钢管混凝土拱桥钢管拱肋加工与控制
- 格式:pdf
- 大小:67.02 KB
- 文档页数:2
钢管混凝土拱桥拱肋施工线形控制技术研究钢管混凝土拱桥是一种新型的桥梁结构,它由钢管和混凝土构成,具有良好的承载性能和耐久性,广泛应用于大型跨河、跨海、跨山等工程中。
拱桥拱肋是拱桥结构中的重要部分,其施工线形控制技术对整个桥梁的质量和安全性起着至关重要的作用。
针对钢管混凝土拱桥拱肋施工线形控制技术的研究具有很高的实用价值和理论意义。
一、钢管混凝土拱桥的特点钢管混凝土拱桥是在传统混凝土桥梁的基础上进行了新型的结构设计和施工工艺改进而成。
其特点主要包括以下几个方面:1. 结构轻巧:相比于传统的混凝土拱桥,钢管混凝土拱桥具有结构轻巧、自重小的特点,能够减少地基开挖量,降低桥梁对地基的要求。
2. 施工方便:由于采用了钢管作为桥梁主体结构,其施工周期较短,可以减少对交通的影响。
3. 抗震性能好:钢管混凝土拱桥在抗震性能上具有卓越的表现,能够更好地保障桥梁的安全性。
4. 节约材料:由于采用了钢管混凝土结构,桥梁所需的混凝土和钢材用量相比传统桥梁更少,能够节约材料,降低成本。
钢管混凝土拱桥的上述特点为其在工程建设中的应用提供了便利,使得其成为了当今桥梁工程中的一种重要结构形式。
二、拱肋施工线形控制技术的重要性钢管混凝土拱桥的拱肋是其主要受力构件,其形状和位置对桥梁的承载能力和整体结构性能具有重要影响。
在拱肋的施工过程中,必须对其线形进行严格控制,保证其在设计要求范围内。
线形控制的核心是对拱肋的水平线形、垂直线形和平面线形进行精确的测量和调整,确保其在施工过程中符合设计要求。
在实际施工过程中,要想实现对拱肋线形的精确控制,需要运用先进的技术手段和严格的施工操作规范。
只有通过标准化的操作流程和精确的测量手段,才能够保证拱肋施工线形的准确度和稳定性,进而保证整个桥梁结构的质量和安全性。
针对钢管混凝土拱桥拱肋施工线形控制技术的研究显得尤为重要。
通过对施工过程中的关键环节和技术指标进行深入研究和分析,可以为提高拱桥施工线形控制技术的水平和效率提供重要的理论依据和技术支持。
钢管混凝土拱桥拱肋施工线形控制技术研究钢管混凝土拱桥是一种常见的桥梁结构形式,具有承载能力强、抗震性能优秀、美观大方等优点,因此在桥梁工程中得到了广泛的应用。
而拱肋作为桥梁结构中的关键部件,其施工质量直接影响着整座桥梁的安全性和使用性能。
对于钢管混凝土拱桥拱肋施工线形控制技术的研究具有重要意义。
一、钢管混凝土拱桥拱肋施工的特点1. 结构复杂:拱桥的结构设计多样复杂,要求拱肋的线形控制精确,以确保整体结构的稳定和安全性。
2. 施工难度大:拱肋的施工需要考虑拱顶和拱脚的高度、曲率等因素,要求施工人员有较高的技术水平和丰富的施工经验。
3. 现场环境复杂:拱桥施工现场通常处于高空或水下等复杂环境中,对施工安全和效率提出了更高要求。
由于以上特点,钢管混凝土拱桥拱肋施工线形控制技术的研究对于提高施工质量、保障施工安全和提升工程施工效率具有重要意义。
二、影响拱肋线形的因素在进行钢管混凝土拱桥拱肋施工线形控制技术研究之前,我们需要先了解影响拱肋线形的因素。
拱肋的线形受到以下因素影响:1. 材料质量:钢管混凝土作为拱肋的主要材料,其质量直接影响着拱肋的线形。
材料的选用和检测尤为重要。
2. 施工工艺:拱肋的施工工艺包括浇筑、模板安装、收模等环节,对于每一个环节的操作都需要严格把控,以确保拱肋的线形符合设计要求。
3. 施工现场环境:施工现场的环境因素,如气候、温度、湿度等,也会对拱肋的线形产生影响。
