第八章汽轮机危急遮断系统-图文
- 格式:docx
- 大小:43.72 KB
- 文档页数:11
为了防止汽轮机在运行中因部分设备工作失常可能导致的汽轮机发生重大损伤事故,在机组上装有危急遮断系统危急遮断系统监视汽机的某些运行参数,当这些参数超过其运行限制值时,该系统就送出遮断信号关闭全部汽轮机蒸汽进汽阀门。
被监视的参数有如下各项:汽轮机超速、推力轴承磨损、轴承油压过低、冷凝器真空过低、抗燃油油压过低。
另外,还提供了一个可接所有外部遮断信号的遥控遮断接口。
危急遮断系统的主要执行元件由一个带有四只自动停机遮断电磁阀(20/AST)和二只超速保护控制阀(20/0PC)的危急遮断控制块(亦称电磁阀组件)、隔膜阀、空气引导阀和几只压力开关等所组成。
四只电磁阀(20/AST)在正常运行时,它们是被通电励磁关闭,从而封闭了自动停机危急遮断(AST)母管上的抗燃油通道,使所有蒸汽阀执行机构活塞下腔的油压能够建立起来。
当电磁阀失电打开,则总管泄油,导致所有汽阀关闭而使汽机停机。
电磁阀(20/AST)是组成串并联布置,这样就有多重的保护性。
每个通道中至少须一只电磁阀打开,才可导致停机,同时也提高了可靠性,四只AST电磁阀中任意一只损坏或拒动作均不会引起停机。
二只电磁阀(20/OPC)OPC电磁阀是超速保护控制电磁阀,它们是受DEH控制器的OPC 部分所控制,正常运行时,该二个电磁阀是不带电常闭的,封闭了OPC总管油液的泄放通道,使调节汽阀和再热调节汽阀的执行机构活塞下腔能够建立起油压,一旦OPC控制板动作,例如转速达103%额定转速时,该二个电磁阀就被励励磁(通电)打开,使OPC母管油液泄放。
这样,相应执行机构上的卸荷阀就快速开启,使调节汽阀和再热调节汽阀迅速关闭。
危急遮断控制块该控制块主要功能是为自动停机危急遮断(与超速保护控制(OPC)母管之间提供接口。
控制块上面装有六只电磁阀(四只AST电磁阀,二只OPC电磁阀),内部有二只单向阀,控制块内加工了必要的通道,以连接各元件.所有孔口或为了连接内孔而必须钻通的通孔,都用螺塞塞住,每个螺塞都用“0”型圈密封。
汽轮机危急遮断器的工作原理1. 引言嘿,朋友们,今天咱们聊聊汽轮机的危急遮断器。
这玩意儿可不是随便说说的,它在汽轮机的世界里可是个超级英雄。
别看它小,关键时刻就能拯救整台机器!那么,究竟这位“英雄”是怎么运作的呢?来,咱们一起深入浅出,轻松愉快地了解一下!2. 汽轮机的基本工作原理2.1 汽轮机是啥?首先,先给大家普及一下汽轮机的基本概念。
简单来说,汽轮机就像是一台用蒸汽推动的巨大旋转机器,能把热能变成机械能。
听起来高大上吧?其实它的工作原理就像我们小时候玩的风车,蒸汽一吹,风车就转起来了!不过,这风车可不是随便转的,它得经过一系列的变换才能将能量转化得更有效。
2.2 危急遮断器的角色而在这个过程中,危急遮断器的角色就显得尤为重要了。
它就像是机器的“保镖”,时刻准备着保护汽轮机的安全。
你想啊,要是汽轮机出现故障,危险来临,危急遮断器能立马切断蒸汽供应,确保机器不会继续运转,从而避免更大的损失。
3. 工作原理大揭秘3.1 危急遮断器的构造说到这里,咱们得先看看危急遮断器的构造。
它通常由几个主要部分组成:阀体、驱动装置和控制系统。
