2020年初高中物理衔接讲义:专题五 天体运动 专题综合练习
- 格式:doc
- 大小:357.00 KB
- 文档页数:7
第四节万有引力与天体运动一.万有引力定律1、内容:自然界中任何两个物体都是相互吸引的,引力的方向沿两物体的连线,引力的大小F与这两个物体质量的乘积m1m2成正比,与这两个物体间距离r的平方成反比.2、公式:其中G=6.67×10-11 N·m2/kg2,称为引力常量.3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离.对于均匀的球体,r是两球心间的距离.二.万有引力定律的应用1、行星表面物体的重力:重力近似等于万有引力.⑴表面重力加速度:因则⑵轨道上的重力加速度:因则2、人造卫星⑴万有引力提供向心力:人造卫星绕地球的运动可看成是匀速圆周运动,所需的向心力是地球对它的万有引力提供的,因此解决卫星问题最基本的关系是:⑵同步卫星:地球同步卫星,是相对地面静止的,与地球自转具有相同的周期①周期一定:同步卫星绕地球的运动与地球自转同步,它的运动周期就等于地球自转的周期,T=24 h.②角速度一定:同步卫星绕地球运动的角速度等于地球自转的角速度.③轨道一定:所有同步卫星的轨道必在赤道平面内.④高度一定:所有同步卫星必须位于赤道正上方,且距离地面的高度是一定的(轨道半径都相同,即在同一轨道上运动),其确定的高度约为h=3.6×104 km.⑤环绕速度大小一定:所有同步卫星绕地球运动的线速度的大小是一定的,都是3.08 km/s,环绕方向与地球自转方向相同.3、三种宇宙速度⑴第一宇宙速度:要想发射人造卫星,必须具有足够的速度,发射人造卫星最小的发射速度称为第一宇宙速度,v1=7.9 km/s。
但却是绕地球做匀速圆周运动的各种卫星中的最大环绕速度。
当人造卫星进入地面附近的轨道速度大于7.9 km/s时,它绕地球运行的轨迹就不再是圆形,而是椭圆形.⑵第二宇宙速度:当卫星的速度等于或大于11.2 km/s 时,卫星就会脱离地球的引力不再绕地球运行,成为绕太阳运行的人造行星或飞到其他行星上去,我们把v2=11.2 km/s 称为第二宇宙速度,也称脱离速度。
第23讲天体运动的热点问题考点一卫星运行参量的分析与比较1.理想模型:认为卫星绕中心天体都做匀速圆周运动。
中心天体对卫星的万有引力提供向心力,即是匀速圆周运动的一种应用。
2.卫星的运行参数随轨道半径变化的规律由G Mm r 2=ma =m v 2r =m ω2r =m 4π2T2r =m ·4π2n 2r 可得:v =GM r ω=GM r 3T =4π2r 3GMn =GM4π2r3a =GM r 2?当r 增大时v 减小ω减小T 增大n 减小a 减小越高越慢3.地球同步卫星的六个“一定”4.三类地球卫星和赤道上相对地面静止的物体的运动特点(1)同步卫星的周期、轨道平面、高度、线速度、角速度、绕行方向均是固定不变的,常用于无线电通信,故又称通信卫星。
(2)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖。
(3)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s。
(4)赤道上的物体随地球自转而做匀速圆周运动,由万有引力和地面支持力的合力充当向心力(或者说由万有引力的分力充当向心力),它的运动规律不同于卫星,但它的周期、角速度和绕行方向与同步卫星相同。
假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么()A.地球的公转周期大于火星的公转周期B.地球公转的线速度小于火星公转的线速度C.地球公转的加速度小于火星公转的加速度D.地球公转的角速度大于火星公转的角速度解析由T=2π r3GM,得T地<T火,A错误;由v=GMr得v地>v火,B错误;由a=GMr2得a地>a火,C错误;由ω=GMr3得ω地>ω火,D正确。
答案 D方法感悟a、v、ω、T均与卫星(或行星)的质量无关,只由轨道半径和中心天体质量共同决定,所有参量的比较,最终都归结到半径的比较。
2020年高考物理天体运动专题训练卷1.金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a 金、a 地、a 火,它们沿轨道运行的速率分别为v 金、v 地、v 火。
已知它们的轨道半径R 金<R 地<R 火,由此可以判定A .a 金>a 地>a 火B .a 火>a 球>a 金C .v 地>v 火>v 金D .v 火>v 地>v 金解析 金星、地球和火星绕太阳公转时万有引力提供向心力,则有G MmR2=ma ,解得a =G M R 2,结合题中R 金<R 地<R 火,可得a 金>a 地>a 火,选项A 正确,B 错误;同理,有G Mm R 2=m v 2R,解得v =GMR,再结合题中R 金<R 地<R 火,可得v 金 >v 地>v 火,选项C 、D 均错误。
答案 A2.若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证A .地球吸引月球的力约为地球吸引苹果的力的1/602B .月球公转的加速度约为苹果落向地面加速度的1/602C .自由落体在月球表面的加速度约为地球表面的1/6D .苹果在月球表面受到的引力约为在地球表面的1/60解析 若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律——万有引力定律,则应满足G Mmr2=ma ,即加速度a 与距离r 的平方成反比,由题中数据知,选项B 正确,其余选项错误。
答案 B3.(多选)已知人造航天器在月球表面附近绕月球做匀速圆周运动,经过时间t (t 小于航天器的绕行周期),航天器运动的弧长为s ,航天器与月球的中心连线扫过角度为θ,万有引力常量为G ,则A .航天器的轨道半径为θsB .航天器的环绕周期为2πtθC .月球的质量为s 3Gt 2θD .月球的密度为3θ24Gt2解析 根据几何关系得:r =sθ,故A 错误;经过时间t ,航天器与月球的中心连线扫过角度为θ,则:t T =θ2π,得:T =2πtθ,故B 正确;由万有引力充当向心力而做圆周运动,所以:GMm r 2=mr 4π2T 2,所以:M =4π2r 3GT 2=s 3Gt 2θ,故C 正确;人造航天器在月球表面附近绕月球做匀速圆周运动,月球的半径等于r ,则月球的体积:V =43πr 3,月球的密度为ρ=M V =3θ24πGt2,故D 错误。
