无机混凝剂的制备实验报告
- 格式:docx
- 大小:23.46 KB
- 文档页数:8
华南师范大学实验报告课程名称:综合实验实验项目:无机混凝剂的制备实验指导老师:廖高祖预习凭证码:1、前言1.1、实验目的(1)了解混凝法在水处理中重要作用,混凝剂的种类和制备方法。
(2)掌握合成无机混凝剂的操作技术(3)学会通过金属含量、碱化度的测定,评价混凝剂的水处理产品稳定性和混凝性能。
1.2、意义聚合硫酸铁(PFS)也称碱式硫酸铁或羟基硫酸铁, 是一种无机高分子絮凝剂。
与其他絮凝剂如三氯化铁,硫酸铝,氯化硫酸铁,碱式氯化铝等相比,聚合硫酸铁生产成本低、投加量少、适用PH范围广、杂质(浊度、COD、悬浮物等)去除率高、残留物浓度低、矾花沉降速度快、脱色效果好,因而广泛应用于工业废水,城市污水,工业用水以及生活饮用水的净化处理。
1.3、文献综述与总结聚合硫酸铁的制备主要有直接氧化法法和催化氧化法。
大多数PFS的制备采用直接氧化法,此法工艺路线较简单,用于工业生产可以减少设备投资和生产环节,降低设备成本,但这种生产工艺必须依赖于氧化剂,如:H2O2、KClO3、HNO3等无机氧化剂。
催化氧化法一般是选用一种催化剂,利用氧气或空气氧化制备聚合硫酸铁。
以下是制备聚合硫酸铁的具体操作方法:(1)双氧水氧化法:双氧水(H2O2)在酸性环境中是一种强氧化剂,可以将亚铁氧化成三价铁从而制得聚合硫酸铁:2FeSO4 + H2O2+ (1-n/2)H2SO4—→Fe2(OH)n(SO4) 3-n/2 + (2-n)H2O制备过程中,按照生产量和所需要的盐基度,在反应釜中加入硫酸亚铁、水和硫酸混合,当温度升高到30~45℃时,在搅拌过程中,通过加料管在釜底缓慢加入H 2O2。
H2O2很快将亚铁氧化成三价铁,取样分析待亚铁浓度降至规定浓度时,停止反应。
利用本法生产聚合硫酸铁,具有设备简单、生产周期短、反应不用催化剂、产品不含杂质、稳定性高等特点。
但反应过程中, 有H2O2在分解时形成O2气放出在无催化剂时,起不到氧化作用。
无机混凝剂聚合硫酸铁的制备工艺一、引言无机混凝剂聚合硫酸铁是一种常用的水处理剂,具有较好的絮凝效果和低成本优势。
本文将介绍一种常见的制备工艺,以便水处理行业的从业人员了解其制备过程和原理。
二、原料准备制备无机混凝剂聚合硫酸铁的主要原料是硫酸铁、硫酸氢铁和一定比例的助剂。
硫酸铁是一种无色结晶,易溶于水,是制备聚合硫酸铁的关键原料。
硫酸氢铁是一种红色结晶,也是制备聚合硫酸铁的重要原料之一。
助剂的种类和比例会根据具体需求进行调整。
三、制备工艺步骤1. 将一定量的硫酸铁溶解于适量的水中,搅拌均匀,得到硫酸铁溶液。
2. 将一定量的硫酸氢铁溶解于适量的水中,搅拌均匀,得到硫酸氢铁溶液。
3. 将硫酸铁溶液和硫酸氢铁溶液按照一定比例混合,继续搅拌,使两者充分反应。
4. 在混合溶液中逐渐加入助剂,继续搅拌,使助剂与溶液充分混合。
5. 混合溶液经过一定的反应时间后,可以得到无机混凝剂聚合硫酸铁。
四、工艺优化为了获得高质量的无机混凝剂聚合硫酸铁,可以对制备工艺进行优化。
以下是一些常见的工艺优化措施:1. 控制反应温度:适当调整反应温度可以提高反应速率和产物质量。
2. 精确控制原料比例:确保硫酸铁和硫酸氢铁的比例合理,以获得所需的产品性能。
3. 优化助剂配方:通过试验和实践,选择合适的助剂种类和比例,以提高产品的絮凝效果和稳定性。
4. 优化搅拌条件:合理的搅拌条件可以提高反应速率和混合效果,进而提高产品质量。
五、应用范围无机混凝剂聚合硫酸铁广泛应用于水处理行业,可以用于污水处理、工业废水处理、饮用水净化等领域。
它可以有效地去除水中的悬浮物、胶体物质和重金属离子等,提高水质的稳定性和可用性。
六、总结无机混凝剂聚合硫酸铁是一种重要的水处理剂,本文介绍了一种常见的制备工艺。
通过合理选择原料、优化工艺参数和控制质量,可以获得高质量的产品。