阀体就像是一扇大门,蒸汽在这里进进出出;而驱动装置则是它的“肌肉”,能在需要的时候迅速关闭这扇大门;控制系统则像是大脑,负责接收各种信号,决定何时该行动。
说白了,这个组合就像是一场完美的团队合作,缺一不可!3.2 工作流程那么,这个遮断器到底是怎么工作的呢?简单说,就是一旦检测到汽轮机的某种异常情况,比如过高的压力或温度,控制系统就会立马发出信号,让驱动装置开始行动。
接着,阀体迅速关闭,就像是你急忙拉下窗帘,不让外面的阳光照进来。
这样一来,蒸汽供应被切断,汽轮机就能安全停机了!真是神速啊,令人拍手叫好。
4. 实际应用中的重要性4.1 保护设备让咱们换个角度,再看看这个危急遮断器的真正价值。
它不仅仅是个“安全开关”,而是整个汽轮机系统中的保护神!就好比是我们生活中遇到危险时的那种“紧急刹车”,一旦启动,瞬间让一切回归平静,避免更大的损失。
汽轮机的危急遮断系统(ETS)在大型汽轮机中,由于机组超速的危害最大,所以特别注意超速保护,第六章介绍的OPC功能是一种有效的超速保护手段。
但OPC功能并不能保证机组绝对不会超速,当实际转速超过了允许值时而危急汽轮机安全时,只能通过遮断汽轮机(即跳闸)来实现保护。
此外,某些其它参数严重超标时也可能酿成设备损坏、甚至毁机事故,例如推力轴承磨损。
为此,大型汽轮机都设有严密的保护措施,除了设计了OPC功能外还设有危急遮断系统ETS。
因此,除了OPC兼有超速保护和危急遮断多重保护外,其余重要参数的严重超标,将通过危急遮断系统实行紧急停机。
第一节汽轮机自动保护系统的液压执行机构一、自动保护系统液压执行机构的组成在第五章中,我们已经介绍过汽轮机的液压执行机构,参见图5-12。
汽轮机自动保护也是通过液压执行机构实现的。
为方便起见,我们将图5-12中的蒸汽阀门伺服执行机构部分及低油压保护去掉,简化成图9-1,来帮助我们分析汽轮机自动保护和停机的过程。
图9-1 自动停机跳闸系统汽轮机自动保护系统,是OPC保护、ETS和机械超速保护系统的总称,它的液压构件,称为保护系统的执行机构,用于关闭汽阀并防止超速或遮断汽轮机。
其设备组成如下:1.超速保护和危急遮断组合机构超速保护和危急遮断组合机构,统称为控制块,如图9-2所示,布置在汽轮机前轴承箱的右侧,其主要组成是控制块壳体1、2个OPC电磁阀19、四个AST电磁阀17和2个止回阀5,它们均组装在控制块上,为OPC和AST总管以及其它管件提供接口,这种组合构大大简化外部连接管道而提高了整体的可靠性,同时也有结构紧凑的特点。
(1)超速保护电磁阀(20/OPC,2个)该阀由DEH调节器OPC系统所控制。
机组正常运行进,该阀是关闭的,切断了OPC总管的泄油通道,使高压和中压调节汽阀油动机活塞的下腔能建立起油压,起正常的调节作用。
当OPC系统动作,例如转速达到103%额定转速时,该电磁阀被激励通道信号打开,使OPC总管泄去安全油,快速卸载阀随之打开,并泄去油动机动力油,使高压缸和中压缸的调节汽阀关闭。
汽轮机的挂闸过程和危急遮断装置的动作原理汽轮机挂闸和危急遮断装置由危急遮断器滑阀、危急遮断器杠杆、撞击子、挂闸电磁阀、节流孔板和相关油管路构成。