能力课 天体运动的综合问题1.(多选)目前,在地球周围有许多人造地球卫星绕着它运转,其中一些卫星的轨道可近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是( )A .卫星的动能逐渐减小B .由于地球引力做正功,引力势能一定减小C .由于气体阻力做负功,地球引力做正功,机械能保持不变D .卫星克服气体阻力做的功小于引力势能的减小解析:选BD 由于空气阻力做负功,卫星轨道半径变小,由GMm r 2=mv 2r可知,卫星线速度增大,地球引力做正功,引力势能一定减小,故动能增大,机械能减小,选项A 、C 错误,B 正确;根据动能定理,卫星动能增大,卫星克服阻力做的功小于地球引力做的正功,而地球引力做的正功等于引力势能的减小,所以卫星克服阻力做的功小于引力势能的减小,选项D 正确.2. (2018届山东省天成大联考)2017年10月16日,美国激光干涉引力波天文台等机构联合宣布首次发现双中子星并合引力波事件,如图为某双星系统A 、B 绕其连线上的O 点做匀速圆周运动的示意图,若A 星的轨道半径大于B 星的轨道半径,双星的总质量M ,双星间的距离为L ,其运动周期为T ,则( )A .A 的质量一定大于B 的质量 B .A 的线速度一定大于B 的线速度C .L 一定,M 越大,T 越大D .M 一定,L 越大,r 越大解析:选BD 设双星质量分别为m A 、m B ,轨道半径分别为R A 、R B ,角速度相等且为ω,根据万有引力定律可知:Gm A m B L 2=m A ω2R A ,G m A m B L2=m B ω2R B ,距离关系为:R A +R B =L ,联立解得:m A m B =R BR A,因为R A >R B ,所以A 的质量一定小于B 的质量,故A 错误;根据线速度与角速度的关系有:v A =ωR A 、v B =ωR B ,因为角速度相等,半径R A >R B ,所以A 的线速度大于B 的线速度,故B 正确;又因为T =2πω,联立以上可得周期为:T =2πL 3G m A +m B,所以总质量M 一定,两星间距离L 越大,周期T 越大,故C 错误,D 正确.3.(2019届漳州质检)2017年4月7日出现了“木星冲日”的天文奇观,木星离地球最近最亮.当地球位于太阳和木星之间且三者几乎排成一条直线时,天文学称之为“木星冲日”.木星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动.不考虑木星与地球的自转.相关数据见下表.则( )A .木星表面的重力加速度比地球表面的重力加速度大B .木星运行的加速度比地球运行的加速度大C .在木星表面附近发射飞行器的速度至少为7.9 km/sD .下次“木星冲日”的时间大约在2018年8月份 解析:选A 根据g =GMR 2,则g 地=Gm R 2,g 木=G ·320m R 2≈2.6GmR 2,则木星表面的重力加速度比地球表面的重力加速度大,选项A 正确;根据a =GM 太r 2,则a 地=GM 太r 2,a 木=GM 太r 2=125GM 太r 2,则木星的加速度比地球的加速度小,选项B 错误;根据v = GMr可知v 地= Gm R=7.9 km/s ;v 木=G ·320m11R =1.7GmR=1.7×7.9 km/s,选项C 错误;根据开普勒第三定律r 3T 地2=r 3T 木2,地球公转周期T 1=1年,木星公转周期T 2=125T 1≈11.18年.设经时间t ,再次出现木星冲日,则有ω1t -ω2t =2π,其中ω1=2πT 1,ω2=2πT 2,解得t ≈1.1年,因此下一次木星冲日发生在2018年5月,选项D 错误,故选A.4.(2018届石家庄一模)如图所示,a 、b 、c 、d 为四颗地球卫星,a 静止在地球赤道表面还未发射,b 是近地轨道卫星,c 是地球同步卫星,d 是高空探测卫星.若b 、c 、d 的运动均可看作匀速圆周运动,下列说法正确的是( )A .a 的向心加速度小于a 所在处的重力加速度B .在相同时间内b 、c 、d 转过的弧长相等C .c 在4小时内转过的圆心角为π/6。
高中物理综合训练题(天体物理)解题要求:天体运动主要围绕以下两个考点复习: 1、地表:F=2r GMm =mg 2、圆周运动:2r GmM = m r v 2 = m rw 2 = mr 22T 4π 1、已知第一宇宙速度为7.90千米/秒,如果一颗人造卫星距地面的高度为3倍的地球半径,它的环绕速度是( B )A .7.90km/sB .3.95 km/sC .1.98km/sD .由于卫星质量不知,所以不能确定2、2008年9月25日21时10分“神舟七号”载人飞船发射升空,进入预定轨道后绕地球自西向东作匀速圆周运动,运行轨道距地面343Km .绕行过程中,宇航员进行了一系列科学实验,实现了我国宇宙航行的首次太空行走.在返回过程中,9月28日17时30分返回舱主降落伞打开,17时38分安全着陆.下列说法正确的是( AB )A .飞船做圆周运动的圆心与地心重合B .载人飞船轨道高度小于地球同步卫星的轨道高度C .载人飞船绕地球作匀速圆周运动的速度略大于第一宇宙速度7.9km /sD .在返回舱降落伞打开后至着地前宇航员处于失重状态3、2008年9 月25日22时03分,在神舟七号载人飞船顺利进入环绕轨道后,人们注意到这样一个电视画面,翟忠刚放开了手中的飞行手册,绿色的封面和白色的书页在失重的太空中飘浮起来。
假设这时宇航员手中有一铅球,下面说法正确的是( ACD )A .宁航员可以毫不费力地拿着铅球B .快速运动的铅球撞到宇航员,宇航员可以毫不费力将其抓住C .快速运动的铅球撞到宇航员,宇航员仍然能感受到很大的撞击力D .投出铅球,宇航员可以观察到铅球做匀速直线运动4、2008年9月25日,我国利用“神州七号”飞船将翟志刚、刘伯明、景海鹏三名宇航员送入太空。
设宇航员测出自己绕地球做圆周运动的周期为T ,离地高度为H ,地球半径为R ,则根据T 、H 、R 和引力常量G ,能计算出的物理量是( ABD )A .地球的质量B .地球的平均密度C .飞船所需的向心力D .飞船线速度的大小5、质量为m 的人造地球卫星在地面上的重力为F ,它在距地面为R (R 为地球的半径)的圆形轨道上运行时( BC )A .线速度为mFR 2 B .周期为F mR 24π C .动能为R F ⋅41 D .所受重力为06、几十亿年来,月球总是以同一面对着地球,人们只能看到月貌的59%,由于在地球上看不到月球的背面,所以月球的背面蒙上了一层十分神秘的色彩.试通过对月球运动的分析,说明人们在地球上看不到月球背面的原因是( D )A .月球的自转周期与地球的自转周期相同B .月球的自转周期与地球的公转周期相同C .月球的公转周期与地球的自转周期相同D .月球的公转周期与月球的自转周期相同7、火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆。