希望本文对于水处理行业的从业人员有所帮助,提高他们对无机混凝剂聚合硫酸铁制备工艺的理解和应用水平。
实验4 无机混凝剂的制备1.前言1.1目的与意义聚合硫酸铁(PFS)是 2O世纪 80年代发展起来的一种新型无机高分子絮凝剂。
相比传统的铝系絮凝剂,具有水解速度快、絮凝体密度大、适用pH值范围宽(4~i0)等特点,且成本低、使用方便、无残留,因而广泛用于工业用水、工业废水及城市污水的净化处理【1】。
通过制备聚硫酸铁的综合实验,了解混凝剂在水处理中的原理及重要作用,掌握合成无机混凝剂的操作技术,并且学会通过金属含量、碱化度、Zata电位的测定,评价混凝剂的水处理产品稳定性和混凝性能。
1.2文献综述与总结絮凝净化法具有适应范围广、工艺简单、处理成本低等特点,目前广泛应用于饮用水、生活污水和工业废水的处理中。
聚合硫酸铁PFS是20世纪80年代出现的一种新型无机高分子絮凝剂具有水解速度快、絮凝体密度大、适用pH范围宽等特点具有很强的中和悬浮颗粒上电荷的能力,有很大的比表面积和很强的吸附能力,能很好地去除水中悬浮物、有机物、硫化物、重金属离子等杂质。
具有脱色、除臭、破乳化及污泥脱水等功能,因而被广泛应用于矿山印染、造纸等工业废水处理。
相比传统的铝系絮凝剂而言PFS在反应过程中无离子水相转移和残留积累使用更方便、价格更便宜、用量更省【2】。
直接氧化法虽然工艺简单、操作简便,但存在氧化剂用量大、成本高、氧化剂引入的离子需分离除去、反应中产生的有害气体需专门设备吸收处理等问题。
因而难于在工业化生产中普及和应用,但试验研究中需要少量聚合硫酸铁时,采用此类方法制备简便易行【1】。
2.实验部分2.1 实验原理硫酸铁聚合过程及其复杂,一般认为聚合过程分为三个大步骤。
①氧化过程即二价铁在氧化剂作用下被氧化为三价铁,这是聚合过程中比较复杂的一步,目前采取的氧化剂种类很多,显然采取不同的氧化剂对氧化过程的影响是不一样的,即使是同样的氧化剂,对过程的机理,不同的研究者也存在不同的看法。
以氧化剂H2O2为例,其反应过程如下所示:4FeSO4+H2O2+2H2SO4==2Fe2(SO4)3+3H2O(4-1)②水解过程水解是三价铁离子和氢氧根离子相互结合的过程,这是极其重要的一步,其重要概念是盐基度,盐基度B=[OH-]/(3[Fe3+]),OH-结合越多,则聚合度就越高,絮凝效果也就越好,产品质量越高,水解反应过程如下所示:Fe3++OH-==Fe(OH)2+(4-2)Fe(OH)2++OH-==Fe(OH)2+(4-3)Fe(OH)2++OH-==Fe(OH)3(4-4)(4-2)、(4-3)两式对盐基度B是有贡献的,但式(4-4)须加以抑制,由于氢氧化铁溶度积非常小,[Fe3+]×[OH-]3==4×10-38(20℃),在溶液中很容易沉淀,在水解过程中应当限制该反应的发生。
实验四-无机混凝剂的制备实验目的本实验的目的是研究无机混凝剂的制备方法,探究其对废水的处理效果,并学习化学实验常见的化学计量学原理。
实验原理混凝是指在液体中加入化学混凝剂,使悬浮在水中的浑浊物质凝聚成大块,形成比较大的沉淀或浮渣,以便于后续的分离、过滤等处理过程。
混凝剂可分为有机混凝剂和无机混凝剂。
在本实验中,我们将制备一种无机混凝剂——聚氯铁。
聚氯化铁是以铁为主要成分的混凝剂,具有成本低、处理效果好等优点,广泛应用于废水处理行业。
其制备方法主要有两种:反应釜法和三一法。
本实验采用反应釜法制备聚氯铁。
实验材料•食盐(NaCl): 1kg•氢氧化钠(NaOH): 500g•氯化铁(FeCl3): 500g•醋酸: 250mL实验步骤1.原料预处理将食盐用温水反复洗净,去除杂质,晾干备用。
2.制备纯碱溶液取20g氢氧化钠粒子放入250mL烧杯中,加入175mL蒸馏水。
用玻璃棒慢慢搅拌至溶解。
将溶液分装到150mL烧杯中,备用。
3.溶解氯化铁取100g氯化铁加入800mL蒸馏水,加热搅拌溶解,加快溶解速度。
待溶液冷却至室温后,用滤纸过滤掉杂质,得到无杂质的氯化铁溶液。