其油管路布置情况和危急遮断器滑阀的结构如图1所示油泵出口的油压力约2.0MPa,一般经φ6节流孔板引入危急遮断器滑阀上部,称作挂闸油,挂闸电磁阀是一个两位三通电磁阀,它以旁路方式与挂闸油路相连;一股经φ6节流孔板引入危急遮断器滑阀中部,称作安全油,安全油另外引一路接到隔膜阀;一股经φ6节流孔引到危急遮断器滑阀下部,称作附加保安油。
危急遮断器滑阀作为这个装置的核心部件,主要由心轴、弹簧、滑阀、套筒、壳体、顶盖、底盖等组成,当滑阀处于上支点位置,即滑阀顶部端面K与顶盖接触时,安全油与排油不能接通,安全油压得以建立;当滑阀处于下支点位置,即滑阀凸肩与底盖接触时,安全油即与排油相通,安全油压消失,并通过隔膜阀、EH系统关闭主汽门,切断油源而停机。
当汽轮机处于停机状态时,危急遮断器滑阀跌落至下支点位置,安全油与排油相通,主汽门处于关闭位置。
所谓挂闸即是在汽轮机开机前,通过油压作用,使滑阀从下支点位置移到上支点位置,从而建立起安全油压,开启主汽门,以实现以后的汽轮机冲转等工作。
具体过程是:a.开启主油泵,挂闸电磁阀失电处于关闭状态,附加保安油和挂闸油油压相等,均是 2.0MPa,但由于挂闸油对滑阀的作用面积大于附加保安油对滑阀的作用面积,所以滑阀被压在下支点位置,安全油与排油相通。
安全油压为零,主汽门仍处于关闭状态。
b.给挂闸电磁阀通电,挂闸电磁阀处于泄放状态,挂闸油压由2.0MPa降为0,附加保安油将滑阀顶到上支点位置,安全油与排油的通道被封死,安全油压建立,由0升至2.0MPa,主汽门开启。
c.挂闸电磁阀通电后延时5秒断电,挂闸电磁阀停止泄放,挂闸油压又从零升到2.0MPa,此时由于滑阀的顶部端面K与顶盖贴合十分紧密,室B的压力油不能从密封面进入A室,而附加保安油对滑阀的作用面积大于挂闸油对滑阀的使用面积,滑阀不致跌落,仍然处于上支点位置,主汽门仍处于开启状态。
汽轮机危急遮断系统原理简述发布时间:2023-05-16T09:25:41.422Z 来源:《科技潮》2023年6期作者:周培红[导读] 危急遮断系统(EmergencyTripSystem,ETS)可分为高压遮断模块、低压遮断模块两大部分。
国能阳宗海发电有限公司云南昆明 652103摘要:为保证汽轮机组的安全运行,防止设备损坏事故发生,汽轮机组均配有必要的保护装置,当重要参数超限时,汽轮机通过危遮系统(ETS)实现紧急停机。
因危急遮断系统本身的复杂性,不同型号设备存在差异性,故本文仅以东方汽轮机D300S型为例对危急遮断系统结构和工作原理进行简要论述,旨在分析总结汽轮机危急遮断系统的可靠性。
关键词:汽轮机;危急遮断系统;保护原理;电磁阀一、危急遮断系统结构危急遮断系统(EmergencyTripSystem,ETS)可分为高压遮断模块、低压遮断模块两大部分。
因汽轮机是通过油动机控制高压抗燃油(EH油)来驱动主汽阀和调节汽阀的,所以当危急情况下,汽轮机无论以哪种方式进行遮断都是通过快速泄掉机组挂闸后建立起来的高压安全油,使机组的高、中压主汽阀、调节汽阀快速关闭,来遮断机组进汽,使机组安全停机。
其中低压遮断部分的手动停机、机械停机电磁铁、遮断隔离阀组等分别通过连杆与危急遮断装置相连,高压安全油通过遮断隔离阀组与无压排油相连接。
高压遮断部分由OPC遮断模块、AST遮断模块组成,其中OPC模块控制各高、中压调节汽阀,AST模块控制各高、中压主汽阀,OPC模块与AST模块油路通过一个逆止阀连接。