高一物理专题训练:天体运动一、单选题1.如图所示,有两个绕地球做匀速圆周运动的卫星.一个轨道半径为,对应的线速度,角速度,向心加速度,周期分别为,,,;另一个轨道半径为,对应的线速度,角速度,向心加速度,周期分别为,,,.关于这些物理量的比例关系正确的是()A.B.C.D.【答案】D2.设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度比为k(均不计阻力),且已知地球与该天体的半径之比也为k,则地球与此天体的质量之比为() A.1B.k2C.kD.【答案】C3.假设火星和地球都是球体,火星的质量与地球质量之比,火星的半径与地球半径之比,那么火星表面的引力加速度与地球表面处的重力加速度之比等于(忽略行星自转影响)A.B.C.D.【答案】B4.土星最大的卫星叫“泰坦”(如图),每16天绕土星一周,其公转轨道半径约1.2×106 km,土星的质量约为A .5×1017 kgB .5×1026 kgC .7×1033 kgD .4×1036 kg【答案】B5.有一质量为M 、半径为R 、密度均匀的球体,在距离球心O 为2R 的地方有一质量为m 的质点.现从M 中挖去半径为12R 的球体,如图所示,则剩余部分对m 的万有引力F 为( )A .2736GMm R B .278GMm R C .218GMm R D .2732GMm R 【答案】A6.已知地球的质量是月球质量的81倍,地球半径大约是月球半径的4倍,不考虑地球、月球自转的影响,以上数据可推算出 [ ]A .地球表面的重力加速度与月球表面重力加速度之比为9:16B .地球的平均密度与月球的平均密度之比为9:8C .靠近地球表面沿圆轨道运动的航天器的周期与靠近月球表面沿圆轨道运行的航天器的周期之比约为8:9D .靠近地球表面沿圆轨道运行的航天器的线速度与靠近月球表面沿圆轨道运行的航天器的线速度之比约为81:4【答案】C7.中新网2018年3月4日电:据外媒报道,美国航空航天局(NASA)日前发现一颗名为WASP-39b 的地外行星,该行星距离地球约700光年,质量与土星相当,它白天温度为776.6摄氏度,夜间也几乎同样热,因此被科研人员称为“热土星”。
高一物理专题训练:天体运动一、单选题1.如图所示,有两个绕地球做匀速圆周运动的卫星.一个轨道半径为,对应的线速度,角速度,向心加速度,周期分别为,,,;另一个轨道半径为,对应的线速度,角速度,向心加速度,周期分别为,,,.关于这些物理量的比例关系正确的是( )A.B.C.D.【答案】D2.设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度比为k(均不计阻力),且已知地球与该天体的半径之比也为k,则地球与此天体的质量之比为() A.1B.k2C.kD.【答案】C3.假设火星和地球都是球体,火星的质量与地球质量之比,火星的半径与地球半径之比,那么火星表面的引力加速度与地球表面处的重力加速度之比等于(忽略行星自转影响)A.B.C.D.【答案】B4.土星最大的卫星叫“泰坦”(如图),每16天绕土星一周,其公转轨道半径约1。
2×106 km,土星的质量约为A .5×1017 kgB .5×1026 kgC .7×1033 kgD .4×1036 kg【答案】B5.有一质量为M 、半径为R 、密度均匀的球体,在距离球心O 为2R 的地方有一质量为m 的质点.现从M 中挖去半径为12R 的球体,如图所示,则剩余部分对m 的万有引力F 为( )A .2736GMm R B .278GMm R C .218GMm R D .2732GMm R 【答案】A6.已知地球的质量是月球质量的81倍,地球半径大约是月球半径的4倍,不考虑地球、月球自转的影响,以上数据可推算出 [ ]A .地球表面的重力加速度与月球表面重力加速度之比为9:16B .地球的平均密度与月球的平均密度之比为9:8C .靠近地球表面沿圆轨道运动的航天器的周期与靠近月球表面沿圆轨道运行的航天器的周期之比约为8:9D .靠近地球表面沿圆轨道运行的航天器的线速度与靠近月球表面沿圆轨道运行的航天器的线速度之比约为81:4【答案】C7.中新网2018年3月4日电:据外媒报道,美国航空航天局(NASA)日前发现一颗名为WASP-39b 的地外行星,该行星距离地球约700光年,质量与土星相当,它白天温度为776.6摄氏度,夜间也几乎同样热,因此被科研人员称为“热土星"。
重难点05 天体运动与人造航天器【知识梳理】考点一 天体质量和密度的计算1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即ma r mv r T m r m rMm G ====2222)2(πω(2)在中心天体表面或附近运动时,万有引力近似等于重力,即2R MmG mg =(g 表示天体表面的重力加速度).(2)利用此关系可求行星表面重力加速度、轨道处重力加速度: 在行星表面重力加速度:2R Mm Gmg =,所以2R MG g = 在离地面高为h 的轨道处重力加速度:2)(h R Mm G g m +=',得2)(h R MG g +=' 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于2R Mm G mg =,故天体质量GgR M 2=天体密度:GRgV M πρ43==(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即r T m rMm G 22)2(π=,得出中心天体质量2324GT r M π=;②若已知天体半径R ,则天体的平均密度3233RGT r V M πρ== ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度23GT V M πρ==.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 【重点归纳】 1.黄金代换公式(1)在研究卫星的问题中,若已知中心天体表面的重力加速度g 时,常运用GM =gR 2作为桥梁,可以把“地上”和“天上”联系起来.由于这种代换的作用很大,此式通常称为黄金代换公式. 2. 估算天体问题应注意三点(1)天体质量估算中常有隐含条件,如地球的自转周期为24 h ,公转周期为365天等. (2)注意黄金代换式GM =gR 2的应用. (3)注意密度公式23GTπρ=的理解和应用. 考点二 卫星运行参量的比较与运算 1.