4.制备聚氯铁取10g纯碱溶液,加入100g食盐,搅拌至食盐完全溶解。
将溶液倒入聚氯铁反应釜中,加入20g氯化铁溶液,调节反应釜内化学计量比例至Fe/Cl=1:3。
将反应釜密封,加热搅拌,控制反应温度在60-70℃之间。
在反应过程中,观察溶液颜色由浅黄色逐渐转变为暗褐色(大约需要1个小时左右)。
待反应完成后,关闭釜内火源,放气排压。
釜内会出现一层红褐色的聚氯铁胶状物。
5.洗涤将釜内的混凝胶状物用蒸馏水洗涤2-3次,每次洗涤后用滤纸将废液过滤掉。
6.二次加工将洗涤后的聚氯铁混凝剂均匀地放置在通风良好的地方,晾干即可。
实验结果分析将实验得到的聚氯铁混凝剂添加入废水中,搅拌后静置2小时,经过滤液处理后可得到清澈透明的水。
说明聚氯铁混凝剂可以有效地处理废水,净化水质。
【大学化学实验Ⅲ】综合实验报告论文—聚合硫酸铁的制备及其混凝性的测试学院:化学与化工学院专业班级: 无机102班**: **学号: **********目录1、摘要 (3)2、引言 (3)3、实验目的 (3)4、实验原理 (3)4.1聚合硫酸铁的制备原理 (3)4.2聚合硫酸铁的制备方法 (5)5.实验步骤: (5)5.1 .FeSO4 的制备 (5)5.2.聚合硫酸铁的制备 (5)5.3、聚合硫酸铁各项主要性能指标的测定: (6)5.4、聚合物硫酸铁的混凝效果实验 (6)6.实验仪器和试剂 (6)7.实验过程 (6)8.实验结果及数据处理 (7)9.实验讨论 (8)10.参考文献 (9)聚合硫酸铁的制备及混凝性能测试1、摘要: 聚合硫酸铁分子式:[Fe2(OH)n(SO4)3-n/2]m (其中n<2, m=f(n))。
聚合硫酸铁是一种新型、优质、高效铁盐类无机高分子混凝剂。
聚合硫酸铁形态性状是淡黄色无定型粉状固体,极易溶于水,10%(重量)的水溶液为红棕色透明溶液。
聚合硫酸铁的作用---主要用于生活饮用水及工业用水的净化。
也可对各种工业废水与城市污水(如食品、皮革、矿山、冶金、印染、造纸、石油等废水)进行净化处理,在水处理领域中有着良好的应用前景,研究聚合硫酸铁的制备方法及其反应各方面的因素,并从其制备过程中学习无极聚合物密度、黏度、浊度的测定等方法。
聚合硫酸铁广泛应用于、工业用水、各种工业废水、城市污水、污泥脱水等净化处理。
关键字: 聚合硫酸铁混凝剂无机高分子水处理2、引言: 我国是一个水资源短缺的国家,人均水占有量只有世界人均占有量的1/4,且随着工农业生产的发展,水污染也日趋严重,因而地表水处理和污水处理会用日益受到重视,水处理剂的用量不断增大,所以新型混凝剂的研究与开发越来越受到人们的关注。
聚合硫酸铁(PFS)也称碱式硫酸铁或羟基硫酸铁, 是一种无机高分子絮凝剂。
与其他絮凝剂如三氯化铁,硫酸铝,氯化硫酸铁,碱式氯化铝等相比,聚合硫酸铁生产成本低、投加量少、适用PH范围广、杂质(浊度、COD、悬浮物等)去除率高、残留物浓度低、矾花沉降速度快、脱色效果好,因而广泛应用于工业废水、城市污水、工业用水以及生活饮用水的净化处理。
实验1 化学混凝实验混凝实验是水处理的基础实验之一,被广泛应用于科研、生产中。
分散在水中的胶体颗粒带有电荷,同时在布朗运动及其表面水化膜作用下,长期处于稳定分散状态,不能用自然沉淀法去除。
向这种水中投加混凝剂后,可以使分散颗粒相互结合聚集增大,从水中分离出来。
由于各种原水有很大差别,混凝效果不尽相同。
混凝剂的混凝效果不仅取决于混凝剂投加量,同时还取决于水的pH值、水流速度梯度等因素。
通过混凝实验,不仅可以选择投加药剂种类、数量,还可确定混凝最佳条件。
一、实验目的1. 学会求得某水样最佳混凝条件(包括pH值、投药量)的基本方法。
2. 了解混凝的现象及过程,观察矾花的形成及混凝沉淀效果。
3. 加深对混凝机理的理解。
二、实验原理化学混凝法是用来去除水中无机和有机的胶体颗粒。
通常废水中的胶体颗粒的大小变化约在100埃到10微米之间,胶粒之间的静电斥力、胶粒的布朗运动及胶粒表面的水化作用,使胶粒具有分散稳定性,使胶粒靠自然沉淀不能除去。
