠BOC.解:①0°<n<54°时,∠BOC=n°,∠MON=2n°,∠MON=(126°+n°)+54°﹣(54°+n°)=100°,∴n=51.②当54°<n<126°时,∠AOC=360°﹣(126°+n°)=234°﹣n°,∠BOD=54°+n°,∴∠MON=360°﹣∠AOM﹣∠AOB﹣∠BON=360°﹣(234°﹣n°)﹣126°﹣(54°+n°)=138°∴n=69.综上所述,n的值为51或69.故答案为:51°或69°.变式训练【变式1-1】.已知两个完全相同的直角三角形纸片△ABC、△DEF,如图放置,点B、D 重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图中的△ABC绕点F按每秒15°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为2或8或10秒.解:∵∠E=∠ABC=30°,∠C=∠EFB=90°,∠E=∠ABC=30°,∴∠D=∠A=60°.①当DE∥AC时,如图1中,∵∠C=90,∴AC⊥BC,∴DE⊥BC,∴∠D+∠BFD=90°,∴∠BFD=90°﹣60°=30°,∴旋转时间t==2s.②如图2中,当DE∥BC时,∠BFE=∠E=30°,∴∠DFB=90°+30°=120°,∴旋转时间t==8s.③当DE∥AB时,如图3中,∴∠BGF=∠E=30°,∴∠BFE=30°+30°=60°,∴∠DFB=60°+90°=150°,∴旋转时间t==10s.综上所述,旋转时间为2s或8s或10s时,△ABC恰有一边与DE平行.故答案为:2或8或10.【变式1-2】.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.如图2,若∠MPN=75°,且射线PQ绕点P从PN位置开始,以每秒15°的速度逆时针旋转,射线PM同时绕点P以每秒5°的速度逆时针旋转,当PQ与PN成180°时,PQ与PM同时停止旋转,设旋转的时间为t秒.当射线PQ是∠MPN的“巧分线”时,t的值为3或或.解:当∠NPQ=∠MPN时,15t=(75+5t),解得t=3;当∠NPQ=∠MPN时,15t=(75+5t),解得t=.当∠NPQ=∠MPN时,15t=(75+5t),解得t=.故t的值为3或或.故答案为:3或或.【例2】.一副三角板按图1方式拼接在一起,其中边OA,OC与直线EF重合,∠AOB=45°,∠COD=60°,保持三角板COD不动,将三角板AOB绕着点O顺时针旋转一个角度α,(如图2),在转动过程中两块三角板都在直线EF的上方,当OB平分由OA,OC,OD其中任意两边组成的角时,α的值为30°或90°或105°.解:当OB平分∠AOD时,∵∠AOE=α,∠COD=60°,∴∠AOD=180°﹣∠AOE﹣∠COD=120°﹣α,∴∠AOB=∠AOD=60°﹣α=45°,∴α=30°,当OB平分∠AOC时,∵∠AOC=180°﹣α,∴∠AOB=90°﹣α=45°,∴α=90°;当OB平分∠DOC时,∵∠DOC=60°,∴∠BOC=30°,∴α=180°﹣45°﹣30°=105°,综上所述,旋转角度α的值为30°或90°或105°;故答案为:30°或90°或105°.变式训练【变式2-1】.将一副直角三角板ABC,ADE按如图1叠加放置,其中B与E重合,∠BAC =45°,∠BAD=30°.将三角板ADE从图1位置开始绕点A顺时针旋转,并记AM,AN分别为∠BAE,∠CAD的平分线,当三角板ADE旋转至如图2的位置时,∠MAN的度数为37.5°.解:∵AM,AN分别为∠BAE,∠CAD的角平分线,∴∠MAE=∠BAE,∠NAC=∠DAC,∴∠MAN=∠MAE+∠NAC﹣∠CAE=(∠BAE+∠DAC)﹣∠CAE=(∠BAC+∠DAE+2∠CAE)﹣∠CAE=×75°=37.5°;故答案为:37.5.【变式2-2】.如图①,O为直线AB上一点作射线OC,使∠AOC=120°,将一个直角三角尺如图摆放,直角顶点在点O处,一条直角边OP在射线OA上,将图①中的三角尺绕点O以每秒5°的速度按逆时针方向旋转(如图②所示),在旋转一周的过程中第t 秒时,OQ所在直线恰好平分∠BOC,则t的值为24s或60s.解:如图1,∵∠AOC=120°,∴∠BOC=60°,∵OQ平分∠BOC,∴∠BOQ=∠BOC=30°,∴t==24s;如图2,∵∠AOC=120°,∴∠BOC=60°,∵OQ′平分∠BOC,∴∠AOQ=∠BOQ′=∠BOC=30°,∴t==60s,综上所述,OQ所在直线恰好平分∠BOC,则t的值为24s或60s,故答案为:24s或60s.1.如图,已知PQ∥MN,点A,B分别在MN,PQ上,射线AC自射线AM的位置开始,以每秒3°的速度绕点A顺时针旋转至AN便立即逆时针回转,射线BD自射线BP的位置开始,以每秒1°的速度绕点B逆时针旋转至BQ后停止运动.若射线BD先转动30秒,射线AM才开始转动,当射线AC,BD互相平行时,射线AC的旋转时间为37.5或105秒.解:根据题意,需要分两种情况,当射线AC顺时针旋转时,如图所示:∵PQ∥MN,∴∠PBD=∠BDN,∵BD∥AC,∴∠BDA=∠CAN,∴∠PBD=∠CAN,设射线AC运动时间为t,则∠MAC=3°t,∠PBD=30°+1°t,∴∠CAN=180°﹣3°t,∴30°+1°t=180°﹣3°t,解得t=37.5.当射线AC逆时针旋转时,如图所示:∵PQ∥MN,∴∠PBD=∠BDN,∵BD∥AC,∴∠BDA=∠CAN,∴∠PBD=∠CAN,设射线AC运动时间为t,则∠CAN=3°t﹣180°,∠PBD=30°+1°t,∴30°+1°t=3°t﹣180°,解得t=105.故答案为:37.5或105.2.如图1,直线ED上有一点O,过点O在直线ED上方作射线OC,将一直角三角板AOB (∠OAB=30°)的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB 在直线ED上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,旋转时间为t秒.若射线OC的位置保持不变,且∠COE=140°.则在旋转过程中,如图2,当t =2或8或32秒时,射线OA,OC与OD中的某一条射线恰好是另两条射线所夹角的平分线.解:当射线OA是∠COD的平分线时,∵∠COD=180°﹣∠COE=40°,OA是∠COD的平分线,∴∠AOD=∠COD=20°,∴t==2;当射线OC是∠AOD的平分线时,∠AOD=2∠COD=80°,∴t==8;当射线OD是∠COA的平分线时,360﹣10t=40,∴t=32,故答案为:2或8或32.3.如图1,已知∠ABC=50°,有一个三角板BDE与∠ABC共用一个顶点B,其中∠EBD =45°.(1)若BD平分∠ABC,求∠EBC的度数;(2)如图2,将三角板绕着点B顺时针旋转α度(0°<α<90°),当AB⊥BD时,求∠EBC的度数.解:(1)∵BD平分∠ABC,∠ABC=50°,∴∠CBD==25°,∵∠EBD=45°,∴∠EBC=∠EBD+∠DBC=45°+25°=70°.(2)∵AB⊥BD,∴∠ABD=90°,∵∠ABC=50°,∴∠DCB=90°﹣50°=40°,∵∠EBD=45°,∴∠EBC=45°﹣40°=5°.4.将一副三角板叠放在一起,使直角顶点重合于点O.(1)如图1,若∠AOD=35°,求∠BOC的度数;(2)如图(1),求∠BOD+∠AOC的度数;(3)如图(2)若三角板AOB保持不动,将三角板COD的边OD与边OA重合,然后将其绕点O旋转.试猜想在旋转过程中,∠AOC与∠BOD有何数量关系?请说明理由.解:(1)若∠AOD=35°,∵∠AOB=∠COD=90°,∴∠BOD=90°﹣35°=55°,∴∠BOC=90°﹣∠BOD=90°﹣55°=35°;(2)∵∠BOD=∠AOB+∠COD﹣∠AOC,∴∠BOD+∠AOC=∠AOB+∠COD=90°+90°=180°;(3)∠AOC与∠BOD互补.当∠AOB与∠DOC有重叠部分时,∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°;当∠AOB与∠DOC没有重叠部分时,∠AOB+∠COD+∠AOC+∠BOD=360°,又∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.5.已知∠AOB=60°,OM平分∠AOC,ON平分∠BOC,求:(1)如图1,OC为∠AOB内部任意一条射线,求∠MON=30°;(2)如图2,当OC旋转到∠AOB的外部时,∠MON的度数会发生变化吗?请说明原因;(3)如图3,当OC旋转到∠AOB(∠BOC<120°)的外部且射线OC在OB的下方时,OM平分∠AOC,射线ON在∠BOC内部,∠NOC=∠BOC,求∠COM﹣∠BON的值?解:(1)∵OM平分∠AOC,ON平分∠BOC,∠AOB=60°,∴∠MOC=∠AOC,∴∠NOC=∠BOC,∴∠MON=∠MOC+∠NOC=∠BOC+∠AOC=∠AOB=×60°=30°.故答案为:30°;(2)不变,当OC旋转到∠AOB的外部时,∵OM平分∠AOC,ON平分∠BOC,∠AOB=60°,∴∠MOC=∠AOC,∴∠NOC=∠BOC,∴∠MON=∠MOC﹣∠NOC=∠BOC﹣∠AOC=∠AOB=×60°=30°.∴∠MON的度数不会发生变化;(3)当OC旋转到∠AOB(∠BOC<120°)的外部且射线OC在OB的下方时,∵OM平分∠AOC,∠NOC=∠BOC,∴∠COM=∠AOC,∠BON=∠BOC,∴∠COM﹣∠BON=∠AOC﹣×∠BOC=∠AOC﹣∠BOC=∠AOB=30°.6.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC:∠BOC=1:2,∠MON 的一边OM在射线OB上,另一边ON在直线AB的下方,且∠MON=90°.(1)如图1,求∠CON的度数;(2)将图1中的∠MON绕点O以每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,如图2,若直线ON恰好平分锐角∠AOC,求∠MON所运动的时间t值;(3)在(2)的条件下,当∠AOC与∠NOC互余时,求出∠BOC与∠MOC之间的数量关系.