概率论与数理统计习题库,第一章
- 格式:doc
- 大小:195.00 KB
- 文档页数:14
第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。
(B )(3)事件的对立与互不相容是等价的。
(B ) (4)若()0,P A = 则A =∅。
(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。
(B )(8)若P(A)P(B)≤,则⊂A B 。
(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
概率论与数理统计习题集学号_______________姓名_______________班级_______________计算机学院第一章 概率论的基本概念一、填空题1,在一副扑克牌(52张)中任取4张,则4张牌花色全不相同的概率为_________。
2,设A,B,C,D 是四个事件,则四个事件至少发生一个可表示为_______________;四个事件恰好发生两个可表示为_______________。
3,已知5把钥匙中有一把能打开房门,因开门者忘记是哪把能打开门,逐次任取一把试开,则前三次能打开门的概率为 _________。
4,10件产品中有3件次品,从中随机抽取2件,至少抽到一件次品的概率是_________。
5,设两个随机事件A ,B 互不相容,且4.0)(=A P ,3.0)(=B P ,则=)(B A P _____。
二、选择题1,某公司电话号码有五位,若第一位数字必须是5,其余各位可以是0到9中的任意一个,则由完全不同数字组成的电话号码的个数是( )。
A ,126B ,1260C ,3024D ,50402,若B A ⊃,C A ⊃,9.0)(=A P ,8.0)(=⋃C B P ,则=-)(BC A P ( )。
A ,0.4B ,0.6C ,0.8D ,0.73,在书架上任意放置10本不同的书,其中指定的三本书放在一起的概率为( )。
A ,1/15B ,3/15C ,4/5D ,3/54,若5.0)(=A P ,4.0)(=B P ,3.0)(=-B A P ,则=⋃)(B A P ( )。
A ,0.6B ,0.7C ,0.8D ,0.55,设为A ,B 任意两个随机事件,且B A ⊂,0)(>B P ,则下列选项必然成立的是( )。
A ,)|()(B A P A P < B ,)|()(B A P A P ≤C ,)|()(B A P A P >D ,)|()(B A P A P ≥三、计算题1,10个零件中有3个次品,每次从中任取一个零件,取出的零件不再放回去,求第三次才取得合格品的概率。
第一章 随机事件和概率一、选择题1. 设A, B, C 为任意三个事件, 则与A 一定互不相容的事件为(A )C B A ⋃⋃ (B )C A B A ⋃ (C ) ABC (D ))(C B A ⋃2.对于任意二事件A 和B, 与 不等价的是(A )B A ⊂ (B )A ⊂B (C )φ=B A (D )φ=B A3. 设 、 是任意两个事件, , , 则下列不等式中成立的是( ).A ()()P A P A B < .B ()()P A P A B ≤.C ()()P A P A B > .D ()()P A P A B ≥4. 设 , , , 则( ).A 事件A 与B 互不相容 .B 事件A 与B 相互独立.C 事件A 与B 相互对立 .D 事件A 与B 互不独立5. 设随机事件 与 互不相容, 且 , 则 与 中恰有一个发生的概率等于( ).A p q + .B p q pq +-.C ()()11p q -- .D ()()11p q q p -+-6. 对于任意两事件 与 , ( ).A ()()P A P B - .B ()()()P A P B P AB -+.C ()()P A P AB - .D ()()()P A P A P AB +- 7. 若 、 互斥, 且 , 则下列式子成立的是( ).A ()()P A B P A = .B ()0P B A >.C ()()()P AB P A P B = .D ()0P B A =8. 设 , 则下列结论中正确的是( ).A 事件A 、B 互不相容 .B 事件A 、B 互逆.C 事件A 、B 相互独立 .D A B ⊃9. 设 、 互不相容, , 则下列结论肯定正确的是( ).A A 与B 互不相容 .B ()0P B A >.C ()()()P AB P A P B = .D ()()P A B P A -=10. 设 、 、 为三个事件, 已知 , 则 ( ).A 0.3 .B 0.24 .C 0.5 .D 0.2111. 设A, B 是两个随机事件, 且0<P(A)<1, P(B)>0, , 则必有(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠(C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠12. 随机事件A, B, 满足 和 , 则有(A )Ω=⋃B A (B )φ=AB (C ) 1)(=⋃B A P (D )0)(=-B A P13. 设随机事件A 与B 互不相容, , , 则下面结论一定成立的是(A )A, B 为对立事件 (B ) , 互不相容 (C ) A, B 不独立 (D )A, B 独立14.对于事件A 和B, 设 , P(B)>0, 则下列各式正确的是(A ))()|(B P A B P = (B ))()|(A P B A P = (C ) )()(B P B A P =+ (D ))()(A P B A P =+15. 设事件A 与B 同时发生时, 事件C 必发生, 则(A )1)()()(-+≤B P A P C P (B )1)()()(-+≥B P A P C P(C ) )()(AB P C P = (D ))()(B A P C P ⋃=16. 设A,B,C 是三个相互独立的随机事件, 且0<P(C)<1。
