溶剂效应名词解释
- 格式:docx
- 大小:13.22 KB
- 文档页数:1
化学反应机理的溶剂效应化学反应机理的溶剂效应是指溶剂对反应速率、平衡常数和反应机理的影响。
溶剂作为反应中的介质,对于反应物分子的相互作用、扩散速率和溶解度均有一定影响,从而对反应速率和反应机理产生影响。
1. 溶剂极性和溶剂效应溶剂极性是影响溶剂效应的一个重要因素。
一般来说,极性溶剂更容易产生溶剂效应。
以溶剂分子间的相互作用为例,溶剂分子会与反应物分子发生氢键或离子-溶剂相互作用,从而改变反应物分子的活性。
这种相互作用可以加速或减缓反应速率,并影响反应物的平衡常数。
2. 溶剂极性对活化能的影响溶剂极性可以影响反应物的活化能。
在非极性溶剂中,由于溶剂分子与反应物分子之间只有较弱的相互作用,所以反应物分子在非极性溶剂中的体系中更为自由,其几率更大地参与反应,从而降低了反应物的活化能,加速反应的进行。
而在极性溶剂中,由于溶剂分子与反应物分子之间较强的相互作用,反应物分子需要克服较大的相互作用能才能参与反应,因此需要更高的能量才能到达活化状态,从而提高了活化能,降低了反应速率。
3. 溶剂对反应物溶解度的影响溶剂对反应物的溶解度也会对反应速率和平衡常数产生影响。
在反应物溶解度较低的情况下,由于反应物浓度较低,反应速率可能会受到限制。
而在增加溶剂的情况下,反应物溶解度增加,反应物浓度增加,从而促进了反应速率的提高。
此外,溶剂对溶解度的影响还会改变反应物的活性,从而对反应的平衡常数产生影响。
4. 溶剂对催化剂的影响许多反应中使用催化剂来促进反应速率。
溶剂可以影响催化剂的活性和选择性。
溶剂对催化剂的溶解度、吸附性能和催化剂表面的溶剂分子的覆盖程度均会对催化剂的活性产生影响。
溶剂还可以改变催化剂表面的电子结构和溶剂分子自身的电子密度分布,从而影响反应机理和催化剂的选择性。
总结:溶剂效应是指溶剂对化学反应速率、平衡常数和反应机理的影响。
溶剂极性是影响溶剂效应的一个重要因素,非性和溶解度的影响外,还可以改变反应物的活化能和催化剂的活性和选择性。
名词解释ICP环状结构: 在高频感应电场或者磁场下开成的等离子体涡流具有“趋肤效应”,此效应使得等离子体涡电流集中于等离子体表面,形成一环形加热通道,即ICP环状结构。
AES基本原理:待测原子的外层电子在外来能量的作用下,电子由低能态跃迁到高能态,在高能态不稳定,迅速返回到低能态,并辐射出具有特征波长或者频率的谱线。
通过测定特征谱线的波长或者频率进行定性分析;通过测定谱线的强度进行定量分析。
轫致辐射:电子通过荷电粒子(主要是重粒子)形成的电场(或者库仑场)时,受到加速或者减速引起的连续辐射。
自吸效应:激发态原子发出的辐射被其基态原子所吸收,从而使谱线强度下降的效应。
最后线:当渐渐减小待测元素的含量时,该元素产生所有特征谱线中最后消失的谱线。
它一般是元素的最灵敏线或者共振线。
(或者称持久线。
当待测物含量逐渐减小时,谱线数目亦相应减少,当c接近0时所观察到的谱线,是理论上的灵敏线或者第一共振线。
)灵敏线:激发电位较低的谱线,常为原子线(电弧线),或者离子线(火花线)。
与实验条件有关。
共振线:从激发态到基态的跃迁所产生的谱线。
由最低能级的激发态到基态的跃迁称为第一共振线。
普通也是最灵敏线。
与元素的激发程度难易有关。
分析线:在进行元素的定性或者定量分析时,根据测定的含量范围的实验条件,对每一元素可选一条或者几条最后线作为测量的分析线。
自吸线:当辐射能通过发光层周围的蒸汽原子时,将为其自身原子所吸收,而使谱线强度中心强度减弱的现象。
自蚀线:自吸最强的谱线的称为自蚀线。
光栅闪耀特性:将光栅刻痕刻成一定的形状通常是三角形的槽线,使衍射的能量集中到某一个衍射角附近激发电位: (Excited potential)原子外层电子由低能态跃迁到高能态所需要的能量,以eV表示。