驱动各油动机的EH油分别经过各自模块与无压排油相连,当保护动作时,电磁阀动作,快速泄掉各自高压安全油。
此外各油动机还装有遮断电磁阀,机组保护动作,遮断电磁阀带电动作直接泄掉各油动机的安全油,快速关闭各汽阀,确保汽轮机安全停运。
二危急遮断系统动作原理1.低压遮断部分低压遮断部分包括:遮断隔离阀组(机械遮断阀、隔离阀)、危急遮断器(飞环)、危急遮断装置、手动停机机构、机械停机电磁铁等。
汽轮机危机遮断装置(ETS)1 作用:是用作汽轮发电机组在危急情况下的保护。
2 ETS监视保护的内容1)超速保护2)轴向位移保护3)润滑油压低保护4)抗燃油压低保护5)凝汽器真空低保护6)其他保护:由本体保护系统来的遥控停机项目:锅炉MFT/BT,发电机内部故障,DEH直流电源消失,#1-#8轴振大Ⅱ值,发电机主油开关跳闸等3 ETS的组成及原理ETS系统主要有以下几部分组成。
3.1 危急遮断油路危急遮断油路与阀门伺服执行机构一起,构成ETS的执行机构。
它分为AST 油路和OPC油路,两者之间用一逆止阀相连,AST油路与高、中压主汽门油路相连,OPC油路与高、中压调节阀相连,另外,机械超速遮断系统经隔膜阀与AST 油路发生连系。
动作时隔膜阀动作排油,使AST泄压,关闭所有主汽门和调节阀门。
遮断停机。
OPC油路主要用于防止汽轮机超速,避免危急遮断。
OPC动作油路失压时,使高中压调节阀关闭,使转速恢复额定值由于逆止阀的作用AST不会泄压,高中压主汽阀均不关闭,由调节阀控制转速。
AST油路主要用于危急情况下的自动泄压停机,当机组转速、油压、真空等超过允许值时,AST电磁阀动作打开,AST 和OPC 油路相继失压而关闭汽门停机。
3.2危急遮断控制块危急遮断控制单元的主要作用是在危急遮断电气柜和AST油路与OPC油路之间提供接口,为了安全、为了试验目的,AST电磁阀被设计成双通道,即两套并联工作。
通道1包括20-1/AST和20-3/AST,通道2包括20-2/AST和20-4/AST 电磁阀。
当任一停机条件具备时,打开所有的AST电磁阀以实现遮断停机。
3.3危急遮断电气柜危急遮断电气柜主要部件如下:电源组件、逻辑控制模块、继电器板、超速组件。
3.3.1电源组件由两个交流110V和两个直流24V电源组成。
3.3.2逻辑控制模块由输入模块C200-IA222,输出模块C200-OC24和可编程控制器组成。
3.3.3继电器板包括电源监视继电器,跳闸输出继电器。
第八章汽轮机危急遮断系统-图文第一节ETS危急遮断的项目及整定值为了防止汽轮机在运行中因部分设备工作失常可能导致的汽轮机发生重大操作事故,在机组上装有危急遮断系统。
危急遮断系统监视汽机的某些运行参数,当这些参数超过其运行限制值时,该系统就送出遮断信号关闭全部汽轮机蒸汽进汽阀门,实现紧急停机。