第一章 随机事件及其概率第1章1、解:(1){}2,3,4,5,6,7S = (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂218185=-=3、解:用A 表示事件“取到的三位数不包含数字1”2518900998900)(191918=⨯⨯==C C C A P 4、在仅由0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。
解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.48 5、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率(1)4只中恰有2只白球,1只红球,1只黑球; (2)4只中至少有2只红球; (3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338(2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点得到k 张提货单”nkn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,若取到白球,放回,并放入1只白球,若取到红球不放回也不再放回另外的球,连续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。
概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
《概率论与数理统计》第一章习题及答案习题1.11. 将一枚均匀的硬币抛两次,事件C,分别表示“第一次出现A,B正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件C,中的样本点。
A,B解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A(正,正),(正,反)};{=B(正,正),(反,反)} {=C(正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D,,分别表示“点数之和为A,BC偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件D-+,-,,中AB-,ABCABCBCA的样本点。
解:{})6,6(,=Ω;),2,6(),1,6(,),2,1(),1,1(),6,2(,),2,2(),1,2(),6,1(,{})1,3(),2,2(),3,1(),1,1(AB;={})1,2(),2,1(),6,6(),4,6(),2,6(,+BA;=),5,1(),3,1(),1,1(A;C=Φ{})2,2(),1,1(BC;={})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(BA-DC-=-3. 以C,分别表示某城市居民订阅日报、晚报和体育报。
试用A,B,表示以下事件:A,BC(1)只订阅日报;(2)只订日报和晚报;(3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
解:(1)C B A ; (2)C AB ;(3)C B A C B A C B A ++; (4)BC A C B A C AB ++;(5)C B A ++; (6)C B A ;(7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。
概率论与数理统计习题 第一章 概率论的基本概念习题1-1 设C B A ,,为三事件,用C B A ,,的运算关系表示下列各事件.(1)A 发生,B 与C 不发生, (2)A 与B 都发生,而C 不发生,(3)C B A ,,中至少有一个发生,(4)C B A ,,都发生,(5)C B A ,,都不发生, (6)C B A ,,中不多于一个发生, (7)C B A ,,中不多于两个发生, (8)C B A ,,中至少有两个发生,解(1)A 发生,B 与C 不发生表示为C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生表示为C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生表示为A+B+C (4)A ,B ,C 都发生,表示为ABC(5)A ,B ,C 都不发生,表示为C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生,相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生相当于C B A ,,中至少有一个发生。
故表示为ABC C B A 或++(8)A ,B ,C 中至少有二个发生。
相当于AB ,BC ,AC 中至少有一个发生。
故表示为AB +BC +AC习题1-2 设B A ,为两事件且6.0)(=A P ,7.0)(=B P ,问(1)在什么条件下)(AB P 取得最大值,最大值是多少?(2)在什么条件下)(AB P 取得最小值,最小值是多少?解 由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。
习题1(随机事件及其运算)一.填空题1. 设A ,B ,C 是三个随机事件,用字母表示下列事件:事件A 发生,事件B ,C 不都发生为 ;事件A ,B ,C 都不发生为 ;事件A ,B ,C 至少一个发生为 ;事件A ,B ,C 至多一个发生为 .2. 某人射击三次,用A i 表示“第i 次射击中靶”(i =1,2,3).下列事件的含义是:1A 表示 ;321A A A 表示 ;321321321A A A A A A A A A ++表示 ;321A A A 表示 .3. 在某学院的学生中任选一人,用A 表示“选到的是男生”,用B 表示“选到的是二年级的学生”,用C 表示“选到的是运动员”。