解:(1)∵∠AOC:∠BOC=1:2,∠AOC+∠MOC=180°,∴∠AOC=,∵∠MON=90°,∴∠AON=90°,∴∠CON=∠AOC+∠AON=90°+60°=150°;(2)当直线ON平分∠AOC时,如图,ON'平分∠AOC,逆时针旋转60度至ON''时,直线ON平分所以t=3,∵∠AOC=60°,∴∠AON'=30°,此时射线ON逆时针旋转60度,∴∠MON所运动的时间t=60÷20=3(s);如图②,∵直线ON恰好平分锐角∠AOC,∴ON沿逆时针旋转的度数为90°+150°=240°,∴∠MON所运动的时间t==12(s);综上,∠MON所运动的时间t值为3s或12s;(3)如图③所示:∵∠AOC+∠NOC=90°,OM与OA重合∴∠BOC与∠MOC互补.如图②所示:当ON平分∠AOC时,∠AOC+∠NOC=90°,∴∠NOC=30°,∠MOC=120°,∠BOC=120°,∴∠BOC=∠MOC.综上所述:∠BOC与∠MOC互补或相等.顶点放在点O处.(1)如图1,将三角板MON的一边ON与射线OB重合时,求∠MOC的度数;(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的平分线,求∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图3时,∠NOC=∠AOM,求∠NOB的度数.解:(1)∵∠MON=90°,∠BOC=65°,∴∠MOC=∠MON﹣∠BOC=90°﹣65°=25°;(2)∵∠BOC=65°,OC是∠MOB的角平分线,∴∠MOB=2∠BOC=130°,∴∠BON=∠MOB﹣∠MON=130°﹣90°=40°,∠CON=∠COB﹣∠BON=65°﹣40°=25°,即∠BON=40°,∠CON=25°;(3)∵∠NOC=∠AOM,∴∠AOM=4∠NOC.∵∠BOC=65°,∴∠AOC=∠AOB﹣∠BOC=180°﹣65=115°,∵∠MON=90°,∴∠AOM+∠NOC=∠AOC﹣∠MON=115°﹣90°=25°,∴4∠NOC+∠NOC=25°,∴∠NOC=5°,∴∠NOB=∠NOC+∠BOC=70°.点放在O处,即∠DOE=90°.(1)如图1,若直角三角板DOE的一边OE放在射线OA上,求∠COD的度数;(2)如图2,将直角三角板DOE绕点O顺时针转动到某个位置,若OE恰好平分∠AOC,求∠COD的度数;(3)将直三角板DOE绕点O顺时针转动(OD与OB重合时为停止)的过程中,恰好∠COD=∠AOE,求此时∠BOD的度数.解:(1)由题意得∠BOD=90°,∵∠BOC=40°,∴∠COD=90°﹣40°=50°.(2)∵∠AOC+∠BOC=180°,∠BOC=40°,∴∠AOC=180°﹣40°=140°,∵OE平分∠AOC,∴∠COE=∠AOC=70°,∵∠DOE=90°,∴∠COD=90°﹣70°=20°,(3)①当∠COD在∠BOC的内部时,∵∠COD=∠BOC﹣∠BOD,而∠BOC=40°,∴∠COD=40°﹣∠BOD,∵∠AOE+∠EOD+∠BOD=180°,∠EOD=90°,∴∠AOE=90°﹣∠BOD,又∵∠COD=∠AOE,∴40°﹣∠BOD=(90°﹣∠BOD),∴∠BOD=15°;②当∠COD在∠BOC的外部时,∵∠COD=∠BOD﹣∠BOC,而∠BOC=40°,∴∠COD=∠BOD﹣40°,∵∠AOE+∠EOD﹣∠BOD=180°,∠EOD=90°,∴∠AOE=90°﹣∠BOD,又∵∠COD=∠AOE,∴∠BOD﹣40°=(90°﹣∠BOD),∴∠BOD=52.5°,综上所述:∠BOD的度数为15°或52.5°.9.已知∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD内旋转时,求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2度/秒的速度逆时针旋转t秒时,∠AOM=∠DON.求t的值.解:(1)因为∠AOD=160°,OM平分∠AOB,ON平分∠BOD,所以∠MOB=∠AOB,∠BON=∠BOD,即∠MON=∠MOB+∠BON=∠AOB∠BOD=(∠AOB+∠BOD)=∠AOD=80°,答:∠MON的度数为80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=∠AOC,∠BON=∠BOD,当OC在OB左侧时,如图:∠MON=∠MOC+∠BON﹣∠BOC=∠AOC∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;如图,当射线OC在OB右侧时,∵∠COM=∠AOC,∠BON=∠BOD,∴∠MON=∠MOC+∠BON+∠BOC=∠AOC+∠BOD+∠BOC=(∠AOC+∠BOD)+∠BOC=(∠AOD﹣∠BOC)+∠BOC=×140°+20°=90°;答:∠MON的度数为70°或90°.(3)∵射线OB从OA逆时针以2°每秒的速度旋转t秒,∠COB=20°,∴根据(2)中,得∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t°.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.答:t的值为21秒.10.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=25°;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.解:(1)∵∠MON=90°,∠BOC=65°,∴∠MOC=∠MON﹣∠BOC=90°﹣65°=25°.故答案为:25°.(2)∵∠BOC=65°,OC是∠MOB的角平分线,∴∠MOB=2∠BOC=130°.∴∠BON=∠MOB﹣∠MON=130°﹣90°=40°.∠CON=∠COB﹣∠BON=65°﹣40°=25°.即∠BON=40°,∠CON=25°;(3)∵∠NOC=∠AOM,∴∠AOM=4∠NOC.∵∠BOC=65°,∴∠AOC=∠AOB﹣∠BOC=180°﹣65=115°.∵∠MON=90°,∴∠AOM+∠NOC=∠AOC﹣∠MON=115°﹣90°=25°.∴4∠NOC+∠NOC=25°.∴∠NOC=5°.∴∠NOB=∠NOC+∠BOC=70°.11.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.(2)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM ﹣∠NOC的度数.解:(1)直线ON平分∠AOC.理由如下:如图,设ON的反向延长线为OD,∵OM平分∠BOC,∴∠MOC=∠MOB=,又∠MOD=∠MON=90°,∴∠COD=90°﹣∠BOC=30°,∵∠AOC=180°﹣∠BOC=60°,∴∠COD=∠AOC,∴OD平分∠AOC,即直线ON平分∠AOC;(2)∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.12.已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于0°且小于等于180°的角).(1)如图1,当OB、OC重合时,求∠EOF的度数;(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣∠BOF 的值是否为定值?若是定值,求出∠AOE﹣∠BOF的值;若不是,请说明理由.(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+∠EOF=6∠COD,则n=30或50或90.解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠EOB=∠AOB=×100°=50°,∠COF=∠COD=×40°=20°,∴∠EOF=∠EOB+∠COF=50°+20°=70°;(2)∠AOE﹣∠BOF的值不是定值,理由是:当0<n<80时,如图2.∠AOE﹣∠BOF的值是定值,理由是:∠AOC=∠AOB+n°,∠BOD=∠COD+n°,∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=∠AOC=(100°+n°),∠BOF=∠BOD=(40°+n°),∴∠AOE﹣∠BOF=(100°+n°)﹣(40°+n°)=30°;当n=80时,∠AOC=180°,∠AOE﹣∠BOF=(100°+80°)﹣(40°+80°)=30°;当80<n<90时,如图3.∠AOE=(360°﹣100°﹣α)=130°﹣n°,∠BOF=(40°+n°),则∠AOE﹣∠BOF=110°﹣n°,不是定值;(3)当0<n<40时,C和D在OA的右侧,∠AOD=∠AOB+∠COD+n°=100°+40°+n°=140°+n°,∠EOF=∠EOC+∠COF=∠EOC+∠COD﹣∠DOF=(100°+n°)+40°﹣(40°+n°)=70°,∵∠AOD+∠EOF=6∠COD,∴(140+n)+70°=6×40,∴n=30.当40≤n<80时,如图2所示,D在OA的左侧,C在OA的右侧.当∠AOD=∠AOB+∠COD+n°>180°时,∠AOD=360°﹣∠AOB﹣∠COD=220°﹣n°,∠EOF=70°,∵∠AOD+∠EOF=6∠COD,∴220°﹣n°+70°=6×40°,解得n=50.当80<n<140时,如图3所示,∠AOD=360°﹣100°﹣40°﹣n°=220°﹣n°,∠EOF=360°﹣(130°﹣n)﹣(40°+n)﹣100°=110°,则(220﹣n)+110°=240°,解得n=90°;当140≤n<180时,∠AOD=220°﹣n°,∠EOF=70°,则220﹣n+70=240,解得n=.故答案是:30或50或90.13.新定义问题如图①,已知∠AOB,在∠AOB内部画射线OC,得到三个角,分别为∠AOC、∠BOC、∠AOB.