卫星的动力学规律由万有引力提供向心力,ma r mv r T m r m rMm G ====2222)2(πω2.卫星的各物理量随轨道半径变化的规律r GM v =;3r GM =ω;GMr T 32π=;2r GM a = (1)卫星的a 、v 、ω、T 是相互联系的,如果一个量发生变化,其它量也随之发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定.(2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,机械能越大.3.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心. 【重点归纳】1.利用万有引力定律解决卫星运动的一般思路 (1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式卫星运动的向心力来源于万有引力:ma r mv r T m r m rMm G ====2222)2(πω在中心天体表面或附近运动时,万有引力近似等于重力,即:2R MmGmg = (g 为星体表面处的重2.卫星的线速度、角速度、周期与轨道半径的关系⎪⎪⎩⎪⎪⎨⎧⇒⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫====减小增大减小减小增大时当半径a T v r r GM a GM r T r GM r GM v ωπω2332 考点三 宇宙速度 卫星变轨问题的分析1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的两种求法:(1)r mv r Mm G 212=,所以r GMv =1 (2)rmv mg 21=,所以gR v =1.3.第二、第三宇宙速度也都是指发射速度.4.当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:(1)当卫星的速度突然增加时,r mv rMm G 22<,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,r mv rMm G 22>,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时增大.卫星的发射和回收就是利用这一原理.1.处理卫星变轨问题的思路和方法(1)要增大卫星的轨道半径,必须加速;(2)当轨道半径增大时,卫星的机械能随之增大.2.卫星变轨问题的判断:(1)卫星的速度变大时,做离心运动,重新稳定时,轨道半径变大.(2)卫星的速度变小时,做近心运动,重新稳定时,轨道半径变小.(3)圆轨道与椭圆轨道相切时,切点处外面的轨道上的速度大,向心加速度相同.3.特别提醒:“三个不同”(1)两种周期——自转周期和公转周期的不同(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度(3)两个半径——天体半径R和卫星轨道半径r的不同【限时检测】(建议用时:30分钟)1.(2019·新课标全国Ⅰ卷)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。
物理专项题13天体运动全解全析热点题型一 开普勒定律 万有引力定律的理解与应用 1.开普勒行星运动定律(1)行星绕太阳的运动通常按圆轨道处理.(2)开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.(3)开普勒第三定律a 3T 2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同.2.万有引力定律公式F =G m 1m 2r 2适用于质点、均匀介质球体或球壳之间万有引力的计算.当两物体为匀质球体或球壳时,可以认为匀质球体或球壳的质量集中于球心,r 为两球心的距离,引力的方向沿两球心的连线.【例1】为了探测引力波,“天琴计划”预计发射地球卫星P ,其轨道半径约为地球半径的16倍;另一地球卫星Q 的轨道半径约为地球半径的4倍.P 与Q 的周期之比约为( ) A .2∶1 B .4∶1 C .8∶1 D .16∶1 【答案】 C【解析】 由G Mm r 2=mr 4π2T 2知,T 2r 3=4π2GM ,则两卫星T 2P T 2Q =r 3Pr 3Q .因为r P ∶r Q =4∶1,故T P ∶T Q =8∶1.【变式1】(2017·高考全国卷Ⅱ)如图,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0.若只考虑海王星和太阳之间的相互作用,则海王星在从P 经M 、Q 到N 的运动过程中( )A .从P 到M 所用的时间等于T 04B .从Q 到N 阶段,机械能逐渐变大C .从P 到Q 阶段,速率逐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功 【答案】CD【解析】在海王星从P 到Q 的运动过程中,由于引力与速度的夹角大于90°,因此引力做负功,根据动能定理可知,速率越来越小,C 项正确;海王星从P 到M 的时间小于从M 到Q 的时间,因此从P 到M 的时间小于T 04,A 项错误;由于海王星运动过程中只受到太阳引力作用,引力做功不改变海王星的机械能,即从Q 到N 的运动过程中海王星的机械能守恒,B 项错误;从M 到Q 的运动过程中引力与速度的夹角大于90°,因此引力做负功,从Q 到N 的过程中,引力与速度的夹角小于90°,因此引力做正功,即海王星从M 到N 的过程中万有引力先做负功后做正功,D 项正确.热点题型二 万有引力与重力的关系 1.地球表面的重力与万有引力地面上的物体所受地球的吸引力产生两个效果,其中一个分力提供了物体绕地轴做圆周运动的向心力,另一个分力等于重力.(1)在两极,向心力等于零,重力等于万有引力;(2)除两极外,物体的重力都比万有引力小;(3)在赤道处,物体的万有引力分解为两个分力F 向和mg 刚好在一条直线上,则有F =F 向+mg ,所以mg =F -F 向=GMmR 2-mRω2自. 2.星体表面上的重力加速度(1)在地球表面附近的重力加速度g (不考虑地球自转);mg =G mM R 2,得g =GM R2.(2)在地球上空距离地心r =R +h 处的重力加速度为g ′,mg ′=GMm (R +h )2,得g ′=GM(R +h )2 所以g g ′=(R +h )2R 2.【例2】近期天文学界有很多新发现,若某一新发现的星体质量为m 、半径为R 、自转周期为T 、引力常量为G .