混凝过程包括胶体的脱稳和颗粒增大的凝聚作用,随后这些大颗粒可用沉淀、气浮或过滤法去除。
消除或降低胶体颗粒稳定因素的过程叫脱稳,脱稳是通过投加强的阳离子电解质如Al3+、Fe3+或阳离子高分子电解质来降低Zeta电位,或者是由于形成了带正电荷的含水氧化物而吸附胶体,或者是通过阴离子和阳离子高分子电解质的自然凝聚,或者是由于胶体被围在含水氧化物的矾花内等方式来完成的。
混凝剂使胶体脱稳的主要作用是压缩双电层和吸附架桥。
脱稳后的胶粒,在一定的水力条件下,能形成较大的絮凝体(俗称矾花),该过程称为凝聚。
由于布朗运动造成的颗粒碰撞絮凝,叫“异向絮凝”;由机械运动或液体流动造成的颗粒碰撞絮凝,叫“同向絮凝”。
异向絮凝只对微小颗粒起作用,当粒径大于1~5微米时,布朗运动基本消失。
从胶体颗粒变成较大的矾花是一连续过程,为了研究方便可划分为混合和反应两个阶段。
混合阶段要求混凝剂和废水快速混合均匀,一般在几秒钟或一分钟内完成,该阶段只能产生肉眼难以看见的微絮凝体;反应阶段要求搅拌强度随矾花的增大而逐渐降低以免结大的矾花被打碎而影响混凝的效果,反应时间约15~30min,该阶段微絮凝体形成较密实的大粒径矾花。
实验名称:混凝沉淀实验一、实验目的1、通过实验观察混凝现象、加深对混凝沉淀理论的理解;2、掌握确定最佳投药量的方法,选择和确定最佳混凝工艺条件;3、了解影响混凝条件的相关因数。
二、实验原理1。
混凝作用原理包括三部分:1)压缩双电层作用;2)吸附架桥作用;3)网捕作用.这三种混凝机理在水处理过程中不是各自孤立的现象,而往往是同时存在的,只不过随不同的药剂种类、投加量和水质条件而发挥作用程度不同,以某一种作用机理为主。
对高分子混凝剂来说,主要以吸附架桥机理为主。
而无机的金属盐混凝剂则三种作用同时存在。
胶体表面的电荷值常用电动电位ξ表示,又称为Zeta电位. 一般天然水中的胶体颗粒的Zeta电位约在-30mV以上,投加混凝剂之后,只要该电位降到-15mV左右即可得到较好的混凝效果。
相反,当电位降到零,往往不是最佳混凝状态。
因为水中的胶体颗粒主要是带负电的粘土颗粒.胶体间存在着静电斥力,胶粒的布朗运动,胶粒表面的水化作用,使胶粒具有分散稳定性,三者中以静电斥力影响最大,若向水中投加混凝剂能提供大量的正离子,能加速胶体的凝结和沉降。
2。
混凝剂向水中投加的能使水中胶体颗粒脱稳的高价电解质,称之为“混凝剂”。
混凝剂可分为无机盐混凝剂和高分子混凝剂.水处理中常用的混凝剂有:三氯化铁、硫酸铝、聚合氯化铝(简称PAC)、聚丙烯酰胺等.本实验使用PAC,它是介于AlCl3和Al(OH)3之间的一种水溶性无机高分子聚合物,化学通式为[Al2(OH)nCl(6-n)]m其中m代表聚合程度,n表示PAC产品的中性程度。
3。
投药量单位体积水中投加的混凝剂量称为“投药量”,单位为mg/L.混凝剂的投加量除与混凝剂品种有关外,还与原水的水质有关。
当投加的混凝剂量过小时,高价电解质对胶体颗粒的电荷斥力改变不大,胶体难以脱稳,混凝效果不明显;当投加的混凝剂量过大时,则高价反离子过多,胶体颗粒会吸附过多的反离子而使胶体改变电性,从而使胶体粒子重新稳定.因此混凝剂的投加量有一个最佳值,其大小需要通过试验确定。
混凝实验报告三篇一、混凝实验报告实验类型:混凝实验实验目的:测试混凝剂对混凝剂/水体系的影响,以及混凝剂使用量对水体系的影响。
实验仪器:混凝剂(如聚合物、碳酸钙等);烧杯;分析天平;温度计;烧杯;湿度计;样品。
实验步骤:1. 将混凝剂装入烧杯中,加入适量的水,搅拌均匀;2. 将混合物放置于室温下,持续不断地搅拌30分钟;3. 用分析天平称取混合物中混凝剂的量,取出混凝剂/水体系的比例;4. 测量混凝剂/水体系的温度及湿度;5. 记录混凝剂使用量及混凝剂/水体系的温度及湿度;6. 逐步增加混凝剂使用量,重复2-5步,最后得出混凝剂使用量对混凝剂/水体系的影响。