若这三个角中有一个角是另外一个角的2倍,则称射线OC为∠AOB的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)【阅读理解】(1)角的平分线是这个角的“幸运线”;(填“是”或“不是”)【初步应用】(2)如图①,∠AOB=45°,射线OC为∠AOB的“幸运线”,则∠AOC的度数为15°或22.5°或30°;【解决问题】(3)如图②,已知∠AOB=60°,射线OM从OA出发,以每秒20°的速度绕O点逆时针旋转,同时,射线ON从OB出发,以每秒15°的速度绕O点逆时针旋转,设运动的时间为t秒(0<t<9).若OM、ON、OA三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t值.解:(1)一个角的平分线是这个角的“幸运线”;故答案为:是;(2)①设∠AOC=x,则∠BOC=2x,由题意得,x+2x=45°,解得x=15°,②设∠AOC=x,则∠BOC=x,由题意得,x+x=45°,解得x=22.5°,③设∠AOC=x,则∠BOC=x,由题意得,x+x=45°,解得x=30°,故答案为:15°或22.5°或30°;(3)当0<t≤4时,∠MON=60+5t,∠AON=60﹣15t,若射线OA是∠MON的幸运线,则∠AON=,即60﹣15t=(60+5t),解得t=;∠AON=∠MON,即60﹣15t=(60+5t),解得t=;∠AON=∠MON,即60﹣15t=(60+5t),解得t=;当4<t<9时,∠MOA=20t,∠AON=15t﹣60,若射线ON是∠AOM的幸运线,则∠AON=∠MOA即15t﹣60=×20t,解得t=12(舍);∠AON=∠MOA,即15t﹣60=×20t,解得t=;∠AON=∠MOA,即15t﹣60=×20t,解得t=36(舍);故t的值是或或或.14.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如图1,如果OA,OC重合,且OD在∠AOB的内部,求∠MON的度数;(2)如图2,固定∠AOB,将图1中的∠COD绕点O顺时针旋转n°(0<n≤90).①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OC绕着O点顺时针旋转m°(0<m≤100),如图③,请直接写出∠MON 与旋转度数m°之间的数量关系:∠MON=m°+25°.解:(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°;(2)如图2,①∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°;②当∠MON=90°时,n+25=90,∴n=65.(3)如图3中,当ON在∠AOB内部时∠MON=∠AOM﹣∠AON=65°﹣(40°﹣m°)=m°+25°.当ON在∠AOB外部时时,∠MON=∠AOM+∠AON=65°+m°﹣40=m°+25°.综上所述,∠MON=m°+25°.故答案为:∠MON=m°+25°.15.已知∠AOB,过顶点O作射线OP,若∠BOP=∠AOP,则称射线OP为∠AOB的“好线”,因此∠AOB的“好线”有两条,如图1,射线OP1,OP2都是∠AOB的“好线”.(1)已知射线OP是∠AOB的“好线”,且∠BOP=30°,求∠AOB的度数;(2)如图2,O是直线MN上的一点,OB,OA分别是∠MOP和∠PON的平分线,已知∠MOB=30°,请通过计算说明射线OP是∠AOB的一条“好线”;(3)如图3,已知∠MON=120°,∠NOB=40°.射线OP和OA分别从OM和OB同时出发,绕点O按顺时针方向旋转,OP的速度为每秒12°,OA的速度为每秒4°,当射线OP旋转到ON上时,两条射线同时停止.在旋转过程中,射线OP能否成为∠AOB的“好线”.若不能,请说明理由;若能,直接写出符合条件的所有的旋转时间5秒或7.5秒..解:(1)∵射线OP是∠AOB的好线,且∠BOP=30°,∴∠AOP=∠BOP=60°,①当OP在∠AOB内部时,∠AOB=∠BOP+∠AOP=90°,②当OP在∠AOB外部时,∠A0B=∠AOP﹣∠BOP=30°,∴∠AOB=90°或30°;(2)∵OB,OA分别是∠MOP和∠PON的平分线,∴∠AOB=∠BOP+∠AOP=(∠MOP+∠NOP)=90°,∠BOP=∠BOM=30°,∴∠AOP=90°﹣30°=60°,∴∠BOP=∠AOP,∴OP是∠AOB的一条“好线”;(3)5秒或7.5秒.设运动时间为t,则∠MOP=12t,∠BOA=4t,①当OP在OB上方时,∠BOP=80°﹣12t,∠AOP=80°+4t﹣12t=80°﹣8t,∴80﹣8t=2(80﹣12t)解得:t=5;②当OP在OB下方时,∠BOP=12t﹣80°,∠AOP=80°+4t﹣12t=80°﹣8t,∴80﹣8t=2(12t﹣80),解得:t=7.5;综上所述:t的值为5秒或7.5秒.故答案为:5秒或7.5秒.16.如图,点O为直线AB上一点,∠AOC=90°,在直线AB上方有射线OM、ON分别从OA和OC开始绕点O顺时针旋转,旋转过程中始终保持∠AOM=2∠CON,OQ平分∠AON.(1)如图1,证明:ON平分∠MOB;(2)如图2,在旋转过程中,当∠CON=2∠MOQ时,求∠CON的度数;(3)如图3,在旋转过程中,∠AOM是锐角,射线OD在∠MON内部,∠MOD=30°,OP平分∠MON,∠MOQ:∠POD=m,∠NOB:∠QOC=n,在AB下方有射线OT,∠AOT=90°﹣(m+n)°,∠BOT+∠MOQ=110°,求∠AOM的度数解:(1)设∠CON=α,∠AOM=2∠CON=2α,∴∠AON=∠AOC+∠CON=90°+α,∵∠AOB=180°,∴∠NOB=∠AOB﹣∠AON=180°﹣(90°+α)=90°﹣α,∠MOB=∠AOB﹣∠AOM=180°﹣2α=2(90°﹣α),∴∠MOB=2∠NOB,∴ON平分∠MOB;(2)若射线OM在∠AOQ内时,∵OQ平分∠AON,∴∠AOQ=∠AON=(90°+α)=45°+α,∴∠MOQ=∠AOQ﹣∠AOM=45°+α﹣2α=45°﹣α,∵∠CON=2∠MOQ,∴α=2(45°﹣α),∴α=22.5°,即∠CON=22.5°,若射线OM在∠BOQ内时,∴∠MOQ=∠AOM﹣∠AOQ=2α﹣(45°+α)=α﹣45°,∵∠CON=2∠MOQ,∴α=2(α﹣45°),∴α=45°,即∠CON=45°,故∠CON的度数为22.5°或45°;(3)由(1)(2)知∠AON=90°+α;∠AOQ=45°+α,∠MOQ=45°﹣α;∠NOB=90°﹣α=2(45°﹣α),∴∠MON=∠AON﹣∠AOM=90°+α﹣2α=90°﹣α,∵OP平分∠MON,∴∠MOP=∠MON=(90°﹣α)=45°﹣α,情况1:射线OM在∠AOQ内,∠POD=∠MOP﹣∠MOD=45°﹣α﹣30°=15°﹣α,∠QOC=∠AOC﹣∠AOQ=90°﹣(45°+α)=45°﹣α,∴m=∠MOQ:∠POD=(45°﹣α):(15°﹣α)=3(15°﹣α):(15°﹣α)=3,n=∠NOB:∠QOC=(90°﹣α):(45°﹣α)=2(45°﹣α):(45°﹣α)=2,∴∠AOT=90°﹣(m+n)°=90°﹣(3+2)°=85°,∴∠BOT=∠AOB﹣∠AOT=180°﹣85°=95°,∵∠BOT+∠MOQ=110°,∴∠MOQ=110°﹣95°=15°,∴45°﹣α=15°,解得∠α=20°∠AOM=2α=40°,情况2:射线OM在∠BOQ内,∠POD=∠MOD﹣∠MOP=30°﹣(45°﹣α)=α﹣15°,∠MOQ=∠AOM﹣∠AOQ=2α﹣(45°+α)=α﹣45°=3(α﹣15°),∴m=∠MOQ:∠POD=(α﹣45°):(α﹣15°)=3(α﹣15°):(α﹣15°)=3,由情况1可知:n=∠NOB:∠QOC=(90°﹣α):(45°﹣α)=2,∴∠AOT=90°﹣(m+n)°=90°﹣(3+2)°=85°,∠BOT=95°,∠MOQ=15°,∴α﹣45°=15°,解得∠α=40°,∴∠AOM=2α=80°.故∠AOM的度数为40°或80°.17.如图1,∠AOB=40°,∠COD=60°,OM、ON分别为∠AOB和∠BOD的角平分线.(1)若∠MON=70°,则∠BOC=40°°;(2)如图2,∠COD从第(1)问中的位置出发,绕点O逆时针以每秒4°的速度旋转;当OC与OA重合时,∠COD立即反向绕点O顺时针以每秒6°的速度旋转,直到OC 与OA互为反向延长线时停止运动.整个运动过程中,∠COD的大小不变,OC旋转后的对应射线记为OC′,OD旋转后的对应射线记为OD′,∠BOD′的角平分线记为ON′,∠AOD′的角平分线记为OP.设运动时间为t秒.①当OC′平分∠BON′时,求出对应的t的值;②请问在整个运动过程中,是否存在某个时间段使得|∠BOP﹣∠MON′|的值不变?若存在,请直接写出这个定值及其对应的t的取值范围(包含运动的起止时间);若不存在,请说明理由.解:(1)∵OM为∠AOB的角平分线、∠AOB=40°,∴∠MOB=20°.∵∠MON=70°,∴∠BON=∠MON﹣∠MOB=50°.∵ON为∠BOD的角平分线,∴∠BON=∠DON=50°.∴∠CON=∠COD﹣∠DON=10°∴∠BOC=∠DON﹣∠CON=40°.故答案为:40°.(2)如图①:①逆时针旋转时:当C′在B上方时,根据题意可知,∠BOC′=40°﹣4t,∠BOD′=∠BOD﹣4t=100°﹣4t.∠BON′=∠BOD′==50°﹣2t,∵OC′平分∠BON′,∴∠BOC′=,即40°﹣4t=(50°﹣2t),解得:t=5(s).当C′在B下方时,此时C′也在N′下方,此时不存在OC′平分∠BON′.顺时针旋转时:如图②,同理当C′在B下方时,此时C′也在N′下方,此时不存在OC′平分∠BON′.当C′在B上方时,即OC′与OB重合,由题意可求OC′与OB重合用的时间=∠AOC÷4+∠AOB÷6=(∠AOB+∠BOC)÷4+∠AOB÷6=(s).∴OC′与OB重合之后,∠BOC′=6(t﹣)(s).∴∠BOD′=∠BOC′+60°=6(t﹣)+60°=6t﹣100°.∴∠BON′==(6t﹣100°)=3t﹣50°,∵OC′平分∠BON′,∴∠BOC′=,∴6(t﹣)=(3t﹣50°),解得:t=30(s)综上所述t的值为5或30.