针对以上影响因素,我们需要提出相应的控制措施和技术手段,以保证拱肋的线形符合设计要求。
三、拱肋线形控制技术研究1.材料质量控制在拱肋的制作过程中,首先需要对钢管混凝土材料进行严格的质量控制。
对于材料的选用,需要满足相关标准要求,且在加工过程中需要进行严格的检测和试验,以确保材料的质量和性能符合设计要求。
2.施工工艺控制拱肋的施工工艺包括浇筑、模板安装、收模等环节,需要有效控制每个环节的质量。
在浇筑过程中,需要保证混凝土的配合比严格按照设计要求进行,且需要控制浇筑的速度和压力,以避免产生空洞和裂缝。
钢管混凝土拱桥拱肋施工线形控制技术研究钢管混凝土拱桥是一种结构优美、技术先进的桥梁形式,其拱肋施工线形控制技术对桥梁的安全性和稳定性具有重要意义。
本文针对钢管混凝土拱桥拱肋施工线形控制技术进行了研究,旨在提高施工线形的准确性和施工效率。
一、钢管混凝土拱桥概述钢管混凝土拱桥是指以钢管混凝土为构件材料,以拱形结构为主体形式的桥梁。
它具有抗震、耐久、经济等优点,在桥梁工程中得到了广泛应用。
钢管混凝土拱桥的拱肋施工线形控制技术对桥梁的整体稳定性和施工质量起着决定性的作用。
二、拱肋施工线形控制技术研究现状目前钢管混凝土拱桥的拱肋施工线形控制技术主要存在以下问题:1.施工线形控制精度不高,容易造成施工误差。
2.传统的手工施工方式效率低,成本高。
3.缺乏针对性的施工线形控制技术研究,无法满足不同桥梁结构的施工需求。
针对这些问题,有必要开展钢管混凝土拱桥拱肋施工线形控制技术方面的研究,提出相应的技术改进方案。
三、拱肋施工线形控制技术研究内容1.施工线形控制理论研究:通过对钢管混凝土拱桥结构特点和施工要求的分析,建立相应的施工线形控制理论模型,探讨施工线形控制的关键技术和方法。
2.施工线形控制技术改进:结合现代化施工技术,研究钢管混凝土拱桥拱肋施工线形控制的先进技术和装备,提出高效、精准的施工线形控制解决方案。
3.施工线形控制案例分析:选取具有代表性的钢管混凝土拱桥工程项目,对其施工线形控制过程进行实地观测和数据分析,总结经验,提出改进建议。
四、拱肋施工线形控制技术研究展望1.利用先进的测量技术和数字化辅助设备,提高施工线形控制的精度和效率。
2.加强对施工人员的技术培训,提高他们对施工线形控制技术的理解和应用能力。
3.加强与相关领域的学科交叉,借鉴其他领域的先进技术和方法,推动拱肋施工线形控制技术的不断创新和发展。
钢管混凝土拱桥拱肋的施工控制摘要:分析了钢管混凝土拱桥施工中影响拱肋线形的主要因素,并介绍了拱肋施工过程中线形控制的方法。
关键词:钢管混凝土拱桥;拱肋;施工控制Abstract: the article analyzes the construction of concrete filled steel tube arch bridge arch rib alignment effects of the main factors, and introduced the arch rib construction process the linear control method.Keywords: concrete filled steel tube arch bridge; The arch rib; Construction control1、前言钢管混凝土是将混凝土填充到钢管内形成的一种组合结构,它使2种材料充分发挥了各自的特长,具有强度高、塑性和韧性好、耐疲劳、抗冲击等优点。
同时,由于在施工中钢管既可作为劲性骨架,又可作为混凝土模板,因而施工非常方便、快捷,降低了工程造价,缩短了工期。