一、ETS危急遮断的项目及整定值1、★汽机转速达到110%额定转速(OPT);(动作转速值为3300rpm)注:机械遮断110%-112%额定转速(MOPT);(动作转速值为3330rpm)2、●真空低于规定的极限值;(68kPa)3、●润滑油压下降超过极限值;(0.10MPa)4、★EH油压下降超过极限值;(9.5MPa)5、●转子轴向位移超过极限值;(≥+0.5mm或≤-0.7mm)6、●高压缸排汽温度超过极限值;(>427℃)7、★透平压比低于极限值;(调节级压力与高缸排汽压力比低于1.7)8、●汽机轴振动达到危险值;(汽机侧≥130μm,发电机侧≥180μm)9、●轴瓦、推力瓦钨金温度超过极限值;(汽机侧≥110℃,发电机侧≥120℃)10、★集控室/就地手动停机(双按钮);11、●DEH失电;12、●发电机冷却水断水保护;13、●备用四路;(电气遮断、锅炉遮断、旁路遮断、遥控遮断)带★标志的保护机械遮断油路控制信号为三取二方式。
ETS危急遮断系统的逻辑关系如图8-1所示图8-1ETS危急遮断系统的逻辑关系二、危急遮断的组成危急遮断系统分为两种情况。
一种是机组运行中,为防止部分设备失常造成设备严重损坏,装有自动停机危急遮断系统(AST),当发生异常情况时,关闭所有进汽阀,紧急停机。
;二是超速保护控制系统(OPC),使高压调节汽阀及再热调节汽阀暂时关闭,减少汽轮机进汽量及功率,但不能使汽轮机停机。
因此机组相应设有自动停机危急遮断油路(AST)和超速保护控制油路(OPC)及机械遮断油路(MOPT),此外,手动停机也借助于机械遮断油路。
ETS危急遮断系统的原理如图8-2所示图8-2ETS危急遮断系统原理第二节汽轮机危急遮断系统的功能一、轴承润滑油压低保护汽轮机的主轴承和推力轴承分别承担着保证转动部分与静止部分之2间的径向与轴向间隙一定的任务,以维持机组运转时,动、静部分之间不相互碰撞,显然每个部件的稳定运行都是反映机组安全运行的重要参量。
而它们的稳定运行又是通过稳定油膜的建立来保证的。
破坏油膜的因素很多,如润滑油压、油温、油质、轴瓦与轴的间隙,乌金脱落,发电机或励磁机漏电,等等。
一旦油膜遭到破坏,除引起轴承烧瓦事故,还将产生转子轴径局部受热而发生弯曲,轴承剧烈的振动,转动部分与禁止部分之间的摩擦或碰撞等严重的后果。
由此可见,严密监视轴承的工作状态是维持机组安全运行的重要措施。
轴承发生烧瓦事故时,轴承润滑油温度,推力瓦和轴承温度将升高,而轴承油膜压力则迅速下降,所以在系统设计中,对“轴承油压过低”进行保护,一旦此工况发生,将立即遮断机组的运行。
至于轴承金属和油的温度的监视与控制,由自动程序控制功能(ATC)完成。
对轴承润滑油压过低进行保护由ETS系统实现,机组正常运行时,主油泵提供润滑油系统的全部用油,任何停机或偶然事故引起轴承油压降低到开关整定值0.12MPa时,报警并启动交流润滑油泵,为机组提供所需的全部用油;若润滑油母管油压继续下降到0.10MPa时,启动直流润滑油泵和顶轴油泵;“低油压保护”动作,机组跳闸停机。
图8-3所示是“润滑油压低”试验块原理。
由于“抗燃油压低”和“冷凝汽器真空3过低”的试验块原理基本相同,故以同一图示意。
图8-3润滑油压低试验块原理试验块组件由一个钢制试验块、两个压力表、两个截止阀、两个电磁阀和三个针阀所组成,它安装在前轴承座,与安装在附近的一个端子箱中的压力开关相连接,其一侧通过节流孔与系统供油管道相连,而另一侧与泄油或通风阀相连,采用双道对称结构。
操作人员可通过集控室按钮或就地手操,开启其中一个通道的电磁阀,泄其压力油,以校验压力开关的报警值。
由于每一通道与泄油管道通过一节流孔相连,在试验一通道时,另一通道将不受影响,系统仍具有“低油压自动保护”功能。