②逆时针旋转时:如图3中,当射线OP在射线OB的上方时,∵∠POB=(140°﹣4t)﹣40°=30°﹣2t,∠BON′=(100°﹣4t)=50°﹣2t,∴∠PON′=∠BON′﹣∠POB=20°∴|∠BOP﹣∠MON′|=|∠BOM+∠PON′|=40°,当OP与OB重合时,(140°﹣4t)﹣40°=0,解得t=15.∴0≤t≤15时,|∠BOP﹣∠MON′|的值不变,是40°.当射线OP返回时与OB重合时.时间t=20+=,当运动到射线OD与OA共线时,60°+6(t﹣20)=180°时,解得t=40,观察图象可知,≤t≤40时,|∠BOP﹣∠MON′|的值不变,是40°.当射线OD运动到与射线OB共线时,20°+6(t﹣20)=180°,解得t=,当≤t≤50时,如图4中,同法可得,∠PON′=20°,∴|∠BOP﹣∠MON′|=|∠BOM+∠PON′|=40°,综上所述,满足条件的t的值为:0≤t≤15或≤t≤40或≤t≤50.18.如图1,摆放一个三角形纸板ODE,边OD在正东方向的射线上,点A,B分别在正西,正东方向上,∠COF=30°,现将三角形纸板ODE从图1位置开始绕点O以每秒5度的速度逆时针方向匀速旋转,设旋转的时间为t秒,在旋转一周的过程中.(1)当t=5时,求∠AOD的度数,并写出点D的方向角;(2)如图2,当三角形纸板ODE旋转至△OD1E1时,边OE1恰好落在射线OF上,且OF平分∠AOD1,OD1平分∠BOC,求t的值,并写出点F的方向角;(3)当旋转至△OD2E2时,OE2所在直线平分∠AOC,求t的值.解:(1)因为三角形纸板ODE绕点O旋转的速度为每秒5度,所以当t=5时,∠BOD=25°,此时,点D在北偏东65°方向上,又∠AOD+∠BOD=180°,所以∠AOD=180°﹣∠BOD,即∠AOD=180°﹣25°=155°.(2)如图2中,设∠BOD1=x°.因为OD1平分∠BOC,所以∠BOC=2x°,∠COD1=x°,因为∠COF=30°,所以∠D1OF=∠COD1+∠COF=x°+30°=(x+30)°,又OF平分∠AOD1,即∠AOF=∠D1OF,因为∠AOF+∠D1OF+∠BOD1=180°,即2∠D1OF+∠BOD1=180°,所以2(x+30)°+x°=180°,化解得3x°=120°,解得x=40,所以三角形纸板ODE运动的时间(秒),所以∠AOF=∠D1OF=40°+30°=70°,由90°﹣70°=20°,得点F的方向角为北偏西20°.(3)如图3中,由(2)得∠AOC=180°﹣∠BOC=180°﹣2x°=180°﹣2×40°=100°,且∠D1OF=∠DOE=70°,又∠COE=∠BOC﹣∠DOE=80°﹣70°=10°,当OE2线段平分∠AOC时,OE旋转的角大小为,所以三角形纸板ODE旋转的时间为(秒),当线段OE2的反向延长线平分∠AOC时,OE旋转的角大小为60°+180°=240°,所以三角形纸板ODE旋转的时间为(秒).综上,当OE所在直线平分∠AOC时,t=12秒或48秒.19.如图为两个特殊三角板AOB和三角板COD,∠A=45°,∠D=60°,O为直角顶点,两直角顶点重合,A,O,D在同一直线上,OB,OC重合,OM平分∠COD,ON平分∠AOB.(1)∠MON=90度;(2)若三角板AOB与三角板COD位置如图(2)所示,满足∠BOC=20°,求∠MON 的度数;(3)在图(1)的情形下,三角板AOB固定不动,若三角板COD绕着O点旋转(旋转角度小于45°),∠BOC=α,求∠MON的度数(用含α的式子表示).解:(1)∵OM平分∠COD,ON平分∠AOB,∴∠MOC=∠COD,∠NOB=∠AOB,∵∠MON=∠MOC+∠NOB,∴∠MON=∠AOD,∵A,O,D在同一直线上,∴∠AOD=180°,∴∠MON=90°,故答案为90;(2)由题意可知∠AOB=∠COD=90°,∵OM平分∠COD,ON平分∠AOB,∴∠MOC=∠COD=45°,∠NOB=∠AOB=45°,∵∠MON=∠MOC+∠NOB﹣∠BOC,∠BOC=20°,∴∠MON=45°+45°﹣20°=70°;(3)①当两三角板由重叠时,由题意可知∠AOB=∠COD=90°,∵OM平分∠COD,ON平分∠AOB,∴∠MOC=∠COD=45°,∠NOB=∠AOB=45°,∵∠MON=∠MOC+∠NOB﹣∠BOC,∠BOC=α,∴∠MON=45°+45°﹣α=90°﹣α;②当两三角板无重叠时,由题意可知∠AOB=∠COD=90°,∵OM平分∠COD,ON平分∠AOB,∴∠MOC=∠COD=45°,∠NOB=∠AOB=45°,∵∠MON=∠MOC+∠NOB+∠BOC,∠BOC=α,∴∠MON=45°+45°+α=90°+α.20.已知长方形纸片ABCD,E、F分别是AD、AB上的一点,点I在射线BC上、连接EF,FI,将∠A沿EF所在的直线对折,点A落在点H处,∠B沿FI所在的直线对折,点B 落在点G处.(1)如图1,当HF与GF重合时,则∠EFI=90°;(2)如图2,当重叠角∠HFG=30°时,求∠EFI的度数;(3)如图3,当∠GFI=α,∠EFH=β时,∠GFI绕点F进行逆时针旋转,且∠GFI总有一条边在∠EFH内,PF是∠GFH的角平分线,QF是∠EFI的角平分线,旋转过程中求出∠PFQ的度数(用含α,β的式子表示).解:(1)∵EF平分∠AFH,IF平分∠BFG,∴∠EFH=∠AFH,∠IFH=∠BFH,∵∠EFI=∠EFH+∠IFG=(∠AFH+∠BFH)=∠AFB=90°,∴∠EFI=∠AFB=90°,故答案为:90.(2)令∠EFG=x,∠HFI=y,∵∠HFG=30°∴∠EFA=30°+x,∠BFI=30°+y∴∠AFE+∠EFI+∠BFI=(30°+x)+(x+30°+y)+(30°+y)=180°,即2x+2y=90°,∴x+y=45°,∴∠EFI=x+y+30=75°,∴∠EFI=75°.(3)由题意得∠AFE=∠EFH=β,∠BFI=∠GFI=α,∴∠GFH=2α+2β﹣180°,∴∠GFP=∠HFP=α+β﹣90°,又∵,∴∠PFQ=|∠GFI﹣∠GFP﹣∠QFI|,∴∠PFQ=|α﹣(α+β﹣90°)﹣|=||,∴∠PFQ|=||.。
2024年中考数学高频考点专题复习——旋转综合题1.如图,△ABC 和△DEF 关于某点对称(1)在图中画出对称中心O ;(2)连结AF 、CD ,判断四边形ACDF 的形状,并说明理由.2.在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位.(1)画出关于原点O 的中心对称图形;(2)在(1)的条件下,请分别写出点A 、B 、C 的对应点、、的坐标.ABC ABC 111A B C 1A 1B 1C3.如图1,图2,△ABC 是等边三角形,D 、E 分别是AB 、BC 边上的两个动点(与点A 、B 、C 不重合),始终保持BD=CE.(1)当点D 、E 运动到如图1所示的位置时,求证:CD=AE.(2)把图1中的△ACE 绕着A 点顺时针旋转60°到△ABF 的位置(如图2),分别连结DF 、EF.①找出图中所有的等边三角形(△ABC 除外),并对其中一个给予证明;②试判断四边形CDFE 的形状,并说明理由.4.如图,矩形 中, ,将矩形 绕点C 顺时针旋转得到矩形 .设旋转角为 ,此时点 恰好落在边 上,连接 .(1)当 恰好是 中点时,此时 ;(2)若 ,求旋转角 及 的长.5.将线段AB 绕点A 逆时针旋转60°得到线段AC ,继续旋转α(0°<α<120°)得到线段AD ,连接CD 、BD .(1)如图,若α=80°,则∠BDC 的度数为 ;(2)请探究∠BDC 的大小是否与角α的大小有关,并说明理由.ABCD 4BC =ABCD A B C D ''''αB 'AD B B 'B 'AD α=75AB B ︒∠='αAB6.在平面直角坐标系中,小方格都是边长为1的正方形,△ABC ≌△DEF ,其中点A 、B 、C 、都在格点上,请你解答下列问题:(1)如图(a )在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号为 .(2)画出△ABC 关于y 轴对称的△A 1B 1C 1;画出△ABC 绕点P (1,﹣1)顺时针旋转90°后的△A 2B 2C 2;(3)△A 1B 1C 1与△A 2B 2C 2成中心对称吗?若成中心对称请你求出对称中心的坐标;若不成,则说明理由.7.图1是某小型汽车的侧面示意图,其中矩形 表示该车的后备箱,在打开后备箱的过程中,箱盖 可以绕点A 逆时针方向旋转,当旋转角为 时,箱盖 落在 的位置(将后备箱放大后如图2所示).已知 厘米, 厘米, 厘米.在图2中求: (1)点 到 的距离(结果保留根号);(2)E 、 两点的距离(结果保留根号).ABCD ADE 60︒ADE AD E ''90AD =30DE =40EC =D 'BC E '8.如图, 是等腰直角三角形, 是直角三角形, ,点 为边 中点将 绕点 顺时针旋转,旋转角记为 ,点 为边 的中点.(1)如图,求初始状态时 的大小;(2)如图,在旋转过程中,若点 构成平行四边形,请直接写出此时 的值;(3)在旋转过程中,若点 和点 重合,请在图中画出 并连接 ,判断此时是否有 ?如果成立,请证明;如果不成立,请说明理由.ABC 90,ABC BDE ∠=︒ 30E ∠=︒D BC BDE D (0360)αα<<︒F BE AEC ∠,,,B D F B 'a F B ,B DE ' AE AE ED ⊥9.如图,在菱形 中, ,将边 绕点 逆时针旋转至 ,记旋转角为 .过点 作 于点 ,过点 作 直线 于点 ,连接 .(1)(探索发现)填空:当 时, = .的值是 (2)(验证猜想)当 时,(1)中的结论是否仍然成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由;(3)(拓展应用)在(2)的条件下,若 ,当 是等腰直角三角形时,请直接写出线段 的长.ABCD 120BAD ∠= AB A 'AB αD DF BC ⊥F B BE ⊥'B D E EF 60α= 'EBB ∠ 'EF DB 0360α<< AB =BDE ∆EF10.如图(1),在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作APCD,AC与PD 相交于点E,已知∠ABC=∠AEP= (0°< <90°).