每条谱线对应一激发电位。
Doppler变宽:由于原子热运动引起的谱线宽度增加,又称为热变宽偶合常数:两种核的自旋之间产生的相互干扰称为自旋耦合,相互干扰的大小用耦合常数表示。
溶剂概述和溶剂效应摘要:对化学反应中溶剂的种类和作用做概述,以及溶剂效应在紫外,荧光,红外,核磁波谱和液相色谱中的作用。
关键词:溶剂溶剂效应吸收光谱液相色谱1,溶剂1.1溶剂的定义溶剂是一种可以溶化固体,液体或气体溶质的液体,继而成为溶液,最常用的溶剂是水。
1.2溶剂的分类溶剂按化学组成分为有机溶剂和无机溶剂有机溶剂是一大类在生活和生产中广泛应用的有机化合物,分子量不大,常温下呈液态。
有机溶剂包括多类物质,如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳香烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物等等,多数对人体有一定毒性。
(本文主要概述有机溶剂在化学反应以及波谱中的应用)2,溶剂效应2.1溶剂效应的定义溶剂效应是指溶剂对于反应速率,平衡甚至反应机理的影响。
溶剂对化学反应速率常数的影响依赖于溶剂化反应分子和相应溶剂化过渡态的相对稳定性。
2.2溶剂效应在紫外,荧光,红外,核磁中的应用2.2.1溶剂效应在紫外吸收光谱中的应用[5]有机化合物紫外吸收光谱的吸收带波长和吸收强度,与所采用的溶剂有密切关系。
通常,溶剂的极性可以引起谱带形状的变化。
一般在气态或者非极性溶剂(如正己烷)中,尚能观察到振动跃迁的精细结构。
但是改为极性溶剂后,由于溶剂与溶质分子的相互作用增强,使谱带的精细结构变得模糊,以至完全消失成为平滑的吸收谱带。
这一现象称为溶剂效应。
例如,苯酚在正庚烷溶液中显示振动跃迁的精细结构,而在乙醇溶液中,苯酚的吸收带几乎变得平滑的曲线,如图所示2.2.1.1溶剂极性对n→π*跃迁谱带的影响[2]n→π*跃迁的吸收谱带随溶剂的极性的增大而向蓝移。
一般来说,从以环己烷为溶剂改为以乙醇为溶剂,会使该谱带蓝移7nm:如改为以极性更大的水为溶剂,则将蓝移8nm。
增大溶剂的极性会使n→π*跃迁吸收谱带蓝移的原因如下:会发生n→π*跃迁的分子,都含有非键电子。
例如C=O在基态时碳氧键极化成Cδ+=Oδ-,当n电子跃迁到π*分子轨道时,氧的电子转移到碳上,使得羰基的激发态的极性减小,即Cδ+=Oδ-(基态)→C=O(激发态)。
例:CaCl在水-甲醇体系中,Ca2+和Cl–都优先被2水溶剂化。
如阳离子优先被一种溶剂溶剂化,而阴离子优先被另一种溶剂溶剂化,则称异选择性溶剂化。
例:硝酸银在乙腈-水体系中,Ag+优先被乙腈溶剂-优先被水溶剂化。
化, 而NO32、溶剂和溶质分子间的相互作用第一类包括定向诱导力和色散力,这些力是非特异性的,不可能完全饱和。
第二类包括氢键力和电荷转移力,或称电子对授受力。
这类作用有方向并且可以饱和生成化学计量的分子化合物。
C、偶极-诱导偶极力具有永久偶极矩的分子或离子能诱导邻近分子,产生诱导偶极矩,分子在被诱导的瞬间总是处于诱导偶极的方向,两者之间有吸引力。
非极性分子可极化率越大,诱导偶极矩也越大。
这对偶极分子和离子在非极性溶剂中的体系最重要。
D、瞬间偶极-诱导偶极力(色散力〕非极性分子由于电子不断运动,会瞬间产生小的偶极矩,它使邻近分子产生脉冲性极化,从而产生分子间的相互吸引力,这称为色散力。
在两个键已饱和的分子间形成一个附加的成键作用必须是在电子给体分子中存在一个能量足够高的已占据分子轨道,而在电子受体分子中存在一个能量足够底的未占据分子轨道。