则式子ABC=C 成立的条件是 .二.选择题1. 在事件A ,B ,C 中,B 与C 互不相容,则下列式子中正确的是( ).① A BC A = ; ② A BC A = ;③ Φ=BC A ; ④ Ω=BC A .2. 用A 表示“甲产品畅销,乙产品滞销”,则A 表示( ).① “甲产品滞销,乙产品畅销”; ② “甲、乙产品都畅销”; ③ “甲产品滞销或乙产品畅销”; ④ “甲、乙产品都滞销”.3. 若概率0)(=AB P ,则必有( ).① Φ=AB ; ② 事件A 与B 互斥;③ 事件A 与B 对立; ④ )()()(B P A P B A P += .三.解答题1. 将一枚骰子掷两次,记录点数之和,写出样本空间Ω及事件=A {点数之和为偶数};=B {点数之和能被3整除}.2. 将一枚骰子掷两次,观察点数的分布,写出样本空间Ω及事件=A {点数之和为6};=B {点数之差为2}.3. 某城市发行日报和晚报两种报纸。
有15%的住户订日报,25%的住户订晚报,同时订两种报纸的住户有8%,求下列事件的概率:C ={至少订一种报};D ={恰订一种报};E ={不订任何报}.4. 若已知,2.0)(,0)()(,3.0)()()(======BC P AC P AB P C P B P A P 求概率)(ABC P ;)(C B A P ;).(C B A P习题2(概率的定义及性质)一.填空题1. 掷两枚质地均匀的骰子,则点数之和为8的概率P = .2. 在10把钥匙中,有3把能开门。
习题1-21. 选择题(1) 设随机事件A ,B 满足关系A B ⊃,则下列表述正确的是( ). (A) 若A 发生, 则B 必发生. (B) A , B 同时发生.(C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生.解 根据事件的包含关系, 考虑对立事件, 本题应选(D).(2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ). (A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销. (C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销.解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C =, 本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色; (2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色; (3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数; (4) 生产产品直到有10件正品为止, 记录生产产品的总件数. 解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2};(4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10|0,1,2,n n +=}.3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件: (1) 仅有A 发生;(2) A , B , C 中至少有一个发生; (3) A , B , C 中恰有一个发生; (4) A , B , C 中最多有一个发生; (5) A , B , C 都不发生;(6) A 不发生, B , C 中至少有一个发生. 解 (1) ABC ; (2) A B C ; (3) ABC ABC ABC ; (4) ABCABC ABC ABC ; (5) ABC ; (6) ()A BC .4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)23A A ; (6)12A A .解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标.习题1-31. 选择题 (1) 设A, B 为任二事件, 则下列关系正确的是( ).(A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+.(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解 由文氏图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ).(A) A 和B 互不相容. (B) AB 是不可能事件.(C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解 本题答案应选(C).○2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ). 解 因 ()1()1()()()()P AB P AB P A P B P AB P AB =-=--+=, 故()()1P A P B +=. 于是()1.P B p =-3. 已知()0.4P A =,()0.3P B =,()0.4P A B =, 求()P AB .解 由公式()()()()P A B P A P B P AB =+-知()0.3P AB =. 于是()()()0.1.P AB P A P AB =-=4. 设A , B 为随机事件,()0.7P A =,()0.3P A B -=, 求()P AB . 解 由公式()()()P A B P A P AB -=-可知,()0.4P AB =. 于是()0.6P AB =.5. 设A , B 是两个事件, 且()0.6P A =, ()0.7P B =.问: (1) 在什么条件下()P AB 取到最大值, 最大值是多少? (2) 在什么条件下()P AB 取到最小值, 最小值是多少?解 ()()()()P AB P A P B P A B =+-=1.3()P A B -.(1) 如果A B B =, 即当A B ⊂时, P B A P =)( ()B =0.7, 则()P AB 有最大值是0.6 .(2) 如果)(B A P =1,或者A B S =时, ()P AB 有最小值是0.3 .6. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发生的概率.解 因为ABC AB ⊂,所以0()P ABC P AB ≤≤()=0, 即有()P ABC =0. 