(1)求证: ∠EAP=∠EPA;(2)APCD是否为矩形?请说明理由;(3)如图(2),F为BC中点,连接FP,将∠AEP绕点E顺时针旋转适当的角度,得到∠MEN(点M、N分别是∠MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.αα11.定义:有一组邻边相等,且它们的夹角为60°的四边形叫做半等边四边形.(1)已知在半等边四边形ABCD 中,AB=AD ,∠BAD=60°,∠BCD=120°.①如图1,若∠B=∠D ,求证:BC=CD ;②如图2,连结AC ,探索线段AC 、BC 、CD 之间的数量关系,并说明理由;(2)如图3,已知∠MAC=30°,AC=10+10,点D 是射线AM 上的一个动点,记∠DCA=a ,点B 在直线AC 的下方,若四边形ABCD 是半等边四边形,且CB=CD .问:当点D 在15°≤a≤45°的变化过程中运动时,点B 也随之运动,请直接写出点B 所经过的路径长.12.已知,把45°的直三角板的直角顶点E 放在边长为6的正方形ABCD 的一边BC 上,直三角板的一条直角边经过点D ,以DE 为一边作矩形DEFG ,且GF 过点A ,得到图1.(1)求矩形DEFG 的面积;(2)若把正方形ABCD 沿着对角线AC 剪掉一半得到等腰直角三角形ABC ,把45°的直三角板的一个45°角的顶点与等腰直角三角形ABC 的直角顶点B 重合,直三角板夹这个45°角的两边分别交CA 和CA 的延长线于点H 、P ,得到图2.猜想:CH 、PA 、HP 之间的数量关系,并说明理由;(3)若把边长为6的正方形ABCD 沿着对角线AC 剪掉一半得到等腰直角三角形ABC ,点M 是Rt △ABC 内一个动点,连接MA 、MB 、MC ,设MA+MB+MC =y ,直接写出 的最小值.2y13.(1)观察猜想:如图①,在Rt △ABC 和Rt △BDE 中,∠ABC =∠EBD =90°,AB =BC ,BE =BD ,连接AE ,点F 是AE 的中点,连接CD 、BF ,当点D 、B 、C 三点共线时,线段CD 与线段BF 的数量关系是 ,位置关系是 .(2)探究证明:在(1)的条件下,将Rt △BDE 绕点B 顺时针旋转至图②位置时,(1)中的结论是否仍然成立?如果成立,请你就图②的情形进行证明;如果不成立,请说明理由;(3)拓展延伸:如图③,在Rt △ABC 和Rt △BDE 中,∠ABC =∠EBD =90°,BC =2AB =8,BD =2BE =4,连接AE ,点F 是AE 的中点,连结CD 、BF ,将△BDE 绕点B 在平面内自由旋转,请直接写出BF 的取值范围,14.请认真阅读下面的数学小探究系列,完成所提出的问题:(1)探究1,如图1,在等腰直角三角形ABC 中, , ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,过点D 作BC 边上的高DE ,则DE 与BC 的数量关系是 , 的面积为 ;(2)探究2,如图2,在一般的 中, ,( , ),将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,请用含m ,n 的式子表示 的面积,并说明理由.(3)探究3:如图3,在等腰三角形ABC 中, , ( ,, ),将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,试探究用含a ,b ,c 的式子表示 的面积,要有探究过程.90ACB ∠=︒5BC =BCD Rt ABC 90ACB ∠=︒22()()BC m n m n =+--0m >0n >BCD AB AC =BC a b c =++0a >0b >0c >BCD15.如图1,在△ABC中,∠A=120°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接BE,点M,N,P分别为DE,BE,BC的中点,连接NM,NP.(1)图1中,线段NM,NP的数量关系是 ,∠MNP的度数为 ;(2)把△ADE绕点A顺时针旋转到如图2所示的位置,连接MP.求证:△MNP是等边三角形;(3)把△ADE绕点A在平面内旋转,若AD=2,AB=5,请直接写出△MNP面积的最大值.16.(1)问题发现:如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为 .(2)问题探究:如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC=90°,且AD =CD,连接DQ,求DQ的最小值;(3)问题解决:“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.17.如图14-1,在平面直角坐标系xOy 中,直线l 2:y=与x 轴交于点B ,与直线l 1交于点c ,c点到x 轴的距离CD 为2 ,直线1交x 轴于点A(-3,0) .(1)求直线l 1的函数表达式;(2)如图14-2,y 轴上的两个动点E 、F(E 点在F 点上方)满足线段EF 的长为 ,连接CE 、AF ,当线段CE+EF+AF 有最小值时,求出此时点F 的坐标,以及CE+EF+AF 的最小值;(3)如图14-3,将△ACB 绕点B 逆时针方向旋转60°,得到△BGH ,使点A 与点H 重合,点C 与点G 重合(C 、G 两点恰好关于x 轴对称),将ABGH 沿直线BC 平移,记平移中的△BGH 为△B'G'H',在平移过程中,设直线B'H'与x 轴交于点M ,是否存在这样的点M ,使得△B'MG'为等腰三角形?若存在,请直接写出此时点M 的坐标;若不存在,说明理由.18.如图(1)问题发现:如图1,已知点C 为线段 上一点,分别以线段 为直角边作两个等腰直角三角形, ,连接 ,线段 之间的数量关系为 ;位置关系为 .(2)拓展研究:如图2,把 绕点C 逆时针旋转,线段 交于点F ,则 之间的关系是否仍然成立,说明理由;x AB ,AC BC 90,,ACD CA CD CB CE ︒∠===,AE BD ,AE BD Rt ACD ∆,AF BD ,AE BD(3)解决问题:如图3,已知 ,连接 ,把线段AB 绕点A 旋转,若 ,请直接写出线段 的取值范围.19.如图1,在 中, , ,点 分别是 的中点,连接 .(1)探索发现:图1中,的值为 ; 的值为 ;(2)拓展探究若将 绕点 逆时针方向旋转一周,在旋转过程中的大小有无变化,请仅就图2的情形给出证明;(3)问题解决当 旋转至 三点在同一直线时,直接写出线段 的长.,,90AC CD BC CE ACD BCE ︒==∠=∠=,,AB AE AD 7,5AB AC ==AE ABC 2AB AC ==120BAC ∠=︒,D E ,AC BC DE AB BC AD BE CDE C AD BECDE ,,A D E BE20.有两个形状、大小完全相同的直角三角板ABC 和CDE ,其中∠ACB =∠DCE =90°.将两个直角三角板ABC 和CDE 如图①放置,点A ,C ,E 在直线MN 上.(1)三角板CDE 位置不动,将三角板ABC 绕点C 顺时针旋转一周,①在旋转过程中,若∠BCD =35°,则∠ACE = ▲ °;②在旋转过程中,∠BCD 与∠ACE 有怎样的数量关系?请依据图②说明理由.(2)在图①基础上,三角板ABC 和CDE 同时绕点C 顺时针旋转,若三角板ABC 的边AC 从CM 处开始绕点C 顺时针旋转,转速为12°/秒,同时三角板CDE 的边CE 从CN 处开始绕点C 顺时针旋转,转速为2°/秒,当AC 旋转一周再落到CM 上时,两三角板都停止转动.如果设旋转时间为t 秒,则在旋转过程中,当∠ACE =2∠BCD 时,t 为多少秒?21.我们做如下的规定:如果一个三角形在运动变化时保持形状和大小不变,则把这样的三角形称为三角形板.把两块边长为4的等边三角形板 和 叠放在一起,使三角形板 的顶点 与三角形板 的AC 边中点 重合,把三角形板 固定不动,让三角形板 绕点 旋转,设射线 与射线 相交于点M ,射线 与线段 相交于点N.ABC DEF DEF D ABC O ABC DEF O DE AB DF BC(1)如图1,当射线 经过点 ,即点N 与点 重合时,易证△ADM ∽△CND.此时,AM·CN= .(2)将三角形板 由图1所示的位置绕点 沿逆时针方向旋转,设旋转角为 .其中 ,问AM·CN 的值是否改变?说明你的理由.(3)在(2)的条件下,设AM= x ,两块三角形板重叠面积为 ,求 与 的函数关系式.(图2,图3供解题用)22.已知抛物线(,,是常数,)的顶点为,与轴相交于,两点(点在点的左侧),与轴相交于点.(1)若点,求点和点的坐标;(2)将点绕点逆时针方向旋转,点的对应点为,若,两点关于点中心对称,求点的坐标和抛物线解析式:(3)在(1)的条件下,点为直线下方抛物线上的一个动点,过点作轴,与相交于点,过点作轴,与轴相交于点,求的最大值及此时点的坐标.DF B B DEF O α090α<< y y x 2y ax bx c =++a b c 0a ≠()14M -,x A B A B y C ()03C -,A B A B 90︒A 1A A 1A M 1A P BC P PD x BC D P PE y x E PD PE +P答案解析部分1.【答案】(1)解:对称中心O 如图所示;(2)解:∵A 与F ,C 与D 是对应点,∴AO=DO ,CO =FO ,∴四边形ACDF 是平行四边形.2.【答案】(1)解:如图所示:(2)解:由图可知:,,.3.【答案】(1)证明:∵△ABC 是正三角形,∴BC=CA ,∠B=∠ECA=60°.又∵BD=CE ,∴△BCD ≌△CAE.∴CD=AE.(2)解:① 图中有2个正三角形,分别是△BDF ,△AFE.由题设,有△ACE ≌△ABF ,∴CE=BF ,∠ECA=∠ABF=60°又∵BD=CE ,∴BD=CE=BF ,∴△BDF 是正三角形,∵AF=AE ,∠FAE=60°,∴△AFE 是正三角形.1(12)A -,1(33)B -,1(40)C ,② 四边形CDFE 是平行四边形.∵∠FDB=∠ABC =60°∴FD ∥EC.又∵FD=FB=EC ,∴四边形CDFE 是平行四边形.4.