二、混凝实验报告实验类型:混凝实验实验目的:研究不同混凝剂对混凝剂/水体系的影响,以及混凝剂使用量对水体系的影响。
实验仪器:混凝剂(如聚合物、碳酸钙等);烧杯;分析天平;温度计;烧杯;湿度计;样品。
实验步骤:1. 分别将混凝剂A、B、C装入烧杯中,加入适量的水,搅拌均匀;2. 将混合物放置于室温下,持续不断地搅拌30分钟;3. 用分析天平称取混合物中混凝剂的量,取出混凝剂/水体系的比例;4. 测量混凝剂A/水体系的温度及湿度,测量混凝剂B/水体系的温度及湿度,测量混凝剂C/水体系的温度及湿度;5. 记录混凝剂A、B、C使用量及混凝剂/水体系的温度及湿度;6. 逐步增加混凝剂A、B、C使用量,重复2-5步,最后得出不同混凝剂使用量对混凝剂/水体系的影响。
三、混凝实验报告实验类型:混凝实验实验目的:评估混凝剂与水体系的相互作用,以及混凝剂使用量对水体系的影响。
实验仪器:混凝剂(如聚合物、碳酸钙等);烧杯;分析天平;温度计;烧杯;湿度计;样品。
实验步骤:1. 将混凝剂A、B、C装入烧杯中,加入适量的水,搅拌均匀;2. 将混合物放置于室温下,持续不断地搅拌30分钟;3. 用分析天平称取混合物中混凝剂的量,取出混凝剂A/水体系的比例,取出混凝剂B/水体系的比例,取出混凝剂C/水体系的比例;4. 测量混凝剂A/水体系的温度及湿度,测量混凝剂B/水体系的温度及湿度,测量混凝剂C/水体系的温度及湿度;5. 记录混凝剂A、B、C使用量及混凝剂/水体系的温度及湿度;6. 逐步增加混凝剂A、B、C使用量,重复2-5步,最后评估混凝剂与水体系的相互作用,以及混凝剂使用量对水体系的影响。
实验三混凝实验一、实验目的1、观察混凝现象;2、了解影响混凝的主要因素;3、确定混凝剂的最佳投加量及相应的pH值、搅拌时间,并选择最适宜的混凝剂。
二、实验原理在废水中常含有用重力沉降法不能除去的细微悬浮物和胶体粒子,其粒径分别为100~10000nm和1~100nm。
由于布朗运动、水合作用以及微粒间的静电斥力作用,使胶体粒子和细微悬浮物能在水中长期保持悬浮状态,静置不沉。
混凝过程首先是要混凝剂形成带正电荷的氢氧微型矾花,并同胶体悬浮物接触使其失去稳定性,接着发生使颗粒增大的凝聚作用(有时为了促进凝聚还需加入助凝剂)。
随后这些大颗粒可用沉淀、浮选或过滤等方法去除。
废水在混凝剂的离解和水解产物的作用下,使水中的胶体污染物和细微悬浮物脱稳并聚积为具有可分离性的絮凝过程,称为混凝(包括凝聚和絮凝两个过程)。
其中凝聚是指使胶体脱稳并聚集为微絮粒的过程,而絮凝指微絮粒通过吸附桥联、网罗卷捕(网捕)形成更大的絮体的过程。
为了获得易于分离的絮凝体和尽可能低的出水浊度,必须考虑废水浓度、性质、pH值以及混凝剂的种类、用量、搅拌时间等因素对试验的影响。
由于每种混凝剂都有一个形成矾花的最佳pH值,因此,在对各种混凝剂进行对比实验前,应先测定各种混凝剂的最佳pH 值,然后再进行投药量试验。
三、实验材料及设备1、自制生活废水或工业废水水样;2、混凝剂:三氯化铁、聚合硫酸铝、聚合氯化铝、聚合硫酸铁等(常见无机盐混凝剂及性能见附表I);3、烧杯24个(1mL)、量筒4个(25mL)、温度计、pH计等;4、悬浮物测定仪器、搅拌器、分光光度计。
四、实验步骤1、测定原水的温度、SS浓度(或透光率)、pH值等;2、确定在废水中能形成矾花的近似最小混凝剂用量。
在量筒中加入200mL样品废水,然后每次加入1mL混凝剂并且不断地满满搅拌废水,直到刚好出现矾花时记录下混凝剂用量。
将此用量换算成mg/L,即为近似的最小混凝剂用量。
3、在6只烧杯内各加入1L样品废水,并在各烧杯内加入混凝剂使其剂量等于最小混凝剂用量。
混凝实验报告混凝实验报告一、实验目的1、了解混凝剂混凝机理及作用方式;2、掌握常用混凝剂对水质的处理效果;3、熟悉混凝工艺操作步骤。
二、实验原理混凝时,混凝剂与水中有害物质发生化学反应或电荷中和作用,形成较大的絮凝团,并形成一定密度的絮体,从而使水中溶解物、悬浮物或胶体颗粒等杂质得以集结、附着并迅速沉降。