由概率一般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++---+= 由对立事件的概率性质知A ,B , C 全不发生的概率是5()()1()12P ABC P A B C P AB C ==-=.习题1-41. 选择题在5件产品中, 有3件一等品和2件二等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是一等品. (B) 恰有1件一等品. (C) 至少有1件一等品. (D) 至多有1件一等品.解 至多有一件一等品包括恰有一件一等品和没有一等品, 其中只含有一件一等品的概率为113225C C C ⨯, 没有一等品的概率为023225C C C ⨯, 将两者加起即为0.7. 答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) 至少有1件次品的概率; (4) 至多有1件次品的概率; (5) 至少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )至少有1件次品的概率是1-03545350C C C ; (4) 至多有1件次品的概率是03545350C C C +12545350C C C ; (5) 至少有2件次品的概率是21545350C C C +30545350C C C .3. 袋中有9个球, 其中有4个白球和5个黑球. 现从中任取两个球. 求:(1) 两个球均为白球的概率;(2) 两个球中一个是白的, 另一个是黑的概率; (3)至少有一个黑球的概率.解 从9个球中取出2个球的取法有29C 种,两个球都是白球的取法有24C 种,一黑一白的取法有1154C C 种,由古典概率的公式知道(1) 两球都是白球的概率是2924C C ;(2)两球中一黑一白的概率是115429C C C ;(3)至少有一个黑球的概率是12924C C -.4. 在区间(0, 1)中随机地取两个数, 求下列事件的概率:(1) 两数之和小于65;(2) 两数之积小于14;(3) 以上两个条件同时满足;(4) 两数之差的绝对值小于12的概率.解 设X , Y 为所取的两个数, 则样本空间S = {(X , Y )|0<X , Y <1}.,(1) P {X +Y <65}=1441172550.68125-⨯⨯=≈;(2) P {XY <14}=11411111ln 40.64444dx x⨯+=+≈⎰;(3) P {X +Y <65, XY <14} =0.2680.932110.2680.932516161()()5545x dx dx x dx x ⨯+-++-⎰⎰⎰≈0.593. (4) 解 设x , y 为所取的两个数, 则样本空间Ω = {(x , y )|0<x , y <1}, 记A = {(x , y )|(x , y )∈S , |x -y |<12}. 参见图1-1.图1-1 第2题样本空间故 111123222()14AS P A S Ω-⨯⨯⨯===, 其中 S A , S Ω分别表示A 与Ω的面积.习题1-51. 选择题(1) 设随机事件A , B 满足P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件. (C) AB B =. (D)()()P AB P B =.解 由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()1P A <<, 则下列命题正确的是( ).(A) 若()()P AB P A =, 则A , B 互斥.(B) 若()1P BA =, 则()0P AB =.(C) 若()()1P AB P AB +=, 则A , B 为对立事件. (D) 若(|)1P B A =, 则B 为必然事件.解 由条件概率的定义知选(B ).2. 从1,2,3,4中任取一个数, 记为X , 再从1,2,…,X 中任取一个数, 记为Y ,求P {Y =2}. 解 解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4}=41×(0+21+31+41)=4813. 3. 口袋中有b 个黑球、r 个红球, 从中任取一个, 放回后再放入同颜色的球a 个. 设B i ={第i 次取到黑球}, 求1234()P B B B B .解 用乘法公式得到)|()|()|()()(32142131214321B B B B P B B B P B B P B P B B B B P =.32ar b ar a r b r a r b a b r b b +++⋅++⋅+++⋅+=注意, a = 1和a = 0分别对应有放回和无放回抽样.4. 甲、乙、丙三人同时对某飞机进行射击, 三人击中的概率分别为0.4, 0.5, 0.7. 飞机被一人击中而被击落的概率为0.2, 被两人击中而被击落的概率为0.6, 若三人都击中, 飞机必定被击落. 求该飞机被击落的概率.解 目标被击落是由于三人射击的结果, 但它显然不能看作三人射击的和事件. 因此这属于全概率类型. 设A 表示“飞机在一次三人射击中被击落”, 则(0,1,2,3)i B i =表示“恰有i 发击中目标”.i B 为互斥的完备事件组. 于是没有击中目标概率为0()0.60.50.30.09P B =⨯⨯=, 恰有一发击中目标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =⨯⨯+⨯⨯+⨯⨯=,恰有两发击中目标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =⨯⨯+⨯⨯+⨯⨯=,恰有三发击中目标概率为3()0.40.50.70.14P B =⨯⨯=.又已知 0123(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B ====, 所以由全概率公式得到 3()()(|)0.360.20.410.60.1410.458.iii P A P B P A B ===⨯+⨯+⨯=∑5. 在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3个白球; 第三箱装有3个黑球, 5个白球. 