3、溶剂的极性和分类(1)质子性溶剂(2)极性非质子性溶剂(3)非极性溶剂量度溶剂极性的标准:(1)偶极矩u常见有机溶剂分子偶极矩的数值在0-5.5D, 在不存在特异性溶质-溶剂间相互作用时,分子极性大小与偶极矩大小一致。
溶剂极性加大,K T 值降低,cis-烯醇式减少。
因为:1、在两种互变异构体中,烯醇式极性较小。
分子内氢键的形成降低羰基偶极-偶极斥力,而在酮式中,这种斥力使其极性加大。
2、分子内氢键使烯醇稳定化,溶剂极性加大,分子间氢键加强,分子内氢键被削弱,烯醇含量减少。
烯醇含量与1,3-二羰基化合物浓度有关。
当偶极性的1,3-二羰基化合物用非极性溶剂稀释,溶剂与羰基作用弱,两羰基偶极斥力大,不稳定;烯醇与溶剂分子间氢键弱,分子内氢键强,烯醇含量增高。
紫外可见吸收光谱习题一、名词解释1. 比色分析法:利用比较待测溶液本身的颜色或加入试剂后呈现的颜色的深浅来测定溶液中待测物质的浓度的方法就称为比色分析法。
2. 生色团和助色团:所谓生色团是指在200-1000nm波长范围内产生特征吸收带的具有一个或多个不饱和键和未共用电子对的基团。
所谓助色团是一些含有未共用电子对的氧原子、氮原子或卤素原子的基团。
3. 红移和蓝移:由于取代基或溶剂的影响造成有机化合物结构的变化,使吸收峰向长波方向移动的现象称为吸收峰“红移”。
由于取代基或溶剂的影响造成有机化合物结构的变化,使吸收峰向短波方向移动的现象称为吸收峰“蓝移”。
4.增色效应和减色效应:由于有机化合物的结构变化使吸收峰摩尔吸光系数增加的现象称为增色效应。
由于有机化合物的结构变化使吸收峰的摩尔吸光系数减小的现象称为减色效应。
5. 溶剂效应:由于溶剂的极性不同引起某些化合物的吸收峰的波长、强度及形状产生变化,这种现象称为溶剂效应。
二、填空1.朗伯定律是说明在一定条件下,光的吸收与光程成正比;比尔定律是说明在一定条件下,光的吸收与浓度成正比,二者合为一体称为朗伯-比尔定律,其数学表达式为A=Kbc。
2.摩尔吸光系数的单位是L/(mol·cm),它表示物质的浓度1mol/L ,液层厚度为1cm 时,在一定波长下溶液的吸光度。
常用符号A 表示。
因此光的吸收定律的表达式可写为A=εbc。
3.吸光度和透射比的关系是:A=-lgt4. 用分光光度计测量由色配合物的浓度相对标准偏差最小时的吸光度为 0.434。
5. 饱和碳氢化合物分子中只有σ键,只在真空紫外或远紫外或深紫外产生吸收,在200-1000nm范围内不产生吸收峰,故此类化合物在紫外吸收光谱中常用来做溶剂。
6. 在有机化合物中, 常常因取代基的变更或溶剂的改变, 使其吸收带的最大吸收波长发生移动,向长波方向移动称为____红移___, 向短波方向移动称为____蓝移_______。
紫外可见吸收光谱习题一、名词解释1. 比色分析法:利用比较待测溶液本身的颜色或加入试剂后呈现的颜色的深浅来测定溶液中待测物质的浓度的方法就称为比色分析法。
2. 生色团和助色团:所谓生色团是指在200-1000nm波长范围内产生特征吸收带的具有一个或多个不饱和键和未共用电子对的基团。
所谓助色团是一些含有未共用电子对的氧原子、氮原子或卤素原子的基团。
3. 红移和蓝移:由于取代基或溶剂的影响造成有机化合物结构的变化,使吸收峰向长波方向移动的现象称为吸收峰“红移”。
由于取代基或溶剂的影响造成有机化合物结构的变化,使吸收峰向短波方向移动的现象称为吸收峰“蓝移”。
4.增色效应和减色效应:由于有机化合物的结构变化使吸收峰摩尔吸光系数增加的现象称为增色效应。
由于有机化合物的结构变化使吸收峰的摩尔吸光系数减小的现象称为减色效应。
5. 溶剂效应:由于溶剂的极性不同引起某些化合物的吸收峰的波长、强度及形状产生变化,这种现象称为溶剂效应。
二、填空1.朗伯定律是说明在一定条件下,光的吸收与光程成正比;比尔定律是说明在一定条件下,光的吸收与浓度成正比,二者合为一体称为朗伯-比尔定律,其数学表达式为A=Kbc。