混凝剂主要有无机盐和有机高聚物两大类,常用的有氯化铝、硫酸铝、聚合铁盐、聚合铝盐等。
三、实验步骤1、将水样倒入混凝澄清装置中;2、将混凝剂按照一定比例加入混凝槽,并进行搅拌;3、待混凝剂与水中的杂质充分反应后,停止搅拌;4、观察混凝后水样的悬浮物;5、待悬浮物沉降后,取上清液进行测定。
四、实验结果与分析通过本次实验,分别使用了氯化铝和聚合铁盐作为混凝剂进行处理。
实验结果表明,两种混凝剂均能使水样中的悬浮物集结成絮体并沉降,但聚合铁盐的效果更好。
这是因为聚合铁盐是一种高分子有机聚合物,具有较强的吸附能力和官能团化合作用,能有效地集结水中的杂质。
五、实验总结本次实验通过混凝实验,初步了解了混凝剂的混凝机理和作用方式,掌握了常用混凝剂对水质的处理效果。
在实验操作过程中,需要注意混凝剂的投加量和混凝时间,以及混凝后需等待悬浮物沉降后再进行测定。
同时,还需要注意混凝剂的种类选择,根据水质和实际情况来确定最佳的混凝剂。
六、参考文献[1] 水处理学. 朱成钢,刘上岐主编. 北京:中国建筑工业出版社,2014.[2] 环境工程学. 丁仲礼,林长森编著. 北京:中国建筑工业出版社,2011.[3] 膨胀土等胶结材料的沉降实验研究[D]. 成都:西南交通大学,2015.。
实验 4 无机混凝剂的制备1.前言1.1 目的与意义聚合硫酸铁(PFS)是20世纪80年代发展起来的一种新型无机高分子絮凝剂。
相比传统的铝系絮凝剂,具有水解速度快、絮凝体密度大、适用pH值范围宽(4〜iO)等特点,且成本低、使用方便、无残留,因而广泛用于工业用水、工业废水及城市污水的净化处理【1】。
通过制备聚硫酸铁的综合实验,了解混凝剂在水处理中的原理及重要作用,掌握合成无机混凝剂的操作技术,并且学会通过金属含量、碱化度、Zata 电位的测定,评价混凝剂的水处理产品稳定性和混凝性能。
1.2 文献综述与总结絮凝净化法具有适应范围广、工艺简单、处理成本低等特点,目前广泛应用于饮用水、生活污水和工业废水的处理中。
聚合硫酸铁PFS是20世纪80年代出现的一种新型无机高分子絮凝剂具有水解速度快、絮凝体密度大、适用pH范围宽等特点具有很强的中和悬浮颗粒上电荷的能力,有很大的比表面积和很强的吸附能力,能很好地去除水中悬浮物、有机物、硫化物、重金属离子等杂质。
具有脱色、除臭、破乳化及污泥脱水等功能,因而被广泛应用于矿山印染、造纸等工业废水处理。
相比传统的铝系絮凝剂而言PFS在反应过程中无离子水相转移和残留积累使用更方便、价格更便宜、用量更省【2】。
直接氧化法虽然工艺简单、操作简便,但存在氧化剂用量大、成本高、氧化剂引入的离子需分离除去、反应中产生的有害气体需专门设备吸收处理等问题。
因而难于在工业化生产中普及和应用,但试验研究中需要少量聚合硫酸铁时,采用此类方法制备简便易行【1】。
2.实验部分2.1 实验原理硫酸铁聚合过程及其复杂,一般认为聚合过程分为三个大步骤。
①氧化过程即二价铁在氧化剂作用下被氧化为三价铁,这是聚合过程中比较复杂的一步, 目前采取的氧化剂种类很多, 显然采取不同的氧化剂对氧化过程 的影响是不一样的, 即使是同样的氧化剂, 对过程的机理, 不同的研究者也存在 不同的看法。
以氧化剂 H 2O 2 为例,其反应过程如下所示:4FeSO 4+H 2O 2+2H 2SO 4==2Fe 2(SO 4)3+3H 2O (4-1)②水解过程 水解是三价铁离子和氢氧根离子相互结合的过程, 这是极其重 要的一步,其重要概念是盐基度,盐基度 B=[OH-]/(3[Fe 3+]),OH-结合越多,则 聚合度就越高,絮凝效果也就越好,产品质量越高,水解反应过程如下所示:Fe 3++OH -==Fe(OH)2+ (4-4) B 是有贡献的,但式( 4-4)须加以抑制,由 于氢氧化铁溶度积非常小,[Fe 3+] X [OH -]3==4X 10-38(20 C ),在溶液中很容易沉 淀,在水解过程中应当限制该反应的发生。