现任取一箱, 再从该箱中任取一球.(1) 求取出的球是白球的概率;(2) 若取出的为白球, 求该球属于第二箱的概率.解 (1)以A 表示“取得球是白球”,i H 表示“取得球来至第i 个箱子”,i =1,2,3. 则P (i H )=13, i =1,2,3, 123115(|),(|),(|)528P A H P A H P A H ===. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P (2|H A )=222()()(|)20()()53P AH P H P A H P A P A ==6. 某厂甲、乙、丙三个车间生产同一种产品, 其产量分别占全厂总产量的40%, 38%,22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取一件进行检查.(1) 求这件产品是次品的概率;(2) 已知抽得的一件是次品, 问此产品来自甲、乙、丙各车间的概率分别是多少?解 设A 表示“取到的是一件次品”, i B (i =1, 2, 3)分别表示“所取到的产品来自甲、乙、丙工厂”. 易知,123,,B B B 是样本空间S 的一个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,12(|)0.04,(|)0.03P A B P A B ==,3(|)0.05P A B =.(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.220.050.0384.=⨯+⨯+⨯=.(2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ⨯===,222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ⨯===,333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ⨯===.习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成立的是( ).(A) A , B 相互独立. (B) A , B 不相互独立.(C) A , B 互为对立事件. (D) A , B 不互为对立事件. 解 用反证法, 本题应选(B).(2) 设事件A 与B 独立, 则下面的说法中错误的是( ).(A) A 与B 独立. (B) A 与B 独立.(C)()()()P AB P A P B =. (D) A 与B 一定互斥.解 因事件A 与B 独立, 故AB 与,A 与B 及A 与B 也相互独立. 因此本题应选(D). (3) 设事件A 与 B 相互独立, 且0<P (B )<1, 则下列说法错误的是( ).(A)(|)()P A B P A =. (B) ()()()P AB P A P B =.(C) A 与B 一定互斥. (D)()()()()()P A B P A P B P A P B =+-.解 因事件A 与B 独立, 故AB 与也相互独立, 于是(B)是正确的. 再由条件概率及一般加法概率公式可知(A)和(D)也是正确的. 从而本题应选(C).2.设A , B 是任意两个事件, 其中A 的概率不等于0和1, 证明P (B |A )=)(A B P 是事件A 与B 独立的充分必要条件.证 由于A 的概率不等于0和1, 故题中两个条件概率都存在.充分性. 因事件A 与B 独立, 知事件A 与B 也独立, 因此()(),()()P B A P B P B A P B ==,从而()()P B A P B A =.必要性. 已知()()P BA PB A =, 由条件概率公式和对立事件概率公式得到()()()()()1()()P AB P AB P B P AB P A P A P A -==-,移项得[]()1()()()()(),P AB P A P A P B P A P AB -=-化简得 P (AB )=P (A )P (B ), 因此A 和B 独立.3. 设三事件A , B 和C 两两独立, 满足条件:,ABC =∅1()()()2P A P B P C ==<, 且9()16P A B C =,求()P A .解 根据一般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+.由题设可知 A , B 和C 两两相互独立,,ABC =∅ 1()()()2P A P B P C ==<, 因此有2()()()[()],()()0,P AB P AC P BC P A P ABC P ====∅=从而29()3()3[()]16P AB C P A P A =-=,于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =.4. 某人向同一目标独立重复射击, 每次射击命中目标的概率为p (0<p <1), 求此人第4次射击时恰好第2次命中目标的概率.解 “第4次射击恰好第2次命中” 表示4次射击中第4次命中目标, 前3次射击中有一次命中目标. 由独立重复性知所求概率为1223(1)C p p -.5. 甲、乙两人各自向同一目标射击, 已知甲命中目标的概率为 0.7, 乙命中目标的概率为0.8. 求:(1) 甲、乙两人同时命中目标的概率;(2) 恰有一人命中目标的概率; (3) 目标被命中的概率.解 甲、乙两人各自向同一目标射击应看作相互独立事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==⨯=(2) ()()0.70.20.30.80.38;P AB P AB +=⨯+⨯= (3)()()()()()0.70.80.560.94.P A B P A P B P A P B =+-=+-=总 习 题 一1. 选择题:设,,A B C 是三个相互独立的随机事件, 且0()1P C <<, 则在下列给定的四对事件中不相互独立的是( ).(A)A B 与C . (B)AC 与C .(C) A B -与C . (D) AB 与C .