下列说法正确的是( ) A .如果该星体的自转周期T <2π R 3Gm,则该星体会解体 B .如果该星体的自转周期T >2πR 3Gm,则该星体会解体 C .该星体表面的引力加速度为Gm RD .如果有卫星靠近该星体表面做匀速圆周运动,则该卫星的速度大小为Gm R【答案】 AD【解析】 如果在该星体“赤道”表面有一物体,质量为m ′,当它受到的万有引力大于跟随星体自转所需的向心力时,即G mm ′R 2>m ′R 4π2T 2时,有T >2πR 3Gm,此时,星体处于稳定状态不会解体,而当该星体的自转周期T <2πR 3Gm时,星体会解体,故选项A 正确,B 错误;在该星体表面,有G mm ′R 2=m ′g ′,所以g ′=G mR2,故选项C错误;如果有质量为m ″的卫星靠近该星体表面做匀速圆周运动,有G mm ″R 2=m ″v 2R,解得v =GmR,故选项D 正确. 【变式2】(2019·安徽皖南八校联考)一颗在赤道上空做匀速圆周运动运行的人造卫星,其轨半径上对应的重力加速度为地球表面重力加速度的四分之一,则某一时刻该卫星观测到地面赤道最大弧长为(已知地球半径为R ) ( )A.23πRB.12πRC.13πRD.14πR 【答案】 A【解析】 卫星所在高度处G Mm r 2=mg ′,而地球表面处G Mm R 2=mg ,因为g ′=14g ,解得r =2R ,则某一时刻该卫星观测到地面赤道的弧度数为2π3,则观测到地面赤道最大弧长为23πR ,故选A.热点题型三 中心天体质量和密度的估算 应用公式时注意区分“两个半径”和“两个周期”(1)天体半径和卫星的轨道半径,通常把天体看成一个球体,天体的半径指的是球体的半径.卫星的轨道半径指的是卫星围绕天体做圆周运动的圆的半径.卫星的轨道半径大于等于天体的半径. (2)自转周期和公转周期,自转周期是指天体绕自身某轴线运动一周所用的时间,公转周期是指卫星绕中心天体做圆周运动一周所用的时间.自转周期与公转周期一般不相等.【例3】为了研究某彗星,人类先后发射了两颗人造卫星.卫星A 在彗星表面附近做匀速圆周运动,运行速度为v ,周期为T ;卫星B 绕彗星做匀速圆周运动的半径是彗星半径的n 倍.万有引力常量为G ,则下列计算不正确的是 ( )A .彗星的半径为vT 2πB .彗星的质量为v 3T4πGC .彗星的密度为3πGT 2D .卫星B 的运行角速度为2πT n 3【答案】 B【解析】 由题意可知,卫星A 绕彗星表面做匀速圆周运动,则彗星的半径满足:R =vT2π,故A正确;根据G Mm R 2=m v 2R ,解得M =v 3T 2πG ,故B 错误;彗星的密度为ρ=M V =M 43πR 3=3πGT2,故C 正确;根据G Mm r 2=mω2r ,GMm R 2=mR 4π2T 2,r =nR ,则卫星B 的运行角速度为2πT n 3,故D 正确. 【变式3】我国计划于2019年发射“嫦娥五号”探测器,假设探测器在近月轨道上绕月球做匀速圆周运动,经过时间t (小于绕行周期),运动的弧长为s ,探测器与月球中心连线扫过的角度为θ(弧度),引力常量为G ,则( )A .探测器的轨道半径为 θtB .探测器的环绕周期为 πtθC .月球的质量为 s 3Gt 2θD .月球的密度为 3θ24Gt【答案】C【解析】利用s =θr ,可得轨道半径r =s θ,选项A 错误;由题意可知,角速度ω=θt ,故探测器的环绕周期T =2πω=2πθt=2πt θ,选项B 错误;根据万有引力提供向心力可知,G mM r 2=m v 2r,再结合v=s t 可以求出M =v 2r G =Gst s θ⋅⎪⎭⎫ ⎝⎛2=s 3Gt 2θ,选项C 正确;由于不知月球的半径,所以无法求出月球的密度,选项D 错误.热点题型四 同步卫星的运行规律分析 4.解决天体圆周运动问题的两条思路(1)在中心天体表面或附近而又不涉及中心天体自转运动时,万有引力等于重力,即G MmR 2=mg ,整理得GM =gR 2,称为黄金代换.(g 表示天体表面的重力加速度) (2)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=m v 2r =mrω2=m 4π2r T2=ma n . 【例4】.(2016·高考全国卷Ⅰ)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( ) A .1 h B .4 h C .8 h D .16 h 【答案】B【解析】设地球半径为R ,画出仅用三颗地球同步卫星使地球赤道上任意两点之间保持无线电通讯时同步卫星的最小轨道半径示意图,如图所示.由图中几何关系可得,同步卫星的最小轨道半径r =2R .设地球自转周期的最小值为T ,则由开普勒第三定律可得,(6.6R )3(2R )3=(24 h )2T 2,解得T ≈4 h ,选项B 正确.【变式4-1】(2019·合肥调研)2018年7月27日,发生了“火星冲日”现象,火星运行至距离地球最近的位置,火星冲日是指火星、地球和太阳几乎排列成一条直线,地球位于太阳与火星之间,此时火星被太阳照亮的一面完全朝向地球,所以明亮易于观察,地球和火星绕太阳公转的方向相同,轨道都近似为圆,火星公转轨道半径为地球的1.5倍,则下列说法正确( )A .地球与火星的公转角速度大小之比为2∶3B .地球与火星的公转线速度大小之比为3∶2C .地球与火星的公转周期之比为8∶27D .地球与火星的向心加速度大小之比为27∶8【答案】 C【解析】 根据G Mm r 2=m v 2r =mω2r =m 4π2r T 2=ma ,解得ω=GMr 3,则地球与火星的公转角速度大小之比为364,选项A 错误;v =GM r ,则地球与火星的公转线速度大小之比为62,选项B 错误;T =2πr 3GM ,则地球与火星的公转周期之比为8∶27 ,选项C 正确;a =GMr2,则地球与火星的向心加速度大小之比为9∶4,选项D 错误.【变式4-2】(2019·广东省揭阳市期末)如图所示是北斗导航系统中部分卫星的轨道示意图,已知a 、b 、c 三颗卫星均做圆周运动,a 是地球同步卫星,则( )A .卫星a 的角速度小于c 的角速度B .卫星a 的加速度大于b 的加速度C .卫星a 的运行速度大于第一宇宙速度D .卫星b 的周期大于24 h 【答案】 A【解析】 根据公式G Mmr2=mω2r 可得ω=GMr 3,运动半径越大,角速度越小,故卫星a 的角速度小于c 的角速度,A 正确;根据公式G Mm r 2=ma 可得a =GMr 2,由于a 、b 的轨道半径相同,所以两者的向心加速度大小相同,B 错误;第一宇宙速度是近地轨道卫星做圆周运动的最大环绕速度,根据公式G Mm r 2=m v 2r可得v =GMr,半径越大,线速度越小,所以卫星a 的运行速度小于第一宇宙速度,C 错误;根据公式G Mm r 2=m 4π2T 2r 可得T =2πr 3GM,故轨道半径相同,周期相同,所以卫星b 的周期等于24 h ,D 错误.