证明物体做匀变速直线运动的方法
- 格式:docx
- 大小:3.08 KB
- 文档页数:2
匀变速直线运动的六种解题方法张岩松(山东省泰安第十九中学ꎬ山东泰安271000)摘㊀要:匀变速直线运动是力学的基础ꎬ在高中物理中具有非常重要的地位ꎬ这部分知识可以说贯穿整个高中物理ꎬ尤其是在力学和电学中使用的频率很高.匀变速直线运动这部分知识ꎬ内容比较少ꎬ可以概括为两个基本公式和三个重要推论ꎬ但是涉及这部分知识的题目却纷繁复杂㊁灵活多变㊁技巧性强ꎬ因此解这部分题目需要掌握一定的解题方法.关键词:比较法ꎻ中间时刻速度法ꎻ逐差法ꎻ比例法ꎻ逆向思维法中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)10-0128-03收稿日期:2023-01-05作者简介:张岩松(1963.6-)ꎬ男ꎬ山东省泰安人ꎬ本科ꎬ中学高级教师ꎬ从事高中物理教学研究.㊀㊀匀变速直线运动问题这部分知识可以高度的概括为:两个基本公式和三个重要推论.两个基本公式是:①速度公式:v=v0+atꎬ②位移公式:x=v0t+12at2ꎻ三个重要推论是:①v2-v02=2axꎬ②Δx=at2ꎬ③v-=vt2=v0+vt2.下面结合典型的例题来探究一下六种最常见的解题方法.1比较法利用物理基本公式和题目中提供的数学表达式进行类比ꎬ从而找到初速度㊁加速度等物理量的方法叫比较法.例1.质点做直线运动的位移x与时间t的关系为x=5t+t2(各物理量均采用国际单位制单位)ꎬ则该质点(㊀㊀).A.第1s内的位移是5mB.前2s内的平均速度是6m/sC.任意相邻的1s内位移差都是1mD.任意1s内的速度增量都是2m/s解㊀将题目中给出的公式:x=5t+t2与位移基本公式:x=v0t+12at2对照.即:x=5t+t2①x=v0t+12at2②由①㊁②两式对照可知:v0=5m/sꎻ12a=1.ʑa=2m/s2.然后再根据两个基本公式求解ꎬ可以知道只有D正确.故应选D.2中间时刻速度法对于匀变速直线运动ꎬ中间时刻的瞬时速度等于这段时间内的平均速度ꎬ即vt2=v-=xt.例2㊀一物体做匀加速直线运动ꎬ通过一段位移Δx所用的时间为t1ꎬ紧接着通过下一段位移Δx821所用时间为t2.则物体运动的加速度为(㊀㊀).A.2Δx(t1-t2)t1t2(t1+t2)㊀㊀㊀B.Δx(t1-t2)t1t2(t1+t2)C.2Δx(t1+t2)t1t2(t1-t2)D.Δx(t1+t2)t1t2(t1-t2)解㊀第一个Δx内平均速度v1=Δxt1ꎬ第二个x内的平均速度v2=Δxt2.因为中间时刻的瞬时速度等于这段时间内的平均速度ꎬ所以物体的加速度为:a=v2-v1t1+t22=2Δx(t1-t2)t1t2(t1+t2)故A正确.解题策略:(1)某段位移内的平均速度等于其中间时刻的瞬时速度.(2)利用公式a=vt-v0t求解加速度.3逐差法对于匀变速直线运动ꎬ相邻的相等的时间内的位移之差等于恒量ꎬ即:Δx=at2.利用这个推论解题的方法叫逐差法[1].例3㊀一物体做匀变速直线运动ꎬ在连续相等的两个时间间隔内ꎬ通过的位移分别是24m和64mꎬ每一个时间间隔为4sꎬ求物体的初速度和末速度及加速度.解㊀根据Δx=at2ꎬ所以:64-24=aˑ42ꎬ故:a=2.5m/s2.根据:x1=vAt+12at2ꎬ解得:vA=1m/s.同理:vB=21m/s.故答案为:vA=1m/sꎻvB=21m/sꎻa=2.5m/s24比例法对于初速度为零的匀加速直线运动ꎬ从开始运动计时ꎬ相邻相等时间内的位移之比是连续的奇数之比[2]ꎬ即:xⅠʒxⅡʒxⅢ =1ʒ3ʒ5 .例4㊀«简氏防务周刊»最近披露美国政府对阿富汗和伊拉克境内的 中国制穿甲弹 感到担忧ꎬ并正就此事与北京展开 交涉 .假设装甲运兵车的车壳由AB㊁BC两层紧密固定在一起的合金甲板组成ꎬ如图1所示ꎬ甲板AB的长度是BC的三倍ꎬ一颗穿甲弹以初速度v0从A端射入甲板ꎬ并恰能从C端射出ꎬ所用的时间为tꎬ子弹在甲板中的运动可以看成是匀变速运动ꎬ则以下说法中正确的是(㊀㊀).