③聚合过程 聚合过程的化学方程式如下:mFe 2(OH)n (SO 4)3-n/2— [Fe 2(OH)n (SO 4)3-n/2]m式中,m 表示聚合度的大小,聚合度 m 在反应过程中是逐渐增加的,该值是个表观值。
综合起来,可以认为整个制备过程的化学反应方程式如下:4FeSO +(2-n)H 2SCH+(2 n-2)H 2O+O 2(或氧化剂)—2Fe 2(OH)n (SO 4)3-n/2mFe 2(OH)n (SO 4)3-n/2—[Fe 2(OH)n (SO 4)3-n/2]m(2)碱化度碱化度又称为盐基度,它表示羟基在物质分子中所占的比例,它是关系到 产品稳定性和混凝性能的重要技术指标。
碱化度测定一般采用酸碱中和滴定, 这 样核心问题便是如何掩蔽Fe 3+。
氟化物可与Fe 3+生成稳定性很好的六氟合铁络合 物沉淀,氟化钾是最合适的掩蔽剂。
碱化度的计算:X=[(V 0-V)C X 0.017/(1X 10-3C Fe )]X 100%=[17C(V 0-V)/C Fe ]X 100%式中 C ------- 标准氢氧化钠溶液浓度,mol/LV o ,V ——空白试验和水样试验标准氢氧化钠溶液的体积, ml4-2)Fe(OH)2++OH -==Fe(OH)2+Fe(OH)2++OH -==Fe(OH)3(4-2)、(4-3)两式对盐基度 4-3)CFe——聚铁溶液含铁量2.2 仪器与试剂2.2.1 主要仪器可调速搅拌器、三口烧瓶250ml、可调速搅拌器、三口烧瓶、锥形瓶、烧杯、恒温槽、酸式滴定管、碱式滴定管、胶头滴管、量筒、移液管2.2.2 主要试剂七水硫酸亚铁FeSO?7HO 硫酸、过氧化氢HO (30%、氯酸钠NaCIQ、酚酞指示剂,重铬酸钾标准溶液0.025mol/L 、盐酸溶液:溶液0.0978moI/L ,0.1011mol/L 、NaOH 硫磷混酸15%、二苯胺磺酸钠2g/L 、氟化钾2.3 实验步骤2.3.1 产品制备称取50g置于烧瓶中,加入25mL去离子水,按照硫酸与亚铁盐摩尔比例为0.4,实取硫酸3.4ml,然后加入烧瓶中。
控制水浴反应温度为50—60° C,取理论反应量的过氧化氢9.2mI 和理论量20%的氯酸钾0 . 74g ,快速搅拌混合溶液(800rpm),同时,每隔5min加一次过氧化氢,在1 —1.5h内加完。
最后将氯酸钠分三次加完,再搅拌15min。
氧化反应完后,溶液完全变为红棕色。
用滴管取少量溶液观察,其中应无明显的二价铁离子的颜色,否则,继续加入过氧化氢或氯酸钠。
样品分析时,二价铁的转化率应达95%以上。
2.3.2 产物中Fe2+的检测取5mL聚铁溶液,放入250mL锥形瓶中,稀释至100mL加入10mL硫磷混酸,冷却后加入5 滴二苯胺磺酸钠溶液,用重络酸钾标准溶液滴定至呈稳定的紫色。
2.3.3 碱化度检测用移液管量取1mL聚铁溶液,置于250mL锥形瓶中,用移液管准确移入25.00mL盐酸溶液,再加入20mL去离子水,摇匀,盖上表面皿,在室温下放置10分钟。
加入10mL氟化钾溶液,摇匀。
再加入5滴酚酞,立即用氢氧化钠溶液滴定至淡红色为终点。
用去离子水做空白实验,重复以上步骤。
转化率的计算M(FeS©・ 7H0)= 278g/molFe+的物质的量:n=m/M=50g^( 278g/mol) =0.1798mol产品体积:56.0mL总铁浓度:0.1798mol*56g/mol - 56.0mL=179.80g/L亚铁浓度:6Fe2+ + Cr 2O2- + 14H+ =6Fe3+ + 2Cr 3+ + 7"0n(Fe 2+)=6n(Cr 2O72-)=3.00mL* 0.025mol/L*6=0.45*10 -3mol[Fe 2+]=56g/mol*0.45*10 -3mol - 1mL=25.2g/L产率:(179.80g/L —25.2g/L) - 179.80g/L X 100% =86.0 %碱化度的检测空白样品滴加氢氧化钠标准液体积:26.00mL样品溶液滴加氢氧化钠溶液体积:18.05mL17C (V o —V)X 100%C Fe=17*0.1mol/L*(26.00mL-18.05mL) - 179.80g/L X 100%=7.51 %3. 结果与讨论1.由表1知合成聚合硫酸铁产品的转化率高,其外观、总铁均符合标准要求2.产品二价铁含量(25.2g/L)超出了标准(v1g/L),超标量非常大。