热点题型五 宇宙速度的理解与计算 1.第一宇宙速度的推导 方法一:由G Mm R 2=m v 21R得v 1=GMR=7.9×103 m/s. 方法二:由mg =m v 21R得v 1=gR =7.9×103 m/s.第一宇宙速度是发射地球人造卫星的最小速度,也是地球人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg≈85 min. 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球表面附近做匀速圆周运动. (2)7.9 km/s <v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆. (3)11.2 km/s≤v 发<16.7 km/s ,卫星绕太阳做椭圆运动.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间. 【例5】(多选)(2019·河南新乡模拟)美国国家科学基金会宣布,天文学家发现一颗迄今为止与地球最类似的行星,该行星绕太阳系外的红矮星Gliese581做匀速圆周运动.这颗行星距离地球约20光年,公转周期约为37天,它的半径大约是地球的1.9倍,表面重力加速度与地球相近.下列说法正确的是 ( ) A .该行星的公转角速度比地球大 B .该行星的质量约为地球质量的3.6倍 C .该行星第一宇宙速度为7.9 km/sD .要在地球上发射航天器到达该星球,发射速度只需达到地球的第二宇宙速度即可 【答案】 AB【解析】该行星的公转周期约为37天,而地球的公转周期为365天,根据ω=2πT可知该行星的公转角速度比地球大,选项A 正确;忽略星球自转的影响,根据万有引力等于重力列出等式:G Mm R 2=mg ,解得:g =GMR 2,这颗行星的重力加速度与地球相近,它的半径大约是地球的1.9倍,所以它的质量是地球的3.6倍,故B 正确;要在该行星表面发射人造卫星,发射的速度最小为第一宇宙速度,第一宇宙速度v =GMR,R 为星球半径,M 为星球质量,所以这颗行星的第一宇宙速度大约是地球的2倍,而地球的第一宇宙速度为7.9 km/s ,故该星球的第一宇宙速度为2×7.9 km/s =11.2 km/s ,故C 错误;由于这颗行星在太阳系外,所以航天器的发射速度至少要达到第三宇宙速度,故D 错误. 【变式5】.(多选)(2019·安徽师大附中期中)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星的公转视为匀速圆周运动.忽略行星自转影响,火星和地球相比 ( )行星 半径/m 质量/kg 公转轨道半径/m地球 6.4×106 6.0×1024 1.5×1011 火星3.4×1066.4×10232.3×1011A.火星的“第一宇宙速度”约为地球的第一宇宙速度的0.45倍 B .火星的“第一宇宙速度”约为地球的第一宇宙速度的1.4倍 C .火星公转的向心加速度约为地球公转的向心加速度的0.43倍D .火星公转的向心加速度约为地球公转的向心加速度的0.28倍 【答案】AC【解析】根据第一宇宙速度公式v =GMR (M 指中心天体火星或地球的质量)得v 火v 地=M 火R 地M 地R 火=0.45,故A 正确,B 错误;根据向心加速度公式a =GM r 2(M 指中心天体太阳的质量)得a 火a 地=r 2地r 2火=1.522.32=0.43,故C 正确,D 错误.热点题型六 近地卫星、赤道上的物体及同步卫星的运行问题 【例6】(多选)(2019·大庆中学模拟)如图所示,A 表示地球同步卫星,B 为运行轨道比A 低的一颗卫星,C为地球赤道上某一高山山顶上的一个物体,两颗卫星及物体C 的质量都相同,关于它们的线速度、角速度、运行周期和所受到的万有引力的比较,下列关系式正确的是 ( )A .vB >v A >vC B .ωA >ωB >ωC C .F A >F B >F CD .T A =T C >T B 【答案】 AD【解析】 A 、C 的角速度相等,由v =ωr ,可知v C <v A ,由人造卫星的速度公式:v =GMr,可知v A <v B ,因而v B >v A >v C ,故A 正确; A 、C 的角速度相等,根据ω=GMr 3知A 的角速度小于B 的角速度,故ωA =ωC <ωB ,故B 错误;由万有引力公式可知,F =GMmr 2,即半径越大,万有引力越小,故F A <F B <F C ,故C 错误;卫星A 为同步卫星,周期与C 物体周期相等,又万有引力提供向心力,即:GMm r 2=m (2πT)2r ,T =2πr 3GM,所以A 的周期大于B 的周期,故T A =T C >T B ,故D 正确.【变式6】.(多选)地球同步卫星离地心的距离为r ,运行速率为v 1,向心加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,地球的半径为R ,第一宇宙速度为v 2,则下列比例关系中正确的是 ( ) A.a 1a 2=r R B.a 1a 2=(r R )2 C.v 1v 2=r R D.v 1v 2=Rr【答案】AD【解析】设地球质量为M ,同步卫星的质量为m 1,地球赤道上物体的质量为m ,根据向心加速度和角速度的关系有a 1=ω21r ,a 2=ω22R ,又ω1=ω2,故a 1a 2=r R,选项A 正确;由万有引力定律和牛顿第二定律得G Mm 1r 2=m 1v 21r ,G Mm R 2=m v 22R ,解得v 1v 2=Rr,选项D 正确.热点题型七 双星 【例7】(2018·全国卷Ⅰ·20)2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈.将两颗中子星都看做是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( ) A .质量之积 B .质量之和 C .速率之和 D .各自的自转角速度 【答案】 BC【解析】 两颗中子星运动到某位置的示意图如图所示每秒转动12圈,角速度已知中子星运动时,由万有引力提供向心力得Gm 1m 2l 2=m 1ω2r 1① Gm 1m 2l 2=m 2ω2r 2② l =r 1+r 2③由①②③式得G (m 1+m 2)l 2=ω2l ,所以m 1+m 2=ω2l 3G,质量之和可以估算.