图1A.穿甲弹到B点的速度为v04.B.穿甲弹到B点的速度为v02.C.穿甲弹从A到B的时间为t4.D.穿甲弹从A到B的时间为t2.解㊀因为穿甲弹恰能从C端射出ꎬ所以穿甲弹在C点的速度vc等于零.我们可以把穿甲弹从A到C的匀减速直线运动ꎬ看成是从C到A的初速度为零匀加速直线运动.C到A是穿甲弹运动的逆过程.又因为:xBCʒxAB=1ʒ3ʑtBCʒtAB=1ʒ1ʑtAB=t2.故:D正确C错误.对于穿甲弹运动的逆过程:vB=atBC=aˑt2vo=aˑtʑvB=12v0.故:B正确A错误.对于C㊁D选项ꎬ另一种解法:921ȵv2=2axꎬʑv2B=2axBCꎻv20=2a(xBC+xAB)=2aˑ4xBCʑvB=12v0.故A正确B错误.综上所述:应该选BD.解题策略㊀本题首先是采用逆向思维的方法ꎬ再根据位移之比等于连续的奇数之比进行求解ꎬ非常巧妙ꎬ非常简练.5逆向解题法对于某些匀减速直线运动ꎬ解题的策略是利用逆向解题法.何为 逆向思维法 ?就是将匀减速直线运动的逆过程看成是初速度为零的匀加速直线运动[3].例5㊀以36km/h的速度沿平直公路行驶的汽车ꎬ遇障碍物刹车后获得大小为4m/s2的加速度ꎬ刹车后第3s内汽车的位移大小为(㊀㊀).A.0.5m㊀㊀B.2m㊀㊀C.10m㊀㊀D.12.5m解㊀36km/h=10m/sꎬ设从汽车开始刹车到速度减为零所需的时间为t0ꎬ则:t0=0-v0a=-10-4=2.5s刹车后第3s内的位移等于停止前0.5s内的位移.而正过程的匀减速直线运动ꎬ它的逆过程可以看成是初速度为零的匀加速直线运动.所以x=12at2=12ˑ4ˑ0.52=0.5m.所以A选项是正确的.故答案应选A.解题策略㊀(1)必须先求出汽车从刹车到停止的时间ꎬ这是解这个题的前提和关键ꎬ是解这个题的突破口.不要盲目的利用位移公式x=v0t+12at2去求解ꎬ因为根据实际情况ꎬ汽车刹车速度减为零后就不再运动了ꎬ即停止不动了.(2)注意利用逆过程解题ꎬ因为有时利用逆过程解题比正过程解题要简单的多.(3)本题要求的是 刹车后第3s内的位移 ꎬ而不是 刹车后3s内的位移 ꎬ这两种说法是绝对不一样ꎬ所以一定要仔细审题.6巧选参考系法通常我们选地面为参考系ꎬ但也不尽然ꎬ有时要具体问题具体分析ꎬ为了研究问题的方便ꎬ可以灵活地㊁巧妙地选取参考系ꎬ这种方法叫做巧选参考系法.对于研究对象比较多ꎬ而且具有相对运动的问题ꎬ解题的策略是巧妙选取参考系.例6㊀某航空母舰上的战斗机起飞过程中最大加速度是a=4.5m/s2ꎬ飞机速度要达到v0=60m/s才能起飞ꎬ航空母舰甲板长为L=289mꎬ为使飞机安全起飞ꎬ航空母舰应以一定速度航行以保证起飞安全ꎬ求航空母舰的最小速度v是多少?(设飞机起飞对航空母舰的状态没有影响ꎬ飞机的运动可以看作匀加速运动.)匀变速直线问题所涉及的基本公式和推论不是很多ꎬ很容易记忆ꎬ但是所涉及的题目却是变化万千的ꎬ光记住这些基本公式和推论还是远远不够的ꎬ还需要掌握一定的解题技巧和方法ꎬ而以上六种解题方法便是最常见的解题方法ꎬ必须牢固的掌握.当然ꎬ除此之外还有很多其它的解题技巧和方法ꎬ需要在解题过程中慢慢地去积累和总结ꎬ以便达到孰能生巧.参考文献:[1]沈卫.例谈匀变速直线运动问题中平均速度公式的运用(J).教学考试(高考物理)ꎬ2021(1):57-59.[2]杜馥芬.匀变速直线运动的解题技巧(J).数理化解题研究ꎬ2021(28):98-99.[3]刘军.高中物理中匀变速直线运动的解题技巧(J).高中数理化ꎬ2021(24):45.[责任编辑:李㊀璟]031。
匀变速直线运动相关公式与推导全解下面将详细介绍匀变速直线运动的相关公式与推导全解。
一、基本公式:1.速度公式:在匀变速直线运动中,物体的速度是随时间变化的。
记物体的初始速度为v0,时间为t,物体的速度为v。
若物体的加速度为a,则根据速度的定义,有 v = v0 + at。
这个公式表明,物体的速度等于初始速度加上加速度乘以时间。
2.位移公式:在匀变速直线运动中,物体的位移也是随时间变化的。