由于其独特的优点,钢管混凝土拱桥被广泛应用于公路、铁路建设中。
在钢管混凝土拱桥的施工中,如何保证拱肋的施工精度是该桥型受力及稳定的重要环节。
2、影响拱肋线形的主要因素拱肋的施工精度控制贯穿于该型桥施工的全过程,分析其施工的整个过程,拱肋线形主要受加工精度、安装方法、温度、风荷载等因素的影响,因此,拱肋的施工控制过程是一个复杂和系统的过程,也是钢管混凝土拱桥施工的重点和难点。
3、拱肋线形控制3.1拱肋的加工控制在拱肋的加工过程中,杆件的温度变形、焊接的收缩、划线的粗细等均将导致加工的误差,因此,应在开工前做充分的技术准备工作,如设计工装、编制工艺等,对拱筒的筒体成型,运输单元的组装、焊接、涂装等制定详细的工艺要求和制作标准。
钢管拱肋(桁架)加工1、钢管混凝土拱桥所用钢管直径超过600mm的应采用卷制焊接管,卷制钢管宜在工厂进行。
在有条件的情况下,优先选用符合国家标准系列的成品焊接管。
2、成品管及制管用的钢材和焊接材料等应符合设计要求和国家现行标准的规定,具备完整的产品合格证明。
3、钢管拱肋(桁架)加工的分段长度应根据材料、工艺、运输、吊装等因素确定。
在加工制作前,应根据设计图的要求绘制施工详图,包括零件图、单元构件图、节段单元图及组焊、拼装工艺流程图等。
加工前应按半跨拱肋进行1:1精确放样,注意考虑温度和焊接变形的影响,并精确确定合龙节段的尺寸,直接取样下料和加工。
4、工地弯管宜采用加热顶压方式,加热温度不得超过800℃。
钢管对接端头应校圆,除成品管按相应国家标准外,失圆度不宜大于钢管外径的0.003倍。
钢管的对接环焊缝可采用有衬管的单面坡口焊和无衬管的双面熔透焊。
两条对接环焊缝的间距应符合设计要求,设计无规定时,直缝焊接管不小于管的直径,螺旋焊接管不小于3m。
对接径向偏差不得超过壁厚的0.2倍。
为减少运输及安装过程中对口处的失圆变形,应适当在该处加设内支撑。
5、拱肋(桁架)节段焊接宜要求与母材等强度焊接。
所有焊缝均应按规定进行强度和外观检查,宜要求主拱的焊缝达到二级焊缝标准。
对接焊缝应100%进行超声波探伤,其质量检查标准可按照本规范第17章的有关规定执行。
桁架式钢管拱主管与腹管采用相贯焊接时,宜采用自动或半自动的加工方式来保证相贯线和坡口的制作精度,对焊接材料和工艺的选择在满足焊接接头强度的原则下,应尽量提高接头的韧性指标。
要力求避免和减少焊缝多次相交的不良结构细节。
6、在钢管拱肋(桁架)加工过程中,应注意设置混凝土压注孔、防倒流截止阀、排气孔及扣点、吊点节点板。
如拱肋(桁架)节段采用法兰盘连接,为保证螺栓连接的精度,宜采用3段啮合制孔工艺。
对压注混凝土过程中易产生局部变形的结构部位(如腹箱)应设置内拉杆。
7、钢管拱肋(桁架)节段形成后,钢管外露面应按设计要求做长效防护处理,宜采用热喷涂防护,其喷涂方式、工艺及厚度应符合设计要求。
钢管拱桥拱肋制作的质量控制随着科技进步,钢管混凝土拱桥陆续被交通和市政工程所采用。
而钢管拱肋制作和组拼的施工技术有待进一步提高。
1、工程特征攀枝花市某大桥属钢管混凝土拱桥,采用二肋拱,拱肋断面成桁架型,主拱管直径为φ750mm,由厚为12mm的Q345C钢板卷制焊接而成,再用φ351×10的腹杆和钢板厚16mm的缀板与四根钢管组焊成桁架型。
钢管拱肋分节段制作成运输段,再运到桥台上组拼成吊装段,经过起吊安装成悬链线钢管拱肋。
该拱桥拱肋拱轴系数m=1.756,设计拱顶预拱度为L/1000=19.2cm,其余各点预拱度值按二次抛物线分布。