解 由于A , B , C 是三个相互独立的随机事件, 故其中任意两个事件的和、差、交、并与另一个事件或其逆是相互独立的, 根据这一性质知(A), (C), (D)三项中的两事件是相互独立的, 因而均为干扰项, 只有选项(B)正确..2. 一批产品由95件正品和5件次品组成, 先后从中抽取两件, 第一次取出后不再放回.求: (1) 第一次抽得正品且第二次抽得次品的概率; (2) 抽得一件为正品, 一件为次品的概率.解 (1) 第一次抽得正品且第二次抽得次品的概率为9551910099396⨯=⨯.(1) 抽得一件为正品,一件为次品的概率为95559519.10099198⨯+⨯=⨯3. 设有一箱同类型的产品是由三家工厂生产的. 已知其中有21的产品是第一家工厂生产的, 其它二厂各生产41. 又知第一、第二家工厂生产的产品中有2%是次品, 第三家工厂生产的产品中有4%是次品. 现从此箱中任取一件 产品, 求取到的是次品的概率.解 从此箱中任取一件产品, 必然是这三个厂中某一家工厂的产品. 设A ={取到的产品是次品},B i ={取到的产品属于第i 家工厂生产}, i =1, 2, 3. 由于B i B j =∅(i ≠j, i , j =1, 2, 3)且B 1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的一个划分. 又 P (B 1)=21, P (B 2) =41, P (B 3)=41, P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004,由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3)=100441100241100221⨯+⨯+⨯=0.025. 4. 某厂自动生产设备在生产前须进行调整. 假定调整良好时, 合格品为90%; 如果调整不成功, 则合格品有30%. 若调整成功的概率为75%, 某日调整后试生产, 发现第一个产品合格. 问设备被调整好的概率是多少?解 设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|)0.750.90.250.30.75P B P A P B A P A P B A =+=⨯+⨯=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ⨯====.5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解 以D 表示事件“将信息A 传递出去”,以D 表示事件“将信息B 传递出去”,以R 表示事件“接收到信息A ”,以R 表示事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====.由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+.。
概率论与数理统计第一章习题参考答案第一章随机事件及其概率1.解决方案:(1)s??2,3,4,5,67? (2) s??2,3,4,?? (3) s??h、 th,tth,??(4)s??hh,ht,t1,t2,t3,t4,t5,t6?2.解:?p(a)?14,p(b)?12,p(ab)?1814? 12? 18? 58? p(a?b)?p(a)?p(b)?p(ab)?p(ab)?p(b)?p(ab)=?p(ab)?1?p(ab)?1?1812??7818?38p[(a?b)(ab)]?p[(a?b)?(ab)]p(ab)p(ab)(abab)5818123.解决方案:使用a表示事件“获得的三位数不包含数字1”P(a)?C8C9C990011?8.9? 9900? 一千八百二十五4、解:用a表示事件“取到的三位数是奇数”,用b表示事件“取到的三位数大于330”(1)p(a)?c3c4c4ca121525111?3?4?45?5?41=0.482) p(b)?c2a5?c2c4c5a5121?2.5.4.1.2.45? 5.4=0.485、解:用a表示事件“4只中恰有2只白球,1只红球,1只黑球”,用b表示事件“4只中至少有2只红球”,用c表示事件“4只中没有只白球”(1)p(a)?c5c4c3c12132114=1204954=833(2) p(b)?1.c4c8?c8c412=202195?67165或p(b)?c4c8?c4c8?c4c41222314?67165一(3)p(c)?c7c4412?35495?7996.解决方案:使用a表示事件“在特定销售点获得的K提单”P(a)?cn(m?1)mnkn?K7、解:用a表示事件“3只球至少有1只配对”,用b表示事件“没有配对”(1)p(a)?(2)p(b)?3?13?2?12?1?13?2?1??2313或p(a)?1?2.1.13? 2.1.238、解p(a)?0.5,p(b)?0.3,p(ab)?0.1p(ab)p(b)p(ab)p(a)(1)p(ab)??0.10.30.10.5? 1315,p(ba)p(a?b)?p(a)?p(b)?p(ab)?0.5? 0.3? 0.1? 零点七p[a(a?b)]p(a?b)p(a?ab)p(a?b)p(ab)p(a?b)p(aa?b)p(ab)p(a?b)0.10.717?0.50.7?57 p(aba?b)?p[(ab)(a?b)]p(a?b)p(ab)p(ab)p(aab)?p[a(ab)]p(ab)??1(2)设定人工智能??第一次拿到白球?我1,2,3,4则p(a1a2a3a4)?p(a1)p(a2a1)p(a3a1a2)p(a4a1a2a3)?611?712?513?412?84020592?0.04089.解决方案:用a表示“两个球中至少有一个红球”,用B表示“两个都是红球”。