记物体的初始位移为s0,时间为t,物体的位移为s。
若物体的速度为v,则根据位移的定义,有 s = s0 + vt。
这个公式表明,物体的位移等于初始位移加上速度乘以时间。
3.加速度公式:在匀变速直线运动中,物体的速度会随时间变化,因此有加速度的概念。
加速度的定义为a=(v-v0)/t,即加速度等于速度的差值除以时间。
根据速度公式 v = v0 + at,可以推导出加速度公式 a = (v - v0) / t。
二、推导全解:假设物体在时间t=0时刻的速度为v0,位移为s0,加速度为a。
我们需要求解出该物体在任意时间t时刻的速度v和位移s。
1. 根据速度公式 v = v0 + at,可以得到物体在任意时刻t的速度v。
2. 根据位移公式 s = s0 + vt,可以得到物体在任意时刻t的位移s。
3.根据加速度公式a=(v-v0)/t,可以得到物体的加速度。
4. 根据上述三个公式,我们可以通过任意两个已知量求解出第三个未知量。
比如,如果已知 v0、a 和 t,可以通过速度公式 v = v0 + at 求解出 v,然后再通过位移公式 s = s0 + vt 求解出 s。
5. 如果已知 v0、a 和 s,则可以通过加速度公式 a = (v - v0) / t 求解出 v,然后再通过位移公式 s = s0 + vt 求解出 t。
综上所述,我们可以根据速度公式、位移公式和加速度公式,推导出匀变速直线运动的全解。
这些公式在物理学中的应用非常广泛,可以用于求解各种匀变速直线运动的问题。
罗老师总结匀变速直线运动常用公式 (附匀变速直线运动的推论及推理过程)一、基本公式速度公式 at v v t +=0 当00=v 时,at v t = 位移公式 2021at t v s += 221at s = 二、几个常用的推论1.位移推导公式 2022v v as t -=, t v v s t20+=2.平均速度v 、中间时刻的瞬时速度2/t v 、中间位置的瞬时速度2/s v 为:0/22t t v v xv v t +===, 22202/t s v v v += 3.做匀变速直线运动的物体,在各个连续相等的时间T 内的位移分别是s 1、s 2、s 3…s n ,则Δs =s 2-s 1=s 3-s 2=…=s n -s n-1=aT 2.4.V 0=0的匀加速直线运动中的几个常用的比例公式(1)等分运动时间,以T 为单位时间.①1T 末,2T 末,3T 末…,n T 末的速度之比v 1:v 2:v 3:…:v n =1:2:3…:n②1T 内、2T 内、3T 内…n T 内通过的位移之比s 1:s 2:s 3:…:s n =1:4:9…:n 2③第1个T 内、第2个T 内、第3个T 内…、第n 个T 内通过的位移之比s Ⅰ:s Ⅱ:s Ⅲ:…:s N =1:3:5…:(2n —1)④第1个T 内、第2个T 内、第3个T 内…、第n 个T 内的平均速度之比v Ⅰ:v Ⅱ:v Ⅲ:…:v N =1:3:5…:(2n —1) (2)等分位移,以x 为位移单位. ①通过1x 、2x 、3x …、n x 所需时间之比t 1:t 2:t 3:…:t n =1:3:2…:n②通过第1个x 、第2个x 、第3个x 、…第n 个x 所需时间之比t Ⅰ:t Ⅱ:t Ⅲ:…:t N =1::23:12--…:1--n n③1x 末,2x 末,3x 末…,n x 末的速度之比v 1:v 2:v 3:…:v n =1:3:2…:n对匀变速直线运动公式作进一步的推论,是掌握基础知识、训练思维、提高能力的一个重要途径,掌握运用的这些推论是解决一些特殊问题的重要手段。
一.基本规律:v =ts 1.基本公式a =t v v t 0- a =tvtv =20t v v + v =t v 21at v v t +=0 at v t =021at t v s +=221at s =t v v s t 20+= t vs t 2=2022v v as t -= 22t v as =注意:基本公式中(1)式适用于一切变速运动,其余各式只适用于匀变速直线运动。