【答案】(1)60°(2)解:∵四边形 是矩形,∴ ,∴ .由旋转的性质得 ,∴ ,∴ ,即旋转角 为30°.作 于点E.则 .5.【答案】(1)30°(2)解:无关.理由如下:由旋转变换可知:∠BAC=60°,∠CAD=α, = , AB=AC=AD ,∴ ,,ABCD //AD BC 75CBB AB B ︒'∠=∠='CB CB ='75CB B CBB ︒∠'=∠='180757530BCB ︒︒︒︒∠--='=αB E BC '⊥122AB B E CB '='==()1180602ADB α∠=︒-+︒⎡⎤⎣⎦1202α︒-()11802ADC α∠=︒-()11202ADB α︒∠=-∴∠BDC=∠ADC-∠ADB= - =30° ,∴∠BDC 的大小与ɑ的度数无关.6.【答案】(1)②(2)解:如图(3)解:如图所示:△A 1B 1C 1与△A 2B 2C 2成中心对称图形,对称中心的坐标为:(1,0).7.【答案】(1)解:过点 作 ,垂足为点H ,交 于点F .由题意得 (厘米), .∵四边形 是矩形,∴ , .在 中, 又∵ , ,∴ .∴ (厘米)答:点 到 的距离是 (厘米).(2)解:连结 、 、 .()11802α︒-()11202α︒-D 'D H BC '⊥AD 90AD AD =='60DAD ∠='︒ABCD AD BC 90AFD BHD ∠'=∠='︒Rt AD F ∆'sin 90sin 60D F AD DAD ︒=⋅∠=⋅='''40CE =30DE =70FH=70)D H D F FH ='++'=D 'BC ()70+AE AE 'EE '由题意得 , .∴ 是等边三角形.∴ .∵四边形 是矩形,∴ .在 中, , ,∴(厘米)答:E 、 两点的距离是厘米.8.【答案】(1)解:∵∠BED =30°,△BDE 是直角三角形,∴∠EBD =90°-∠BED =60°.又∵D 是BC 的中点,∴DE 是BC 的垂直平分线.∵BE =CE ,∠BEC =60°,∴△BCE 是等边三角形.∴BC =BE .∵△ABC 是等腰三角形,∠ABC =90°,∴AB =BC .∴BE =AB .∵AB ⊥BC ,DE ⊥BC ,∴AB ∥DE ,∴∠ABE =∠BED =30°.∴∠BAE =∠BEA = (180°-∠ABE)=75°.∴∠AEC =∠BAE +∠BEC =135°.(2)解:∵四边形BDFB '是平行四边形,∠FB 'D =60°∴B 'F ∥BD ,∴∠B D B '=∠FB 'D =60°AE AE ='60EAE ∠='︒AEE ∆'EE AE '=ABCD 90ADE ∠=︒Rt ADE ∆90AD =30DE =AE ===E '12即 =60°.(3)解:△B 'DE 如图所示,AE ⊥DE 不成立,理由如下:DE 与AB 相交于点G ,假设AE ⊥DE ,则△AEG ∽△DBG ,设BG =a ,∠BDG =30°,∴DG =2a ,BD = a ,AB =2 BD = a .∴AG =AB -BG =(-1)a ,B 'D =BD =a .∴DE = =3a.∴GE =DE -DG=3a -2a =a .∴ , .∴ 与假设矛盾.∴AE ⊥DE 不成立.9.【答案】(1)30(2)解:当 时, (1)中的结论仍然成立.证明:如图1,连接 .a tan 30B D'AG DG ==1GE a GB a ==AG GE DG GB≠0360α<< BD,, . , . . .,即 . ,, . .,(3)解:线段 的长为 或 .连接 , 交于点 .,, ,,∵DE=BE ,∠DEB=90°,∴∠EDB=∠EBD=45°,. ,∠B′EB=90°,, . , . .'AB AD AB == 1'(180)9022AB B αα∴∠=︒-=︒-1'[180(120)]3022AB D αα∠=︒-︒-=︒+'180''180(90)(306022EB B AB D AB B αα∴∠=︒-∠-∠=︒-︒--︒+=︒'30EBB ∴∠=︒11(180)3022CBD ABC BAD∠=∠=︒-∠=︒ 'EBB CBD ∴∠=∠'''EBB FBB CBD FBB ∴∠+∠=∠+∠'DBB EBF ∠=∠cos BF DBF BD ∠== cos ''BE EBB BB ∠=='BF BE BD BB ∴='DBB FBE ∆∆∽''EF BE DB BB ∴==EF 3+3-AC BD O AC DB ⊥ 1602BAO BAD ∠=∠=︒sin OB AB BAO ∴=⋅∠=2BD OB ∴==sin DE BE BD DBE ∴==⋅∠=='AB AD AB == 1'(180)9022AB B αα∴∠=︒-=︒-1'[180(120)]3022AB D αα∠=︒-︒-=︒+'180''180(90)(306022EB B AB D AB B αα∴∠=︒-∠-∠=︒-︒--︒+=︒'30EBB ∴∠=︒'tan '2EB BE EBB ∴=⋅∠==分两种情况: 如图,,∵∠B′BE=∠DBF=30°,∴cos ∠B′BE=cos ∠DBF=,又∵∠B′BE+∠EBD=∠EBD+∠DBF ,∴∠B′BD=∠EBF ,∴△B′BD ∽△EBF ,∴ , . 如图,.①''2B D DE BE =+=+EB FB B B DB ='=EB FB EF B B DB B D '='2)3EF D '∴==+=②''2B D DE B E =-=∵∠B′BE=∠DBF=30°,∴cos ∠B′BE=cos ∠DBF=,又∵∠B′BE-∠FBB′=∠DBF-∠FBB′,∴∠B′BD=∠EBF ,∴△B′BD ∽△EBF ,∴ ,.综上所述,线段 的长为或 .10.【答案】(1)证明:(1)在△ABC 和△AEP 中,∠ABC=∠AEP,∠BAC=∠EAP, ∠ACB=∠APE,在△ABC 中,AB=BC. ∠ACB=∠BAC,∠EPA=∠EAP,(2)解: APCD 是矩形.四边形APCD 是平行四边形,AC=2EA,PD=2EP.由(1)知, ∠EPA=∠EAP.EA=EP ,进而AC=PDAPCD 是矩形.(3)解:EM=ENEA=EP, ∠EPA=90° - ∠EAM=180°-∠EAP =180°-∠EPA= 180°-(90°-)=90°+ 由(2)知, ∠CPB=90°,F 是BC 的中点, FP=FB,∠FPB=∠ABC= ,∠EPN=∠EPA+∠APN=∠EPA+∠FPB=90° -+ =90°+ ∠EAM=∠EPN∠AEP 绕点E 顺时针旋转适当的角度,得到∠MEN ,EB FB B B DB ='=EB FB EF B B DB B D '='2)3EF B D ∴===-'EF 33 ∴∴∴ ∴∴∴ ∴12α∴12α12α∴∴α∴12αα12α∴∠AEP-∠AEN =∠MEN-∠AEN,即∠MEA=∠NEP.△EAM ≌△EPN,EM=EN.11.【答案】(1)解:①证明:连结AC ,∵∠A+∠B+∠C+∠D=360°,且∠A=60°,∠C=120°,∴∠B+∠D=180°,且∠B=∠D ,∴∠B=∠D=90°,∵AB=AD ,AC=AC ,∴△ABC ≌△ADC (HL ),∴BC=DC ;②解:延长CB ,使得CD=BE ,∵∠BAD=60°,∠BCD=120°,∴∠ABC+∠D=180°,且∠ABC+∠ABE=180°,∴∠D=∠ABE ,又∵AB=AD∴△ABE ≌△ADC ,∴AE=AC,∴∴∴∠BAE=∠DAC ,∴∠EAC=∠BAE+∠BAC=∠DAC+∠BAC=∠BAD=60°,∴△ACE 是等边三角形,∴AC=CE=CB+BE=CB+CD(2)解:如图,设∠ACD=15°,∠DCD‘=30°,作CM ⊥AD ,D‘H ⊥AC ,由旋转图形的特点可知,CB=CD ,CB‘=CD’,∠BCB'=DCD‘=30°,∴△∠BCB'≌△DCD‘,BB'=DD’,设D'H=x ,由勾股定理得:, HC=x,则,解得x=10, 即D'H=10,得,AD’=20,在Rt △AMC 中,∵,∠DAC=30°,∴,AM=(,-5,,∴DD’为D 点的运动路程,则BB‘的运动路程也为10 .12.【答案】(1)解:∵四边形ABCD 是正方形,∴∠ADC =∠DCE =90°,∵四边形DEFG 是矩形,∴∠AGD =∠GDE =90°,∴∠DCE =∠AGD =90°,∠ADC =∠GDE =90°,∴∠ADC ﹣∠ADE =∠GDE ﹣∠ADE ,∴∠EDC =∠ADG ,∵∠EDC =∠ADG ,∠DCE =∠AGD =90°,∴△ECD ∽△AGD ,∴ ,∴DG•DE =DC•DA =6×6=36,∴矩形DEFG 的面积=DG•DE =36;(2)解: ,证明:把△BAP 绕着点B 顺时针旋转90°得到△BCK ,连接KH ,由旋转得△BAP ≌△BCK ,∴BK =BP ,∠PBA =∠KBC ,∠BCK =∠BAP = ,∴∠HCK = = ,∴由勾股定理得, ,∵∠PBE =45°,∴∠PBA+∠ABE =45°,∵∠PBA =∠KBC ,∴∠KBC+∠ABE =45°,∵∠ABC =90°,∴∠HBK =45°,∵∠PBE =45°,∴∠HBK =∠PBE =45°,∵BK =BP ,∠HBK =∠PBE ,BH =BH ,∴△BHP ≌△BHK (SAS ),CD DE DG DA=222CH PA HP +=18045135︒-︒=︒BCK BCA ∠-∠1354590︒-︒=︒222CH PA KH +=∴HK =HP ,∵ ,∴ ;(3)解:把△BMC 绕着点B 顺时针旋转60°得到△BKN ,连接MK ,BN ,NC ,由旋转得,△BMC ≌△BKN ,∴MC =KN ,BM =BK ,∵BM =BK ,∠MBK =60°,∴△BKM 是等边三角形,∴MK =BM ,∴MA+MB+MC =AM+MK+KN ,当A ,M ,K ,N 四点共线时,AN 就是所求的MA+MB+MC 的最小值,过N 作NQ ⊥AB 交AB 的延长线于Q ,∵ ,∠BQN =90°,∴QN =BN•sin30°=6× =3,BQ =BN•cos30°= ,∴AQ =AB+BQ =,在Rt △AQN 中,由勾股定理得,,∴ 的最小值为 .13.