平面直角坐标系中的平移变换 课件
- 格式:ppt
- 大小:374.00 KB
- 文档页数:11
§6 平面直角坐标变换一 平移坐标变换定义:若二平面直角坐标系{O ;i ,j}和{O ′;i ′,j ′}满足i=i ′,j=j ′,则坐标系{O ′;i ′,j ′}可看成是由{O ;i ,j }经过平移得到的,称由坐标系{O ;i ,j}到坐标系{O ′;i ′,j ′}的变换为平移坐标变换。
平移变换公式设平面上一点M 在新系{O ′;i ′,j ′}与旧系{O ;i ,j}下的坐标分别为 (x ′,y ′),(x,y ),而O ′在旧系下的坐标为(a,b ),则 xi+yj= OP = O O +P O '=ai+bj+x ′i ′+y ′j ′=ai+bj+x ′i+y ′j=(a+x ′)i+(b+y ′)j∴⎩⎨⎧+'=+'=b y y a x x ——平移坐标变换公式 二 旋转坐标变换:定义:若二坐标系{O ;i ,j}和{O ′;i ′,j ′}满足O ≡O ′,另∠(i ,j ′)=θ 则坐标系{O ′;i ′,j ′}可看成是由坐标系{O ;i ,j}绕O 旋转θ角得到的,称由{O ;i ,j}到{O ′;i ′,j ′}的变换为旋转坐标变换。
旋转变换公式由于∠(i ,i ′)=0,∴∠(i ,j ′)=2π+θ ∴i ′=cos θi+sin θj ,j ′=cos (2π+θ)i+sin (2π+θ)j=-sin θi+cos θj ∴xi+yj=OP =P O '=x ′i ′+y ′j ′=x ′(cos θi+sin θj )+y ′(-sin θi+cosθj )=(x ′cos θ-y ′sin θ)i+(x ′sin θ+y ′cos θ)j即⎩⎨⎧'+'='-'=θθθθcos sin sin cos y x y y x x用x,y 表示x ′,y ′,有⎩⎨⎧+-='+='θθθθcos sin sin cos y x y y x x 三 一般坐标变换:称由坐标系{O ;i ,j}得坐标系{O ′;i ′,j ′}的变换为一般坐标变换。