长沙理工大学二手货QQ 交易群146 808 417第一章#00001写出下列随机试验的样本空间及下列事件中的样本点:(1)掷一颗骰子,出现奇数点.(2)将一枚均匀的硬币抛出两次,A: 第一次出现正面B: 两次出现同一面C: 至少有一次出现正面(3)一个口袋中有5只外形完全相同的球,编号为1、2、3、4、5,从中同时取出3只,球的最小号码为1.(4)一个口袋中有2只白球、3只黑球、4只红球,从中任取一球,A: 得白球, B: 不得红球*00001#00002在数学系中任选一名学生,令事件A 表示该生为男生,事件B 表示该生为三年级学生,事件C 表示该生为运动员. (1)(1)叙述事件C AB 的意义(2)(2)在什么条件下ABC=C 成立?(3)(3)什么时候关系式C ⊂B 是正确的? (4)(4)什么时候B A =成立?*00002#00003长沙理工大学二手货QQ 交易群146 808 417一个工人生产了n 个零件,事件A i ="该工人生产得第i 个零件是正品" i =1、2、、n用A i 表示下列事件:(1)(1)没有一个零件是次品;(2)(2)至少有一个零件是次品;(3)(3)仅仅只有一个零件是次品;(4)(4)至少有两个零件是次品.*00003#00004A 、B 是两个事件.证明下列关系等价B A ⊂,B A ⊂,B B A = ,A B A = ,φ=B A*00004#00005把A 1⋂ A 2⋂⋯ ⋂ A n 表示为不相容事件的和.*00005#00006长沙理工大学二手货QQ 交易群146 808 417证明:若(A-B )⋂(B-A )⊂ C ,则A ⊂(B-C )⋂(C-B )的充要条件是ABC= φ. *00006#00007一部五卷文集任意地排列到书架上,文卷号自左向右或自右向左恰好为12345的顺序的概率等于多少?*00007#00008在分别写有2、4、6、7、8、11、12、13的八张卡片中任取两张,把卡片上的两个数字组成分数,求所得分数为既约分数得概率.*00008#00009有五条线段,长度分别为1、3、5、7、9.从这五条线段中任取三条,求所取三条线段恰好能构成三角形的概率.*00009#00010把一个表面涂有颜色的立方体等分为一千个小立方体,从这些小立方体中任取一个,求所取小立方体有k面(k=0、1、2、3)涂有颜色的概率.*00010#00011一个小孩用13个字母A、A、A、C、E、H、I、I、M、M、N、T、T做组字游戏.如随机地排列字母,问他组成"MATHEMATICIAN"的概率是多少?*00011#00012甲从2、4、6、8、10中任取一数,乙从1、3、5、7、9中任取一数,求甲取的数大于乙取的数的概率.*00012#00013在中国象棋的棋盘上任意地放上一只红"车"及一只黑"车",求它们正好可以互相吃掉的概率.*00013#00014一批灯泡有40只,其中有3只是坏的,从中任取5只检查.问:(1)5只都是好的概率是多少?(2)5只中有2只是坏的概率是多少?*00014#00015一幢10层楼中的一架电梯在底层走上7位乘客.电梯在每一层都停,乘客从第二层起离开电梯,设每位乘客在每层离开是等可能的,求没有两位乘客在同一层离开的概率.*00015#00016从一副扑克牌(52)张中任取6张,求得三张红色三张黑色牌的概率.*00016#00017掷两个骰子,求所得的两个点数一个恰是另一个的两倍的概率.*00017#00018掷三颗骰子,求所得的三个点数中最大的一个恰是最小的一个的两倍的概率.*00018#00019一个班上有2n个男生及2n个女生,把全班学生任意地分成人数相等的两组,求每组中男女生人数相等的概率.*00019#00020某城市共有自行车10000,牌照编号从00001到10000.问事件"偶然遇到一辆牌照编号中有数字8的自行车"的概率是多少?*00020#00021从n个数1、2、3、 、n中随机地取出两个数(不重复),问其中一个小于k(1<k<n),另一个大于k的概率是多少?*00021#00022有2n个数字,其中n个是0,n个是1.从中任取两数,求所取两数之和为0或为偶数的概率.*00022#00023在十个数字0、1、2、⋯、9中任取四个数(不重复),能排成一个四位偶数的概率是多少?*00023#00024四颗骰子掷一次至少得一个一点与两个骰子掷24次至少有一次得两个一点,哪一个概率大?*00024#00025从一副扑克牌(52张)中任意抽出10张,问(1)(1)至少有一张"A"的概率是多少?(2)(2)至少有两张"A"的概率是多少?*00025#00026一个中学有十五个班级,每班选出三个代表出席学生代表会议,从45名代表中选出15名组成工作委员会.求下列事件的概率(1)(1)一年级(一)在委员会中有代表;(2)(2)每个班级在委员会中均有代表.*00026#00027设甲袋中有a只白球b只黑球,乙袋中有c只白球d只黑球.今从两袋中各取一球,求所得两球颜色不同的概率.*00027#00028一口袋中有a只白球b只黑球,从中连续取球三次(不返回),求三只球依次为黑白黑的概率.*00028#00029从数1、2、3、⋯、n中随机地取出两个数,求所取两数之和为偶数的概率.*00029#00030任取两个正整数,求它们之和为偶数的概率.*00030#00031任取一个正整数,求下列事件的概率:(1)(1)该数的平方的末尾数字是1;(2)(2)该数的四次方的末尾数字是1;(3)(3)该数的立方的最后两位数字是1.*00031#00032设每个人的生日在星期几是等可能的,求6个人的生日都集中在一星期中的某两天但不是都在同一天的概率.*00032#00033一个小组有8个学生,问这8个学生的生日都不相同的概率是多少?(一年有365天)*00033#00034n个朋友随机地围绕圆桌而坐,求下列事件的概率:(1)(1)甲、乙两人坐在一起,且乙坐在甲的左边;(2)(2)甲、乙、丙三人坐在一起;(3)(3)若n个人并排坐在长桌的一边,求上述事件的概率.*00034#00035把n个"0"与n个"1"随机地排列,求没有两个"1"连续在一起的概率.*00035#00036从一个装有白球、黑球与红球各n个的口袋中任取m个球,求其中有m1个白球、m2个黑球、m3个红球的概率.(m1+ m2 +m3=m)*00036#00037从一个装有n个白球、n个黑球的口袋中逐一取球(不返回,直至取完为止),求黑白球恰好相间取出的概率.*00037#00038从一个装有a个白球、b个黑球的口袋中逐一取球(不返回),直至留在袋中的球都是同一中颜色为止.求最后是白球留在袋中的概率.*00038#00039有mn个球,其中一个是黑球,一个是白球,其余的都是红球.把这mn个球放在m个袋中,每袋放n个球.求黑球与白球恰好在一袋中的概率.*00039#00040从n双尺码不同的鞋子中任取2r只(2r<n)求下列事件的概率:(1)(1)所取的2r只中没有两只成对;(2)(2)所取的2r只中只有两只成对;(3)(3)所取的2r只中只有恰成r对.