【答案】(1)CD=2BF ;BF ⊥CD(2)解:BF ⊥CD ,CD=2BF 成立,证明:∵△ABC 与△DBE 都是等腰直角三角形,∴AB=BC ,DB=EB ,∠ABC=∠DBE=90°,222CH PA KH +=222CH PA HP +=180906030NBQ ∠︒-︒-︒=︒=126=6+(222226372AN AQ QN +=++=+=2y 72+如图②,将△ABE 绕点B 顺时针旋转90°得到△CBG ,点E 、F 的对应点分别是G 、H ,连BH , 则△ABE ≌△CBG ,BE=BG ,AE=CG ,BF=BH ,∠FBH=∠EBG=90°,AF=CH ,EF=GH , ∴BF ⊥BH ,∵AF=EF ,∴CH=GH ,∵∠DBE=90°,∴∠DBE+∠EBG=180°,∴D 、B 、G 三点共线,∴BH ∥CD ,,∴BF ⊥CD ,,即CD=2BF ,∴BF ⊥CD ,CD=2BF 成立;(3)14.【答案】(1)DE=BC ;12.5(2)解:过点D 作BC 边上的高DE ,如图,∵∠ABC+∠A=90°,∠ABC+∠DBE=90°,∴∠A=∠DBE ,又∵∠ACB=∠E=90°,AB=BD ,∴ ,∴,12BH CD =12BF CD =13BF ≤≤ACB BED ≌BC DE =又 .∴ 的面积为:.(3)解:作 于G ,过点D 作BC 边上的高DE ,如图,由(2)同理,可证 ,∴ ,又 ,∵AB=AC , ,∴ .∴ 的面积为: .15.【答案】(1)NM=NP ;60°(2)证明:由旋转得:∠BAD=∠CAE ,又∵AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ),∴BD=CE ,∠ABD=∠ACE ,∵点M ,N ,P 分别为DE ,BE ,BC 的中点,∴MN= BD ,PN= CE ,MN ∥BD ,PN ∥CE ,∴MN=PN ,∠ENM=∠EBD ,∠BPN=∠BCE ,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB ,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE ,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°-∠BAC=60°,∴△MNP 是等边三角形;(322()()4mn BC m n m n =+--=BCD 221448m n 2mn mn ⨯⨯=AGB BED ≌BG DE =BC a b c =++BC a b c =++11()22BG BC a b c ==++BCD 2111()()()224a b c a b c a b c ⨯++⨯++=++121216.【答案】(1)4(2)解:如图②中,连接BD ,取AC 的中点O ,连接OB ,OD.∵∠ABD =∠ADC =90°,AO =OC ,∴OA =OC =OB =OD ,∴A ,B ,C ,D 四点共圆,∴∠DBC =∠DAC ,∵DA =DC ,∠ADC =90°,∴∠DAC =∠DCA =45°,∴∠DBQ =45°,根据垂线段最短可知,当QD ⊥BD 时,QD 的值最短,DQ 的最小值=BQ =5 .(3)解:如图③中,将△BDC 绕点D 顺时针旋转90°得到△EDA , ∵∠ABC+∠ADC =180°,∴∠BCD+∠BAD =∠EAD+BAD =180°,∴B ,A ,E 三点共线,∵DE =DB ,∠EDB =90°,∴BE = BD ,∴AB+BC =AB+AE =BE =BD,∴BC+BC+BD =( +1)BD ,∴当BD 最大时,AB+BC+BD 的值最大,∵A ,B ,C ,D 四点共圆,∴当BD 为直径时,BD 的值最大,∵∠ADC =90°,∴AC 是直径,∴BD =AC 时,AB+BC+BD 的值最大,最大值=600( +1).17.【答案】(1)解:∵点C 的纵坐标为2 ,点c 在直线l 2:y= ∴点C(-1,2 )设l 1的表达式为y= kx+ b将A(-3,0)、C(-1,2)代入, 解得故直线l 1的表达式为:y=x+3 (2)解:作点a关于y 轴的对称点A(3,0),将点a4向上平移个单位长度得E (3,)连接E'C 交y 轴于点E ,在E下方取EF= ,则点F是所求点,将点C 、E' 的坐标代入一次函数表达式,同理可得: CE' 的函数表达式为:y= 故点E(0,),点F(0,)CE+EF+4F 的最小值=FE+CE'= +.(3)M(5+8,0)或(5-8,0)或(-3,0)或(-19,0) x +03k bk b=-+⎧⎪⎨=-+⎪⎩k b ⎧=⎪⎨=⎪⎩x +18.【答案】(1)AE=BD ;AE ⊥BD(2)解: 仍然成立.由题意得,∵△ACD 和△BCE 是等腰直角三角形即 ,∴∴ .∴∴ .(3)解: 连接BD.由(2)可知,AE=BD ,在△ABD 中,且 ,所以 即 在AB 绕点A 旋转过程中,当A ,B ,D 三点在一条直线上时, 或者,AE BD AE BD =⊥90ACD DCE ECB DCE DCE ︒∴∠+∠=∠+∠=+∠,,ACE DCB AC CD EC CB ∠=∠==ACE DCB∆≅∆,12AE DB =∠=∠180(4512)90EFB ︒︒︒∠=--∠+∠=AE BD⊥77AE -≤≤7AD AB ===77BD <<+77AE -<<+7AE =7AE =∴ ≤AE≤ 19.【答案】(1(2)解:无变化,理由: 由(1)知,CD=1, ,∴,∴ ,由(1)知,∠ACB=∠DCE=30°,∴∠ACD=∠BCE,∴△ACD ∽△BCE,∴,(3)解:线段BE 的长为或 ,理由如下: 当点D 在线段AE 上时,如图2,过点C 作CF ⊥AE 于F,∠CDF=180°﹣∠CDE=60°,∴∠DCF=30°,∴ ,∴,7-7+CE BE ==CD CE =AC BC =CD AC CE BC ==AD AC BE BC ==1122DF CD ==CF ==在Rt △AFC 中,AC=2,根据勾股定理得, ,∴AD=AF+DF=,由(2)知, ,∴当点D在线段AE 的延长线上时,如图3,过点C 作CG ⊥AD 交AD 的延长线于G,∵∠CDG=60°,∴∠DCG=30°,∴ ,∴ ,在Rt △ACG 中,根据勾股定理得,,∴ ,由(2)知,,∴即:线段BE 的长为或.AF ==AD BE =BE ==1122DG CD ==CG ==AG =AD AG DG =-=AD BE =BE ==20.【答案】(1)①145;②∠BCD+∠ACE =180°,理由如下:∵∠ACE =∠ACB+∠BCE ,∴∠BCD+∠ACE =∠BCD+∠ACB+∠BCE =∠ACB+∠DCE =90°+90°=180°;(2)解:三角板ABC 和CDE 重合之前,∠ACE =180°-10°t ,∠BCD =10°t ,依题意有180°-10°t =2×10°t ,解得t =6;三角板ABC 和CDE 重合之后,∠ACE =10°t-180°,∠BCD =360°-10°t ,依题意有10°t-180°=2×(360°-10°t ),解得t =30.故当t =6或30秒时,有∠ACE =2∠BCD .故答案为:6或30.21.【答案】(1)4(2)解:AM•CN 的值不会改变.连接BD ,在△ADM 与△CND 中,∵∠A=∠C=60°,∠DNC=∠DBN+∠BDN=30°+α,∠ADM=30°+α,∴∠ADM=∠CND ,∴△ADM ∽△CND∴ ,∴AM•CN=AD•CD=2×2=4,∴AM•CN 的值不会改变;(3)解:情形1,当0°<α<60°时,1<AM <4,即1<x <4,此时两三角形板重叠部分为四边形AD AM CN CD如图2,过D 作DQ ⊥AB 于Q ,DG ⊥BC 于G ,∴DQ=DG= ,由(2)知,AM•CN=4,得CN=,于是y=(1<x <4); 情形2,当60°≤α<90°时,AM≥4时,即x≥4,此时两三角形板重叠部分为△DPN ,如图3,过点D 作DH ∥BC 交AM 于H ,易证△MBP ∽△MHD ,∴ ,又∵MB=x-4,MH=x-2,DH=2,∴BP=,∴PN=4- ,于是y= ,综上所述,1<x <4时,y=;x≥4时,y= 22.【答案】(1)解:设抛物线解析式为,将点代入得,4x 21122AB AM DQ CN DG x -⋅-⋅=BP MB DH MH=282x x --4282x x x ---114284222x PN DG x x -⎛⎫⋅=--= ⎪-⎝⎭x ()214y a x =--()03C -,解得:∴抛物线解析式为当时,解得:,∵点在点的左侧,∴,;(2)解:∵,抛物线,与轴相交于,两点∴,对称轴为直线,设,则,∴∵点绕点逆时针方向旋转得到,则点一定在第四象限,如图所示,则,,∵,两点关于点中心对称,∴解得:,则∴,1a =()214y x =--0y =()2140x --=1213x x =-=,A B ()10A -,()30B ,()14M -,2y ax bx c =++x A B 0a >1x =()0A m ,()20B m -,222AB m m m=--=-A B 90︒A 'A '22BA BA m ='=-()222A m m '--,A 1A M 228m -=-3m =-()58A '-,()30A -,()50B ,将点代入得,解得:∴抛物线解析式为;(3)解:如图所示,设交于点,由(1)可得,,设直线的解析式为,将点代入得,解得所以直线的解析式为,∵抛物线解析式为,设,则,∴,∵轴,轴,由∵则是等腰直角三角形,∴()30A -,()214y a x =--1640a -=14a =()21144y x =--PE BC F ()30B ,()03C -,BC 3y kx =-()30B ,330k -=1k =BC 3y x =-()221423y x x x =--=--()223P t t t --,()0E t ,()3F t t -,223233FP t t t t t =--++=-+223PE t t =-++PD x PE y OC OB=OCB 45FDP OBC ∠=∠=︒∴也是等腰直角三角形,∴∴∴当时,取得最大值此时,即.PDF PD PF=PD PE+22323t t t t =-+-++2253t t =-++252525232168t t ⎛⎫=--+++ ⎪⎝⎭2549248t ⎛⎫=--+ ⎪⎝⎭54t =PD PE +498225632314416t t ⎛⎫--=--=- ⎪⎝⎭563416P ⎛⎫- ⎪⎝⎭。