二.匀变速直线运动的推论及推理对匀变速直线运动公式作进一步的推论,是掌握基础知识、训练思维、提高能力的一个重要途径,掌握运用的这些推论是解决一些特殊问题的重要手段。
推论1 做匀变速直线运动的物体在中间时刻的即时速度等于这段时间的平均速度,即202t t v v t S v +==推导:设时间为t ,初速0v ,末速为t v ,加速度为a ,根据匀变速直线运动的速度公式at v v +=0得: ⎪⎪⎩⎪⎪⎨⎧⨯+=⨯+=22202t a v v t a v v t t t ⇒ 202t t v v v += 推论2 做匀变速直线运动的物体在一段位移的中点的即时速度22202t s v v v +=推导:设位移为S ,初速0v ,末速为t v ,加速度为a ,根据匀变速直线运动的速度和位移关系公式as v v t 2202+=得:⎪⎪⎩⎪⎪⎨⎧⨯+=⨯+=22222222022S a v v Sa v v s t s ⇒ 22202t s v v v +=推论3 做匀变速直线运动的物体,如果在连续相等的时间间隔t 内的位移分别为1S 、2S 、 3S ……n S ,加速度为a ,则=-=-=∆2312S S S S S……21at S S n n =-=-推导:设开始的速度是0v经过第一个时间t 后的速度为at v v +=01,这一段时间内的位移为20121at t v S +=, 经过第二个时间t 后的速度为at v v +=022,这段时间内的位移为202122321at t v at t v S +=+=经过第三个时间t 后的速度为at v v +=023,这段时间内的位移为202232521at t v at t v S +=+=…………………经过第n 个时间t 后的速度为at nv v n +=0,这段时间内的位移为202121221at n t v at t v S n n -+=+=- 则=-=-=∆2312S S S S S……21at S S n n =-=-点拨:只要是匀加速或匀减速运动,相邻的连续的相同的时间内的位移之差,是一个与加速度a 与时间“有关的恒量”.这也提供了一种加速度的测量的方法:即2tSa ∆=,只要测出相邻的相同时间内的位移之差S ∆和t ,就容易测出加速度a 。
第一课时一、匀变速直线运动的规律(一)匀变速直线运动的公式1、匀变速直线运动常用公式有以下四个2、匀变速直线运动中几个常用的结论①Δs=aT 2,即任意相邻相等时间内的位移之差相等。
可以推广到s m -s n =(m-n )aT 2 ②ts v v v t t =+=202/,某段时间的中间时刻的即时速度等于该段时间内的平均速度。
22202/t s v v v +=,某段位移的中间位置的即时速度公式 (不等于该段位移内的平均速度)。
可以证明,无论匀加速还是匀减速,都有2/2/s t v v <。
说明:运用匀变速直线运动的平均速度公式t s v v v t t =+=202/解题,往往会使求解过程变得非常简捷,因此,要对该公式给与高度的关注。
3.初速度为零(或末速度为零)的匀变速直线运动做匀变速直线运动的物体,如果初速度为零,或者末速度为零,那么公式都可简化为: at v = , 221at s = , as v 22= , t v s 2= 以上各式都是单项式,因此可以方便地找到各物理量间的比例关系。
4.初速为零的匀变速直线运动①前1秒、前2秒、前3秒……内的位移之比为1∶4∶9∶……②第1秒、第2秒、第3秒……内的位移之比为1∶3∶5∶……③前1米、前2米、前3米……所用的时间之比为1∶2∶3∶……④第1米、第2米、第3米……所用的时间之比为1∶()12-∶(23-)∶…… 对末速为零的匀变速直线运动,可以相应的运用这些规律。