由于反应开始时的搅拌速度控制不好,太慢,导致溶液中发生水解产生沉淀,溶液为浑浊状态。
产品合成还受硫酸影响,亚铁盐在足量的硫酸中被氧化时会生成铁盐;当亚铁盐的硫酸溶液中硫酸量不足,氧化最终将会发生水解,比例过小,产生的氢氧根易生成氢氧化铁沉淀。
4. 由表1可知碱化度偏低,可知聚合硫酸铁的聚合度偏低,凝聚效果不够好。
用碱滴定测碱化度过程难以做到无CO2反应环境,滴定时间快慢也会影响误差的大小,实验可能存在较大误差,由于环境中存在大量CO2滴定终点的浅红CO2 与NaOH 反应而色在30s内不变色即可,否则时间长或剧烈震荡都会由于浅红色变浅甚至变为无色。
5. 七水合硫酸亚铁在酸性条件下,被双氧水氧化成硫酸铁,经水解、聚合反应制得红棕色聚合硫酸铁(PFS)。
在制备过程中,氧化、水解、聚合3个反应同时存在于一个体系当中,相互影响,相互促进。
其中氧化反应是3个反应中较慢的一步,控制着整个反应过程。
以下根据文献讨论反应的影响因素:a.硫酸用量的影响硫酸在聚合硫酸铁的合成过程中有两个作用:①作为反应的原料参与了聚合反应;②决定体系的酸度,其用量直接影响产品性能。
文献显示,硫酸用量适当增加对提高合成反应是有利的。
但硫酸用量太大,会导致亚铁离子氧化不完全,且大部分铁离子没有参与聚合,导致盐基度很低,合成失败;硫酸量不足,量越少,生成Fe(0H)3趋势越大,即溶液中[0H-]相对较大。
当硫酸与Fe2+的物质的量之比为0.15~0.30时减少硫酸用量可显著提高产品盐基度,但当该比值小于0.15时,会产生大量的Fe(0H)3凝胶沉淀,最终导致产品铁含量大幅度降低,同时因溶液中存在相对较大[0H-] ,使测得的产品盐基度偏高,但这并非铁离子高度聚合的反映。
文献表明:只有当硫酸与Fe2+的物质的量之比介于0.30〜0.45之间时,聚合硫酸铁产品性能最好。
b. 过氧化氢用量的影响H2O2的用量对产品质量指标有很大的影响,当H2O2加入不足时,Fe2+不能够完全氧化Fe3+,此时溶液中仍然含有较多的Fe2*;加入量过多时,固然可以保证氧化完全,但引起氧化剂不必要的浪费。
C.过氧化氢加入速度为了保证氧化反应的进行,必须控制氧化剂加入的速度,在搅拌作用下使物料之间充分接触反应。
但若加入速度过慢,反应所需时间过长,对工业生产是不利的。
若加入速度过快,氧化剂有可能来不及与物料充分接触反应就被分解。
d.反应温度的影响用滴加的方式加入H2O2,由于反应放出大量热,温度对Fe2*的转化率影响不明显。
但在温度较低时,七水合硫酸亚铁很难溶解,延长了反应时间,同时Fe2+的转化率稍有降低;在温度较高时,会引起H2O2部分分解,使溶液中含有较多的FB。
所以把温度控制在50C〜60C即可。
e搅拌速度的影响此反应在搅拌作用下,使氧化反应均匀快速进行。
搅拌速度小,H2O2没有及时分散,会造成局部氧化及H2O2分解,从而导致Fe2+不能够完全氧化;若搅拌速度大,溶液飞溅,不仅增加能耗且氧化不均匀。
PFS的制备受反应温度、氧化剂种类,氧化剂的加入速度和酸度等多种因素的影响,如果条件控制不好,将直接影响产品的性能和质量,其中氧化剂的选择、加入速度以及酸度的控制对其性能的影响尤为显著【4】。
6. 聚铁制备实验中,一般硫酸与硫酸亚铁的摩尔比控制在0.25-0.45 的范围内,此比值或大或小时,可能会出现什么结果?答:小于该范围时,会导致Fe3+水解;大于该范围时,会使得溶液中0H-浓度降低,而生成硫酸铁。