2.摩尔吸光系数的单位是L/(mol·cm),它表示物质的浓度1mol/L ,液层厚度为1cm 时,在一定波长下溶液的吸光度。
常用符号A 表示。
因此光的吸收定律的表达式可写为A=εbc。
3.吸光度和透射比的关系是:A=-lgt4. 用分光光度计测量由色配合物的浓度相对标准偏差最小时的吸光度为 0.434。
5. 饱和碳氢化合物分子中只有σ键,只在真空紫外或远紫外或深紫外产生吸收,在200-1000nm范围内不产生吸收峰,故此类化合物在紫外吸收光谱中常用来做溶剂。
6. 在有机化合物中, 常常因取代基的变更或溶剂的改变, 使其吸收带的最大吸收波长发生移动, 向长波方向移动称为____红移___, 向短波方向移动称为____蓝移_______。
液相色谱分离的溶剂效应“溶剂效应”会致使哪些峰形异样?如何幸免溶剂效应?在HPLC分析中样品溶剂的选择和流动相是如何的联系?为何建议利用流动相溶解样品?。
一系列的问题都和样品溶剂的选择紧密相关,如何解决真正的溶剂效应问题,又如何分辨哪些是非溶剂效应问题,不同的问题有不同的解决方式,有哪些先辈留下的实战体会可供分享呢?一路来看看吧!什么是溶剂效应?样品溶液的溶剂强度强于流动相溶剂强度时可能会造成的峰展宽、峰分叉现象。
即色谱图上较早洗脱的峰前沿或开叉,与此同时较晚洗脱的峰那么较为正常的现象。
例如样品溶液的溶剂是100%乙腈(100%的强溶剂),而流动相的组成那么较弱,18%的乙腈与72%的水。
第一个峰是开叉的,而且与第二个峰相较,明显地变宽了。
当样品溶液的溶剂变成流动相时,所有的峰形都改善了,且变得尖锐。
可能发生溶剂效应的情形:●出峰时刻早;●保留弱;●进样量大。
用流动相溶解样品能够取得专门好的峰形当溶解样品的溶剂不同于流动相时,样品溶剂与流动相发生混合,样品溶剂被冲稀。
若是进样溶剂之强度高于流动相,样品在刹时会表现为在较强溶剂中,并以较快速度通过色谱柱。
表此刻色谱图上确实是∶色谱峰的保留时刻缩短。
`当进样溶剂与流动相混合时,一部份分子会先与流动相混合,致使这些分子通过色谱柱的速度发生转变,使峰形扭曲,发生变形。
洗脱较早的色谱峰峰变形要比洗脱晚的色谱峰严峻。
解决进样溶剂问题的关键是使进样体积足够小,如此稀释进程会超级快;或利用比流动相弱的溶剂溶解样品。
较弱的溶剂会使样品在色谱柱上发生浓缩,在某些情形下,色谱峰会比利用较强溶剂时窄一些。
因此,在通常情形下,若是溶解样品的溶剂比流动相强,进样体积应不高于25mL。
进样体积大小与进样溶剂与流动相之间的不同大小有关。
这一不同很容易凭体会取得∶慢慢加大进样体积,直至发生峰变形现象。
采纳比发生峰变形时小一些的进样体积即可。
问题中发生的峰变形确实是因为溶解样品的溶剂甲醇强度远远高于流动相,因此取得了变形的、展宽的峰。
溶剂效应名词解释
溶剂效应指的是在液相反应中,溶剂的物理和化学性质对反应平衡和反应速度的影响。
溶剂效应是一种普遍存在的现象,在化学、药学、生物学等领域中都有广泛的应用。
在液相反应中,溶剂的选择和性质会对反应的速率、选择性和产物的纯度等产生重要影响。
例如,在有机合成反应中,溶剂的选择会影响反应的速率、选择性和产物的立体构型等。
在药物合成中,溶剂的选择也会影响反应的速率、选择性和产物的纯度等。
溶剂效应的机制主要涉及到溶剂对反应物、中间体和产物的物理化学性质的影响。
例如,溶剂的极性、氢键能力、离子强度和pH值等都会对反应速率和选择性产生影响。
此外,溶剂的分子大小、分子间作用力和分子形状等也会对反应速率和选择性产生影响。
总之,溶剂效应是液相反应中非常重要的现象,对化学反应的速率、选择性和产物的纯度等都有重要影响。
在化学、药学和生物学等领域中,溶剂效应的研究和应用具有广泛的意义。