轴线偏差控制按不大于L/6000mm计算。
节段对接错台不超过0.2壁厚(2.4mm),接口间隙6±1mm。
较高的精度要求对如此大型的钢结构焊接组装件进行制作加工,要确保加工质量,其工艺手段和质量控制,难度较大。
因此要控制好质量,就必须健全责任制,相互配合,加强各道工序的自检和互检,前道工序不合格,后道工序不施工,共同对质量负责。
2、控制首先要从施工技术准备和基础工作做起钢管拱肋制作在工厂进行,由于没有一部统一的、切实可行的规范来指导施工,又缺乏经验,对于如何帮助和解决施工中的问题是一个重要课题。
钢管拱肋节段加工制作开始,我们紧紧围绕质量控制,这一难题,研究设计图纸,分析构件结构、尺寸、公差及加工技术要求,统一使用规范及标准等,做好施工前的各项技术准备工作。
2.1首先健全质量管理机构,确定技术负责人;明确场地规划;配置设备能力;校核检测仪器;加工好工装夹具等施工准备。
2.2确保九项质量保证体系:设计、核审、材质、制造、焊接、检验、工艺手段、计量、理化探伤等齐全。
在施工过程中,开展全面质量管理,加强每个环节的质量控制,做好自检、互检工作,严把质量关。
2.3考核焊接技工技术,查阅焊工操作许可证及钢印代码。
并对上岗焊工进行焊接试验评定,合格后才能上岗,参与拱肋焊接工作。
黑龙江交通科技HEILONGJIANG JIAOTONG KEJINo.4,221 (Sum No326)2021年第4期(总第326期)大跨度钢管混凝土拱桥拱肋拼装施工控制要点张乙彬4张君翼2(7贵州桥梁建设集团有限责任公司,贵州贵阳554001贵州交建投资有限公司,贵州贵阳550001)摘要:大跨度钢管混凝土拱桥线型控制是保障大桥正常运营的重要手段,而拱肋节段拼装质量对主桥线型控制具有重要影响。
将某特大桥施工作为案例,对该大跨度钢管混凝土拱桥拱肋施工控制展开分析,阐述拱肋拼装质量控制要点等相关内容,希望可以为相关工程项目提供参考。
关键词:钢管混凝土拱桥;拱肋拼装;施工控制中图分类号:U445文献标识码:A文章编号:1008-3383(2021)04-0083-021工程概况某特大桥左幅跨径组合为(22X46m+612m +3x42m),桥梁全长1448.5m;右幅跨径组合为(21x46m+612m+3x46m),桥梁全长1465.5m,主跨采用上承式钢管混凝土变截面桁架拱桥,拱轴线采用悬链线,计算跨径410m,矢高为88m,矢跨比f=1/4.659,拱轴系数m=754°主拱圈采用等宽度变高度空间桁架结构,断面高度从拱顶9m变化到拱脚12.6m(中到中)。
单片拱肋宽度19m(中到中),横桥向三片拱肋间的中心距为275m°拱肋间设置横联和米撑°上、下弦拱肋均采用等截面钢管,拱肋管径①1250mm,拱肋钢管壁厚35mm、32mm、28mm°钢管拱肋对接接头采用内法兰盘栓接、管外焊接的形式进行连接。
拱顶采用内置式瞬间合拢连接构件。
2钢管拱肋加工制作施工控制钢管拱肋是桥梁中的关键受力结构,本项目拱肋采用厂内预拼达到符合规定的精度线形质量等要求后,再拆分发往工地进行片体拼装。
针对本项目拱肋制作特点,重视拼装精度是保障桥梁线形和尺寸正确性的关键°2.1片体拼装质量控制地样刻画及胎架设计制作控制41)通过全站仪依据技术图样进行放线,来确保放样精度,采用钢盘尺结合激光经纬仪刻画各个型值点的地标、纵横向基准线,并进行清楚标记,地样偏差精度不大于1mm°(2)利用胎架模板的水平高度控制弦管水平,整体水平不大于2mm°控制要点:底样线及水平精度需满足工艺要求、胎架需稳定牢固、标记标识需清晰明了。