在轴承油压降低到压力开关的整定值(0.10MPa)以下时,双通道的两组压力开关(四个)均向ETS柜发轴承油压低遮断请求信号,图8-4所示是轴承油压过低控制继电器逻辑。
4图8-4轴承油压过低控制继电器逻辑机组正常运行时,轴承油压大于遮断整定值,四个开关(63-1/LBO~63-4/LBO)的线圈带电,相应的常开触点闭合将引起图中的四个中间继电器1某~4某/LBO带电,同样地,相应的遮断控制继电器闭合使线圈LBO-1或LBO-2闭合,最终使得ETS的遮断控制继电器总逻辑系统(见图8-5)中的LBO1,LBO2闭合,从而使轴承油压正常。
继电器线圈LBO-1和LBO-2的一侧分别与ETS盘上左右两侧的选择开关的接点S1和S2相连。
正常运行时,接点S1和S2闭合,将两个遮断控制继电器线圈LBO-1、LBO-2并联,因此只有在通道1与通道2各有一闭合触点断开-------每一通道必有一块压力表检测到轴承油压低于遮断整定值时,才可能引起两路自动停机通道遮断(见图8-5),机组紧急停机,这样做可避免某一个触点压力开关或中间继电器误动作而错误停机。
图8-4中K1和K2为电磁脱扣继电器。
5图8-5ETS的遮断控制继电器总逻辑系统在线试验可以通道1为例予以说明,在ETS盘上,将左侧选择开关箭头拨至LBO档,它将使图8-4中原来闭合的触点断开,并接通图8-3中的电磁阀20-1/LBO,释放管道油压,在油压降低到遮断值时,压力开关63-1/LBO,63-3/LBO将引起线圈LBO-1释放,并同时点亮ETS盘上的LBO1,LBO3指示灯,由此验证通道1是否正常,压力开关整定值是否正确,同理,可以进行通道2的在线试验。
如果一个通道在线试验时,实际的轴承油压低于遮断整定值,则四个压力开关将全部感受到这一情况,并使双通道的两个继电器线圈LBO-1和LBO-2失电,请求紧急停机。
二、凝汽器真空过低保护在汽轮机运行中,真空下降现象比较常见,汽轮机运行中发生真空下6降,对机组的经济性和安全性有较大的影响。
真空下降将使蒸汽在汽轮机内的焓降减小,从而减小了机组的出力和降低了热效率,一般真空下降1%,汽耗约增加1%~2%。
汽轮机真空下降,使排汽温度升高,造成低压缸热膨胀变形和低压缸后面的轴承上抬,机组的中心偏移而发生振动;也会使凝汽器铜管的内应力增大,以致破坏凝汽器的严密性,还会使低压端部轴封的径向间隙发生变化,造成摩擦损坏。
凝汽器真空下降的原因难以确定且降落的速度较快时,可能造成严重的事故,为此,须设置凝汽器低真空保护装置。
330MW机组的低真空保护采用两级保护系统,一级保护是类似润滑油压保护那样的逻辑控制回路,所不同的是真空开关代替了压力开关。
二级保护是机械保护,它是基于电气保护失灵,而汽轮机排汽压力又过高的情况下采用的。
显然,这时一种防止排汽压力过高的双重保护,其措施是装设排大汽阀。
如图8-6所示为排大汽阀的结构,它安装在低压缸缸盖上,并用螺钉4紧固在汽缸法兰上,由一个铅质薄膜环5构成,薄膜环紧压在环形垫片6和阀盖7的外密封面间,其内部用螺钉3压紧在压环2和承压板1的内密封面中,承压板由图中虚线所示的组焊式承压格栅支托,借以承受来自外部的大气压力。