由线速度与角速度的关系v =ωr 得 v 1=ωr 1④ v 2=ωr 2⑤由③④⑤式得v 1+v 2=ω(r 1+r 2)=ωl ,速率之和可以估算. 质量之积和各自自转的角速度无法求解.【变式7】双星系统由两颗绕着它们中心连线上的某点旋转的恒星组成.假设两颗恒星质量相等,理论计算它们绕连线中点做圆周运动,理论周期与实际观测周期有出入,且T 理论T 观测=n1(n >1),科学家推测,在以两星球中心连线为直径的球体空间中均匀分布着暗物质,设两星球中心连线长度为L ,两星球质量均为m ,据此推测,暗物质的质量为 ( ) A .(n -1)m B .(2n -1)m C.n -14mD.n -28m【答案】C【解析】双星运动过程中万有引力提供向心力:G m 2L 2=m L 2(2πT 理论)2,解得T 理论=2π2L 3Gm;设暗物质的质量为M ′,对星球由万有引力提供向心力G m 2L 2+G M ′m (L 2)2=m L 2(2πT 观测)2,解得T观测=2π2L 3G (m +4M ′).根据T 理论T 观测=n 1,联立以上可得:M ′=n -14m ,选项C 正确.热点题型八 卫星的变轨问题人造地球卫星的发射过程要经过多次变轨,如图所示,我们从以下几个方面讨论.1.变轨原理及过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A 点点火加速,由于速度变大,万有引力不足以提供在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅲ. 2.物理量的定性分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B .因在A 点加速,则v A >v 1,因在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B . (2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同.同理,从轨道Ⅱ和轨道Ⅲ上经过B 点时加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律a 3T2=k 可知T 1<T 2<T 3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E 1、E 2、E 3,则E 1<E 2<E 3. 卫星参数变化分析【例8】(多选)如图所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火将卫星送入椭圆轨道2,然后再次点火,将卫星送入同步轨道3.轨道1、2相切于Q 点,2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,下列说法中正确的是 ( )A .卫星在轨道3上的速率小于在轨道1上的速率B .卫星在轨道3上的角速度大于在轨道1上的角速度C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度D .卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度 【答案】 AD【解析】 由万有引力提供向心力得:v =GMr,则半径大的速率小,则A 正确;由万有引力提供向心力得:ω=GMr 3,则半径大的角速度小,则B 错误;在同一点所受的地球的引力相等,则加速度相等,故C 错误,D 正确. 【方法技巧】(1)卫星的变轨问题要用到圆周运动中“离心运动”和 “近心运动”的知识去分析;(2)卫星在太空中某点的加速度a =GMr 2,与卫星的运动轨迹无关,仅由卫星的位置决定.【变式8】(2017·高考全国卷Ⅲ)2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行.与天宫二号单独运行时相比,组合体运行的( ) A .周期变大 B .速率变大 C .动能变大 D .向心加速度变大 【答案】C【解析】组合体比天宫二号质量大,轨道半径R 不变,根据GMm R 2=m v 2R,可得v =GMR,可知与天宫二号单独运行时相比,组合体运行的速率不变,B 项错误;又T =2πRv ,则周期T 不变,A项错误;质量变大、速率不变,动能变大,C 项正确;向心加速度a =GMR 2,不变,D 项错误.卫星变轨的能量分析 【例9】(2019·陕西省宝鸡市质检二)如图所示,质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMm r ,其中G 为引力常量,M 为地球质量,该卫星原来在半径为R 1的轨道Ⅰ上绕地球做匀速圆周运动,经过椭圆轨道Ⅱ的变轨过程进入半径为R 3的圆形轨道Ⅲ继续绕地球运动,其中P 点为Ⅰ轨道与Ⅱ轨道的切点,Q 点为Ⅱ轨道与Ⅲ轨道的切点,下列判断正确的是( )A .卫星在轨道Ⅰ上的动能为G Mm2R 1B .卫星在轨道Ⅲ上的机械能等于-G Mm2R 3C .卫星在Ⅱ轨道经过Q 点时的加速度小于在Ⅲ轨道上经过Q 点时的加速度D .卫星在Ⅰ轨道上经过P 点时的速率大于在Ⅱ轨道上经过P 点时的速率 【答案】 AB【解析】 在轨道Ⅰ上,有:G Mm R 12=m v 12R 1,解得:v 1=GM R 1,则动能为E k1=12mv 12=GMm2R 1,故A 正确;在轨道Ⅲ上,有:G Mm R 32=m v 32R 3,解得:v 3=GM R 3,则动能为E k3=12mv 32=GMm 2R 3,引力势能为E p =-GMm R 3,则机械能为E =E k3+E p =-GMm 2R 3,故B 正确;由G Mm R Q 2=ma 得:a =GMR Q 2,两个轨道上Q 点到地心的距离不变,故向心加速度的大小不变,故C 错误;卫星要从Ⅰ轨道变到Ⅱ轨道上,经过P 点时必须点火加速,即卫星在Ⅰ轨道上经过P 点时的速率小于在Ⅱ轨道上经过P 点时的速率,故D 错误. 【变式9】(2019·河北省唐山市上学期期末)登陆火星需经历如图所示的变轨过程,已知引力常量为G ,则下列说法正确的是( )A .飞船在轨道上运动时,运行的周期T Ⅲ> T Ⅱ> T ⅠB .飞船在轨道Ⅰ上的机械能大于在轨道Ⅱ上的机械能C .飞船在P 点从轨道Ⅱ变轨到轨道Ⅰ,需要在P 点朝速度方向喷气D .