中考数学专题分类复习:旋转变换旋转变换通常结合全等三角形探索角的数量关系,线段与线段之间的位置关系与数量关系,经常作为作为中等偏难一点的题型出现.旋转的性质有:①旋转角是对应点与旋转中心所连线段的夹角是旋转角;②旋转前后的图形全等;③对应点到旋转中心的距离相等.如图,△ABC绕点O逆时针方向旋转∠AOA′到△A′B′C′的位置,则①旋转角是∠AOA′=∠BOB′=∠COC′;②△ABC≌△A′B′C′;③OA=OA′,OB=OB′,OC=OC′.1.注意旋转的三要素:旋转中心,旋转方向,旋转角;2.抓住旋转只是改变图形的位置,不改变图形的形状和大小,即旋转前后的图形全等;3.能够用旋转解题的图形的基本特征是有公共端点且相等的两条线段,这个公共端点往往会是旋转中心.例1.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于( )A. 55°B. 70°C. 125°D. 155°【答案】C例2.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON 的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 1【答案】B【精细解读】因为角平分线上的点到角的两边的距离相等,所以存在着隐性的有公共端点的相等线段的特征,故可考虑过点P作∠AOB的两边的垂线,再结合旋转的性质求解.如图作PE⊥OA于E,PF⊥OB于F.例3.如图1,在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长.(2)如图3,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接P A、PB、PC,当AC=3,AB =6时,根据此图求P A+PB+PC的最小值.【答案】(1)33(2)37∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,22CE=CD DE=369=27=33--;(2)证明:如图所示,1.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是( )A. 6B. 6C. 3D. 3+3【答案】A【解析】试题解析:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′=,∴BC′=3-3,在等腰Rt△OBC′中,OB=BC′=3-3,在直角三角形OBC′中,OC′=(3-3)=6-3,∴OD′=3-OC′=3-3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3-3+3-3=6.故选A.2.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF =_________cm.【答案】33.如图,菱形ABCD中,边长为2,∠B=60°,将△ACD绕点C旋转,当AC(即A′C)与AB交于一点E,CD(即CD′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值,如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.【答案】2+31.如图,在□ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′,若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A. 130°B. 150°C. 160°D. 170°【答案】C【解析】根据平行四边形对角相等、邻角互补,得∠ABC=60°,∠DCB=120°,再由∠A′DC=10°,可运用三角形外角求出∠DA′B=130°,再根据旋转的性质得到∠BA′E′=∠BAE=30°,从而得到答案.解:∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°,∵∠ADA′=50°,∴∠A′DC=10°,∴∠DA′B=130°,∵AE⊥BC于点E,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=∠DA′B+∠BA′E′=160°.故选C.2.如图,中,,,将绕点顺时针旋转得到,当点、、三点共线时,旋转角为,连接,交于点.下面结论:①为等腰三角形;②;③;④中,正确的是()A. ①③④B. ①②④C. ②③④D. ①②③④【答案】B3.三角板ABC中,∠ACB=90°,∠B=30°,AC=23,三角板绕直角顶点C逆时针旋转,当点A的对应点A′落在AB边的起始位置上时即停止转动,则B点转过的路径长为()A. 32πB.433πC. 2πD. 3π【答案】C4.如图,将△ABC绕点B逆时针旋转60°得到△A′C′B,且BC=2,那么CC′的长是___________.【答案】2 ;【解析】试题解析:∵△ABC绕点B逆时针旋转60°得到△A′C′B,∴BC=BC′=2,∠CBC′=60°,∴△BCC′为等边三角形,∴CC′=BC=BC′=2.5.如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=12cm,将△ABC以点B为中心顺时针旋转,使点C 旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm2.(结果保留π).【答案】36π6.在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC=__________.【答案】7【解析】试题解析:∵∠ACB=90°,AC=1,BC=,∴tan∠ABC=,∴∠ABC=30°,∵△AOB绕点B顺时针方向旋转60°,∴∠A′BC=∠ABC+60°=30°+60°=90°,∴A′B⊥CB,∵∠ACB=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=∠BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C=,∴OA+OB+OC=A′O′+OO′+OC=A′C=.7.如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为____.【答案】9π8.如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,若AF=4,AB=7.(1)旋转中心为______;旋转角度为______;(2)DE的长度为______;(3)指出BE与DF的位置关系如何?并说明理由.【答案】(1)A,90°;(2)3;(3)BE⊥DF,理由见解析.9.如图(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD ⊥AE于D,CE⊥AE于E(1)试说明:BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果;(3)若直线AE 绕A 点旋转到图(3)位置时(BD >CE ),其余条件不变,问BD 与DE 、CE 的关系如何?请直接写出结果,不需说明理由.【答案】(1)证明见解析;(2)DE =BD +CE ;(3)DE =BD +CE .10.(1)探究:如图,四边形ABCD 中,已知AB AD =, 90BAD ∠=︒,点E F 、分别在边BC CD 、上, 45EAF ∠=︒;①如图1,若B ADC ∠∠、都是直角,把ABE 绕点A 逆时针旋转90︒至ADG ,使AB 与AD 重合,则能证得EF BE DF =+,请写出推理过程;②如图2,若B D ∠∠、不是直角,则当B D ∠∠、满足数量关系 时,仍有EF BE DF =+;(2)拓展:如图3,在ABC 中, 90BAC ∠=︒, 22AB AC ==,点D E 、均在边BC 上,且45DAE ∠=︒,若1BD =,求DE 的长.【答案】(1)①证明见解析; ②当∠B +∠ADC =180°时,EF =BE +DF ;(2) DE =53. 【解析】试题分析: (1)①根据旋转的性质得出AE =AG ,∠BAE =∠DAG ,BE =DG ,求出∠EAF =∠GAF =45°,根据SAS 推出△EAF ≌△GAF ,根据全等三角形的性质得出EF =GF ,即可求出答案;②根据旋转的性质得出AE =AG ,∠B =∠ADG ,∠BAE =∠DAG ,求出C 、D 、G 在一条直线上,根据SAS 推出△EAF ≌△GAF ,根据全等三角形的性质得出EF =GF ,即可求出答案;(2)根据等腰直角三角形性质好勾股定理求出∠ABC =∠C =45°,BC =4,根据旋转的性质得出AF =AE ,∠FBA =∠C =45°,∠BAF =∠CAE ,求出∠F AD =∠DAE =45°,证△F AD ≌△EAD ,根据全等得出DF =DE ,设DE =x ,则DF =x ,BF =CE =3−x ,根据勾股定理得出方程,求出x 即可.②当∠B +∠ADC =180°时,EF =BE +DF ;把△ACE 旋转到ABF 的位置,连接DF ,则∠F AB =∠CAE .∵∠BAC =90°,∠DAE =45°,∴∠BAD +∠CAE =45°,又∵∠F AB =∠CAE ,∴∠F AD =∠DAE =45°,则在△ADF 和△ADE 中, AD ADFAD DAE AF AE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ADE ,∴DF =DE ,∠C =∠ABF =45°,∴∠BDF =90°,∴△BDF 是直角三角形,∴222BD BF DF +=,∴222BD CE DE +=.∵∠BAC =90°,AB =AC =22,∴BC =4,∵BD =1,∴DC =3,EC =3-DE ,∴()2213DE DE +-=,解得DE =53.。