第5章-图像分割与边缘检测
- 格式:ppt
- 大小:986.00 KB
- 文档页数:63
【数字图像处理】边缘检测与图像分割原⽂链接:作者:1图像分割原理图像分割的研究多年来⼀直受到⼈们的⾼度重视,⾄今提出了各种类型的分割算法。
Pal把图像分割算法分成了6类:阈值分割,像素分割、深度图像分割、彩⾊图像分割,边缘检测和基于模糊集的⽅法。
但是,该⽅法中,各个类别的内容是有重叠的。
为了涵盖不断涌现的新⽅法,有的研究者将图像分割算法分为以下六类:并⾏边界分割技术、串⾏边界分割技术、并⾏区域分割技术、串⾏区域分割技术、结合特定理论⼯具的分割技术和特殊图像分割技术。
⽽在较近的⼀篇综述中,更有学者将图像分割简单的分割数据驱动的分割和模型驱动的分割两类。
下⾯将图像分割⽅法主要分以下⼏类:基于阈值的分割⽅法、基于区域的分割⽅法、基于边缘的分割⽅法、基于数学形态的分割⽅法以及基于特定理论的分割⽅法等,对其中主要的分别进⾏简要介绍。
1.1灰度阈值分割法是⼀种最常⽤的并⾏区域技术,它是图像分割中应⽤数量最多的⼀类。
阈值分割⽅法实际上是输⼊图像f到输出图像g的如下变换:其中,T为阈值,对于物体的图像元素g(i,j)=l,对于背景的图像元素g(i,j)=0。
由此可见,阈值分割算法的关键是确定阈值,如果能确定⼀个合适的阈值就可准确地将图像分割开来。
如果阈值选取过⾼,则过多的⽬标区域将被划分为背景,相反如果阈值选取过低,则过多的背景将被划分到⽬标区[7]。
阈值确定后,将阈值与像素点的灰度值⽐较和像素分割可对各像素并⾏地进⾏,分割的结果直接给出图像区域。
阈值分割必须满⾜⼀个假设条件:图像的直⽅图具有较明显的双峰或多峰,并在⾕底选择闭值。
因此这种⽅法对⽬标和背景反差较⼤的图像进⾏分割的效果⼗分明显,⽽且总能⽤封闭、连通的边界定义不交叠的区域。
阈值分割法主要分为全局和局部两种,⽬前应⽤的闭值分割⽅法都是在此基础上发展起来的,⽐如最⼩误差法、最⼤相关法、最⼤嫡法、矩量保持法、Otsu最⼤类间⽅差法等,⽽应⽤最⼴泛的是Otsu最⼤类间⽅差法。
图像处理中的边缘检测与图像分割算法比较边缘检测是图像处理中的一项重要任务,它在计算机视觉、模式识别、图像分析等领域发挥着重要作用。
边缘检测的目标是找到图像中物体的边缘或轮廓,以便进行进一步分析和处理。
在图像分割任务中,边缘检测被广泛应用于提取感兴趣区域(ROI)或分离图像中的不同对象。
图像边缘检测的经典算法有很多,包括Canny算子、Sobel算子、Laplacian算子等。
这些算法在边缘检测中都有其独特的优势和适用场景。
Canny算子是一种非常经典的边缘检测算法,它可以检测出图像中的所有边缘,并对其进行细化和连接。
Canny算子有三个主要步骤:首先进行高斯滤波平滑图像,以减少噪声的影响;然后计算图像的梯度,找出梯度幅值和方向;最后利用非极大值抑制和双阈值技术来检测真正的边界。
Canny算子在边缘检测中通常可以得到很好的效果,具有较低的错误率和较高的定位精度。
Sobel算子是一种基于图像梯度的边缘检测算法,它通过计算图像中每个像素的梯度来判断是否为边缘。
Sobel算子通过计算图像在水平和垂直方向的一阶导数近似值,分别得到水平和垂直边缘的强度。
然后将水平和垂直边缘强度进行组合,即可得到最终的边缘结果。
Sobel算子简单高效,适用于对边缘的粗略检测。
Laplacian算子是一种基于图像二阶导数的边缘检测算法,它可以检测出图像中的突变区域,包括边缘和纹理。
Laplacian算子通过计算图像的二阶导数来检测边缘,然后根据导数的正负来判断边缘的方向。
Laplacian算子对噪声比较敏感,因此在使用之前通常需要对图像进行平滑处理。
除了传统的边缘检测算法,还有一些基于深度学习的边缘检测方法被提出。
这类算法通过训练神经网络来学习边缘的特征表示,从而实现边缘检测。
相比传统算法,基于深度学习的边缘检测方法可以自动学习更复杂和抽象的边缘特征,具有更好的性能和泛化能力。
在图像分割任务中,边缘检测作为预处理步骤常常被用于分割感兴趣的物体或区域。
图像处理中的图像分割与边缘检测算法图像处理是计算机视觉领域的一项重要技术,它可以对图像进行各种操作和分析。
其中,图像分割和边缘检测是图像处理中的两个关键任务,它们在许多应用中起着至关重要的作用。
图像分割是将图像划分成若干个具有独立语义的区域的过程。
在图像中,不同的物体或区域通常具有不同的颜色、纹理或亮度等特征。
通过对这些特征进行分析和提取,可以将图像中的不同区域分割出来,从而实现对图像的理解和分析。
图像分割在许多领域中都有广泛的应用,比如医学影像分析、目标识别和图像检索等。
边缘检测是图像处理中常用的一种技术,它可以检测出图像中物体的边缘轮廓。
边缘是图像中颜色、亮度或纹理等发生突变的地方,通过检测这些突变的地方,可以找到图像中物体的边界。
边缘检测在图像处理中有着广泛的应用,比如图像增强、目标检测和图像分割等。
在图像分割和边缘检测中,有许多经典的算法被广泛应用。
其中,基于阈值的分割算法是最简单和常用的一种方法。
该方法通过设置一个或多个阈值,将图像中的像素分为不同的类别。
这种方法简单直观,但对于复杂的图像,效果不佳。
因此,研究者们提出了许多基于区域的分割算法,如区域增长、区域分裂合并等。
这些算法通过对图像中的像素进行聚类,将相邻像素归为同一区域,从而实现图像的分割。
边缘检测算法有很多种,其中最经典的是Canny边缘检测算法。
Canny算法通过对图像进行平滑处理,然后计算图像中像素灰度的一阶和二阶导数,从而找到图像中的边缘。
该算法具有较高的准确性和稳定性,在实际应用中得到了广泛的应用。
此外,还有其他一些边缘检测算法,如Sobel算法、Laplacian算法等,它们也都有各自的特点和适用范围。
除了传统的图像分割和边缘检测算法,近年来深度学习技术在图像处理中也取得了重要的突破。