若轨道Ⅰ贴近火星表面,已知飞船在轨道Ⅰ上运动的角速度,可以推知火星的密度 【答案】 ACD【解析】 根据开普勒第三定律a 3T 2=k 可知,飞船在轨道上运动时,运行的周期T Ⅲ> T Ⅱ> T Ⅰ,选项A 正确;飞船在P 点从轨道Ⅱ变轨到轨道Ⅰ,需要在P 点朝速度方向喷气,从而使飞船减速到达轨道Ⅰ,则在轨道Ⅰ上机械能小于在轨道Ⅱ的机械能,选项B 错误,C 正确;根据G MmR 2=mω2R以及M =43πR 3ρ,解得ρ=3ω24πG,即若轨道Ⅰ贴近火星表面,已知飞船在轨道Ⅰ上运动的角速度,可以推知火星的密度,选项D 正确.热点题型九 卫星中的“追及相遇”问题某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们的初始位置与中心天体在同一直线上,内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻.【例10】在赤道平面内有三颗在同一轨道上运行的卫星,三颗卫星在此轨道均匀分布,其轨道距地心的距离为地球半径的3.3倍,三颗卫星自西向东环绕地球转动.某时刻其中一颗人造卫星处于A 城市的正上方,已知地球的自转周期为T ,地球同步卫星的轨道半径约为地球半径的6.6倍,则A 城市正上方出现下一颗人造卫星至少间隔的时间约为 ( )A .0.18TB .0.24TC .0.32TD .0.48T 【答案】 A【解析】 地球的自转周期为T ,即地球同步卫星的周期为T ,根据开普勒第三定律得: (6.6r )3T 2=(3.3r )3T 21 解得:T 1=18T 下一颗人造卫星出现在A 城市的正上方,相对A 城市转过的角度为2π3,则有(2πT 1-2πT )t =2π3解得:t ≈0.18T ,故应选A. 【方法技巧】对于天体追及问题的处理思路(1)根据GMmr2=mrω2,可判断出谁的角速度大;(2)根据天体相距最近或最远时,满足的角度差关系进行求解. 【变式10】.(2019·河南洛阳尖子生一联)设金星和地球绕太阳中心的运动是公转方向相同且轨道共面的匀速圆周运动,金星在地球轨道的内侧(称为地内行星),在某特殊时刻,地球、金星和太阳会出现在一条直线上,这时候从地球上观测,金星像镶嵌在太阳脸上的小黑痣缓慢走过太阳表面,天文学称这种现象为“金星凌日”,假设地球公转轨道半径为R ,“金星凌日”每隔t 0年出现一次,则金星的公转轨道半径为( )A.t 01+t 0R B .R(t 01+t 0)3 C .R3(1+t 0t 0)2D .R3(t 01+t 0)2 【答案】D【解析】根据开普勒第三定律有R 3金R 3=T 2金T 2地,“金星凌日”每隔t 0年出现一次,故(2πT 金-2πT 地)t 0=2π,已知T 地=1年,联立解得R 金R =3(t 01+t 0)2,因此金星的公转轨道半径R 金=R 3(t 01+t 0)2,故D 正确.【题型演练】 1.(2019·湖北武汉调研)如图为人造地球卫星的轨道示意图,LEO 是近地轨道,MEO 是中地球轨道,GEO 是地球同步轨道,GTO 是地球同步转移轨道.已知地球的半径R =6 400 km ,该图中MEO 卫星的周期约为(图中数据为卫星近地点、远地点离地面的高度)( )A .3 hB .8 hC .15 hD .20 h 【答案】A【解析】根据题图中MEO 卫星距离地面高度为4 200 km ,可知轨道半径约为R 1=10 600 km ,同步轨道上GEO 卫星距离地面高度为36 000 km ,可知轨道半径约为R 2=42 400 km ,为MEO 卫星轨道半径的4倍,即R 2=4R 1.地球同步卫星的周期为T 2=24 h ,运用开普勒第三定律,R 13R 23=T 12T 22,解得T 1=3 h ,选项A 正确.2.我国探月的“嫦娥工程”已启动,在不久的将来,我国宇航员将登上月球.假如宇航员在月球上测得摆长为L 的单摆做小振幅振动的周期为T ,将月球视为密度均匀、半径为r 的球体,则月球的密度为( )A.πL 3GrT 2B.3πL GrT 2C.16πL 3GrT 2 D .3πL 16GrT 2 【答案】B【解析】据题意,已知月球上单摆的周期为T ,据单摆周期公式有T =2πLg,可以求出月球表面重力加速度为g =4π2L T 2;根据月球表面物体重力等于月球对它万有引力,有G MmR 2=mg ,月球平均密度设为ρ,M =ρV =43πr 3ρ,联立以上关系可以求得ρ=3πLGrT 2,故选项B 正确.3.一宇宙飞船绕地心做半径为r 的匀速圆周运动,飞船舱内有一质量为m 的人站在可称体重的台秤上.用R 表示地球的半径,g 表示地球表面处的重力加速度,g ′表示宇宙飞船所在处的地球引力加速度,F N 表示人对秤的压力,下面说法中正确的是( )A .g ′=r 2R 2gB .g ′=R 2r 2gC .F N =m r R gD .F N =m Rrg【答案】B【解析】做匀速圆周运动的飞船及其上的人均处于完全失重状态,台秤无法测出其重力,故F N =0,C 、D 错误;对地球表面的物体,G Mm R 2=mg ,宇宙飞船所在处,G Mm r 2=mg ′,可得g ′=R 2r 2g ,A 错误,B 正确.4.据报道,科学家们在距离地球20万光年外发现了首颗系外“宜居”行星.假设该行星质量约为地球质量的6.4倍,半径约为地球半径的2倍.那么,一个在地球表面能举起64 kg 物体的人,在这个行星表面能举起的物体的质量约为(地球表面重力加速度g 取10 m/s 2)( ) A .40 kg B .50 kg C .60 kg D .30 kg 【答案】A【解析】在地球表面,万有引力近似等于重力GMm R 2=mg ,得g =GMR 2,因为行星质量约为地球质量的6.4倍,其半径约为地球半径的2倍,则行星表面重力加速度是地球表面重力加速度的1.6倍,而人的举力可认为是不变的,则人在行星表面所举起的物体的质量为m =m 01.6=641.6kg =40 kg ,故A 正确. 5(2019·河北石家庄模拟)如图所示,人造卫星A 、B 在同一平面内绕地心O 做匀速圆周运动,已知AB 连线与AO 连线间的夹角最大为θ,则卫星A 、B 的线速度之比为( )A .sin θ B.1sin θC.sin θD.1sin θ【答案】C【解析】由题图可知,当AB 连线与B 所在的圆周相切时,AB 连线与AO 连线的夹角θ最大,由几何关系可知,sin θ=r B r A ;根据G Mm r 2=m v 2r可知,v =GM r ,故v Av B=r Br A=sin θ,选项C 正确. 6.(2019·河北沧州一中高三月考)有a 、b 、c 、d 四颗地球卫星,a 还未发射,在赤道表面上随地球一起转动;b是近地轨道地球卫星;c是地球的同步卫星;d 是高空探测卫星.它们均做匀速圆周运动,各卫星排列位置如图所示,则( )。