当汽轮机的排汽压力超过设计的最大安全值时,排大汽阀的承压板1即推向外侧,引起铅质薄膜环5在压环外缘和阀盖内圆间剪断,则薄膜7环断裂,汽流自汽缸向上排出,而阀盖7可防止铅质薄膜环、承压板和压环甩出。
设在外径上的挡板,起引导汽流向上排出的作用,以免伤人。
对薄膜环的承压要求,一般在40~50KPa时即破坏。
“凝汽器真空低保护”的试验原理以及遮断控制逻辑,均类同于“轴承油压低保护”试验的原理。
图8-6排大气阀的结构三、EH油压低保护EH油系统的任务之一,是维持油压一定,为机组正常的转速与负荷控制提供保证。
正常的EH油压14.5MPa(范围11.2~16.2MPa)是机组启动和正常运行的先决条件。
EH油系统故障将引起EH油压下降,当油压降到10.00MPa时,“EH油压保护”组件发出低油压报警。
进一步降至9.5MPa时,组件请求机组脱扣。
EH油压过低试验块的组成与工作原理,以及遮断控制断电器逻辑,均与“轴承油压低保护”类似。
四、轴向位移保护前已述及润滑油系统故障引起的油膜破坏,将会使推力瓦块乌金烧熔,此外,负荷突增与下跌,水冲击,动叶结垢,隔板汽封间隙增大,8新蒸汽温度急剧下降,真空下降均将增大转子轴向推力,使推力轴承过负荷,甚至破坏油膜而烧熔乌金。
更严重的是,由于轴向位移增大,汽轮机内部转动部件与静止部件之间的轴向间隙可能消失,动静部件之间将发生摩擦和碰撞,从而造成严重的设备损坏事故,如大批叶片折断,大轴弯曲,隔板和叶轮碎裂等。
因此,汽轮机都必须设置轴向位移遮断装置,以实现对机组的安全保护。
相对而言,电气遮断逻辑总系统还是比较可靠的,这样,轴向位移的遮断问题,实质上就是如何保证轴向位移测量准确性的问题,以便在轴向位移超标时,向危急遮断系统提供最可靠的遮断信息。
机组的轴向位移遮断机构如图8-7所示,它由四个轴向位移传感器、两个试验汽缸、四个电磁阀和用来作为传感器基准点的联轴器垫片组成,其他零部件是支托架和用来安装试验汽缸和传感器的有关部件。
在任何情况下,各传感器的安装都必须与一个基准面保持间隙,例如与联轴器平面或指示盘间有一定的间隙。
在试验汽缸和传感器与联轴器指示盘的间隙整定好后,用定位销把试验汽缸最后固定。
在正常情况下,转子的轴向推力是由推力轴承平衡的,机组的失常导致轴向位移的超标,首先由这里有所觉察,因此,监视转子轴向位移的传感器,应当装在推力轴承的附近。
9独立的系统,与常规液压控制系统中的超速保护基本相同,图8-12所示为机械超速遮断相同的工作原理,它的传感器为飞锤,装于转子延伸轴的横向孔中,其质量中心与转子的几何中心偏置,并通过压弹簧将飞锤紧固在横向小孔中,利用弹簧约束力与离心力平衡的原理来设计动作转速。
设飞锤的质量为m,飞锤质心与转子几何中心的偏心距为a,飞锤出击距离为某,离心力为c,转子角速度的关系为:cma某2(8-1)g60n,则飞锤离心力与角速度从式中可看出,只要确定了转子角速度ω,便可计算出离心力,然后设计弹簧,根据弹簧的约束力F的方向与离心力的方向相反,可以得到约束力F与离心力c的关系。
当c<F时,飞锤不出击,当c≥F时,飞锤出击,通过机械遮断系统动作而实现停机。
15图8-12机械超速遮断系统的工作原理机械超速保护系统的机械遮断油系统,与电气超速系统(ETS)互为独立,采用的是与润滑油主油泵相连接的油系统。