深度学习是一种基于神经网络的机器学习方法,它通过多层次的神经网络模型来学习图像的特征表示。
在图像分割和边缘检测任务中,深度学习方法可以通过大量的训练数据来学习图像的特征,从而实现更准确和鲁棒的分割和检测结果。
数字图像处理实验报告学生姓名王真颖学生学号L0902150101指导教师梁毅雄专业班级计算机科学与技术1501 完成日期2017年11月06日计算机科学与技术系信息科学与工程学院目录实验一 ............................................................................................................ 错误!未定义书签。
一、实验目的............................................................................................. 错误!未定义书签。
二、实验基本原理..................................................................................... 错误!未定义书签。
三、实验内容与要求................................................................................. 错误!未定义书签。
四、实验结果与分析................................................................................. 错误!未定义书签。
实验总结 ........................................................................................................ 错误!未定义书签。
参考资料 (3)实验一图像分割与边缘检测一.实验目的1. 理解图像分割的基本概念;2. 理解图像边缘提取的基本概念;3. 掌握进行边缘提取的基本方法;4. 掌握用阈值法进行图像分割的基本方法。
图像分割和图像边缘检测边缘检测和图像分割的联系:边缘检测是通过图像的梯度变化将图像中梯度变化明显的地方检测出来,针对的是边缘信息。
图像分割是将目标分割出来,针对的是目标对象,边缘检测是空间域图像分割的一种方法,属于包含关系边缘检测后的图像是二值图像,对二值图像可以运用形态学操作来分割目标,所以边缘检测是图像分割的一个前提。
但分割不一定非要用边缘检测。
图像分割:概念:图像分割是将图像划分成若干个互不相交的小区域的过程,所谓小区域是某种意义下具有共同属性的像素的连通集合。
从集合的观点看:它应该是具有如下性质的一种点集,集合R代表整个区域,对R的分割可看作将R分成N个满足以下五个条件的非空子集R1,R2,,RN:目的:无论是图像处理、分析、理解与识别,其基础工作一般都建立在图像分割的基础上;将图像中有意义的特征或者应用所需要的特征信息提取出来;图像分割的最终结果是将图像分解成一些具有某种特征的单元,称为图像的基元;相对于整幅图像来说,这种图像基元更容易被快速处理。
图像分割原理图像分割的研究多年来一直受到人们的高度重视,至今提出了各种类型的分割算法。
Pal把图像分割算法分成了6类:阈值分割,像素分割、深度图像分割、彩色图像分割,边缘检测和基于模糊集的方法。
但是,该方法中,各个类别的内容是有重叠的。
为了涵盖不断涌现的新方法,有的研究者将图像分割算法分为以下六类:并行边界分割技术、串行边界分割技术、并行区域分割技术、串行区域分割技术、结合特定理论工具的分割技术和特殊图像分割技术。
图像分割的特征:分割出来的各区域对某种性质例如灰度,纹理而言具有相似性,区域内部是连通的的且没有过多小孔。
区域边界是明确的。
岭南师范学院课程名称数字图像处理实验序号实验5实验名称图像分割和边缘检测实验地点综B2072017年10 月14 日一、实验目的及要求1. 了解边缘检测的意义。
2. 掌握边缘检测的数学方法。
3. 掌握常用的几种边缘检测算子四、实验过程〔实验步骤、记录、数据、分析〕1.基于一阶导数的边缘算子a=imread('y.jpg');f=rgb2gray(a);subplot(2,2,1),imshow(f),title('原始图像');[g1 , t1]=edge(f,'roberts',[ ], 'horizontal');subplot(2,2,2), imshow(g1),title('Roberts');[g2, t2]=edge(f, 'sobel',[ ], 'horizontal');subplot(2,2,3), imshow(g2),title('Sobel');[g3, t3]=edge(f, 'prewitt',[ ], 'horizontal');subplot(2,2,4), imshow(g3),title('Prewitt');从图像结果来看,'Roberts'的边缘检测范围更加大2、基于二阶导数的边缘算子:应用LOG算子检测边缘a=imread('y.jpg');f=rgb2gray(a);subplot(1,2,1),imshow(f),title('原始图像');[g , t]=edge(f, 'log');subplot(1,2,2),imshow(g),title('log');3、基于约束条件的最优化检测边缘算子:应用Canny算子检测边缘a=imread('y.jpg');f=rgb2gray(a);subplot(1,2,1),imshow(f),title('原始图像');[g , t]=edge(f,'canny');subplot(1,2,2),imshow(g),title('Canny');。