*00040#00041在一口袋中装有n种颜色的球,每种颜色的球只有k只.从中任取r只(r n),求所取r 只球颜色全部都不相同的概率.*00041#00042把n根同样长的棒都分成长度为1与2之比的两根小棒,然后把2n根小棒任意地分成n对,每对又接成一根"新棒".求下列事件的概率:(1)(1)全部新棒都是原来分开的两根小棒相接的,(2)(2)全部新棒的长度都与原来的一样.*00042#00043一个人把六根草紧握在手中,仅露出它们的头和尾.然后请另一人把六个头两两相连接,六个尾两两相连接.求放开手后六根草恰好连成一个环的概率.试把该结果推广到2n根草的情形.*00043#00044把n个不同的球随机地放入n个匣子中去,求恰有一个空匣的概率.*00044#00045一个教室共有n+k个座位,随机地坐上n个人.求其中指定的s个座位(s<n)都坐上了人的概率.*00045#00046设有n 个人,每个人都等可能地被分配到N 个房间中的任意一间去住(n ≤N).求下列事件的概率:(1)(1)指定的n 个房间里各有一人住的概率,(2)(2)恰有n 各房间,其中各住一人.*00046#00047甲掷均匀硬币n+1次,乙掷n 次.求甲掷出正面的次数大于乙掷出正面的次数的概率. *00047#00048从数1、2、3、⋯、N 中不重复地任取n 个数(n ≤N)按大小排成一列:x 1<x 2<⋯<x m <⋯<x n求x m =M (m ≤M ≤N )的概率.*00048#00049从数1、2、3、⋯、N 中可重复地任取n 个数按大小排成一列:x 1≤x 2≤⋯≤x m ≤⋯≤x n求x m =M (m ≤M ≤N )的概率.*00049#00050已知事件A 、B 的概率都是1/2,证明: P(AB)=)B A P(*00050#00051设事件A 与B 同时发生比导致C 发生,证明:P(A)+P(B)-1≤ P(C)*00051#00052对任意事件A 、B 、C ,证明:P(AB)+P(AC)-P(BC) ≤ P(C)*00052#00053设A 、B 、C 为三个事件,且P(A)=x 、P(B)=2 x 、P(C)=3 xP(AB)=P(AC)=P(BC)= y证明:x ≤1/4,y ≤1/4.*00053#00054从装有红、白、黑各一个球的口袋中任意取球(取后放回),直至各种颜色的球都至少出现一次为止.求(1)(1)摸球次数不少于6次的概率,(2)(2)摸球次数恰好为6次的概率.*00054#00055从一副扑克牌中(有返回地)任意抽取n 张(n ≥4),求这n 张牌包含全部四种花色的概率. *00055#00056甲乙从1、2、3、⋯、15中各任取一数(不重复),已知甲取的数是5的倍数,求甲数大于乙数的概率.*00056#00057袋中有一个白球及一个黑球,一次次地从中摸球,如果取出白球,则除把白球放回外再加进一个白球,直至取出黑球为止.求取了n 次都没有取到黑球的概率.*00057#00058甲袋中有两个白球四个黑球,乙袋中有四个白球两个黑球.现在掷一枚均匀的硬币,若得到正面就从甲袋中连续摸球n 次(有返回),若得反面就从乙袋中连续摸球n 次.若已知摸到的n 个球均为白球,求这些球是从甲袋中取出的概率.*00058#00059两个体育协会各有排球、足球、篮球队各一个,同类球队进行比赛时协会A 的各队胜协会B 的各队的概率分别为0.8、0.4、0.4(不可能平局).若一个协会在三次比赛中至少胜两次就称获胜,问哪一个协会获胜的可能性大?*00059#00060两个赌徒在每一局获胜的概率都是1/2.两人约定谁先赢得一定的局数就获得全部赌本.但赌博在中途被中断了.此时第一个赌徒还需赢得m 局才获胜,第二个赌徒还需赢得n 局才能获胜,问如何分配赌本才合理.*00060#00061把n 个不同的球随机地放入N 个匣子.求某指定的一个匣子中恰有r 个(r ≤n )球的概率. *00061#00062甲乙两人各掷均匀硬币n 次,求两人掷出正面次数相同的概率.*00062#00063甲乙两射手轮流对同一目标进行射击,甲命中的概率为p 1,乙命中的概率为p 2,甲先射,谁先命中谁得胜.问甲乙两人获胜的概率为多少?*00063#00064设甲袋中有k 个白球及1个黑球,乙袋中有k +1白球,每次从两袋中各任取一球,交换放入对方的袋中.求经过n 次交换后,黑球仍在甲袋中的概率为p n ,证明:21p lim n =∞→n*00064#00065做一系列独立试验,每次试验成功的概率为p .求在试验成功n 次之前至少失败m 次的概率. *00065#00066掷均匀硬币n+m 次,已知至少出现一次正面,求第一次正面出现在第n 次的概率. *00066#00067做一系列独立试验,每次试验成功的概率为p .求第n 次试验时得到第r 次成功的概率. *00067#00068某数学家有两盒火柴,每盒有n 根.每次用火柴时他在两盒中任取一盒,抽出一根.求他用完一盒(既拿出最后一根)时,另一盒中还有r (1≤r ≤n )根的概率.*00068#00069掷m+n次均匀硬币(m>n),求至少连续出现m次正面的概率*00069#00070掷均匀硬币直至第一次出现连接两个正面为止,求这时共掷了n次的概率.*00070#00071在线段(0,1)中任取十个点,求其中三点在区间(0,1/4)中,四点在区间(1/4,2/3),三点在区间(2/3,1)中的概率.*00071#00072有两只口袋,甲袋中3只白球2只黑球,乙袋中装有2只白球5只黑球.任选一袋,并从中任取一球,问此球是白球的概率是多少?*00072#00073袋中装有m(m≥3)个白球和n个黑球的罐子中失去一个球,但不知是什么颜色,为了猜测它是什么颜色,随机地从罐子中取两个球,结果均为白球,问失去的是白球的概率是多少?*00073#00074袋中装有5个白球和5个黑球,从中任取5个球放入空袋中,再从此5个球中任取3个球放入另一个空袋中,最后从第三个袋子中任取一球为白球,问第一次取出的球均为白球的概率?*00074#00075一个质点从平面上某一点开始等可能地向上、下、左、右四个方向游动,每次游动的距离为1.求经过2n次游动后回到出发点的概率.*00075#00076写出下列随机试验的样本空间及下列事件中的样本点。