(二)常用的重要推论及其应用【例3】如图所示,物块以v 0=4m/s 的速度滑上光滑的斜面,途经A 、B 两点,已知在A 点时的速度是B 点时的速度的2倍,由B 点再经0.5 s 物块滑到斜面顶点C 速度变为零,A 、B 相距0.75 m ,求:(1)斜面的长度(2)物体由D 运动到B 的时间?【例4】两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木块每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知A .在时刻t 2B .在时刻t 1C .在时刻t 3和时刻t 4之间某瞬间两木块速度相同D .在时刻t 4和时刻t 5之间某瞬时两木块速度相同☆考点精炼2.一质点沿AD 直线作匀加速运动,如图,测得它在AB 、BC 、CD 三段的运动时间均为t ,测得位移AC =L 1,BD =L 2,试求质点的加速度?第二课时(三)追及和相遇问题☆考点点拨1、讨论追及、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置问题。
物理匀变速直线运动公式沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动[1]。
匀变速直线运动的图像是一条倾斜的直线。
如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。
如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。
其中a为加速度,为初速度,为t秒时的速度, 为t秒时的位移速度公式:位移公式位移---速度公式:物体作匀变速直线运动须同时符合下述两条:⑴受恒外力作用⑵合外力与初速度在同一直线上。
规律瞬时速度与时间的关系:位移与时间的关系:瞬时速度与加速度、位移的关系:位移公式(匀速直线运动)位移公式推导:⑴由于匀变速直线运动的速度是均匀变化的,故平均速度=(初速度+末速度)/2=中间时刻的瞬时速度而匀变速直线运动的路程s=平均速度*时间,故利用速度公式,得⑵利用微积分的基本定义可知,速度函数(关于时间)是位移函数的导数,而加速度函数是关于速度函数的导数,写成式子就是, 于是, 就是初速度,可以是任意的常数进而有,(对于匀变速直线运动显然t=0时,s=0,故这个任意常数C=0,于是有这就是位移公式。
推论平均速度=(初速度+末速度)/2=中间时刻的瞬时速度(代表相邻相等时间段内位移差,T代表相邻相等时间段的时间长度)X为位移,V为末速度,为初速度在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。
若速度方向与加速度方向同向(即同号),则是加速运动;若速度方向与加速度方向相反(即异号),则是减速运动速度无变化(a=0时),若初速度等于瞬时速度,且速度不改变,不增加也不减少,则运动状态为,匀速直线运动;若速度为0,则运动状态为静止。
1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-V o2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=V o+at5.中间位置速度Vs/22=(V o2+Vt2)/26.位移S=V平t=V o t+at2/2=Vt/2 t7.加速度a=(Vt-V o)/t {以Vo为正方向,a与V o同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(V o):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s = 3.6km/h注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s—t图、v—t 图/速度与速率、瞬时速度〔见第一册P24〕。
匀变速直线运动解题方法与技巧【知识整合】1. 一般公式法一般公式法指速度、位移和时间的三个关系式,即at v v t +=0,2021at t v x +=v t 2-v 02=2ax 这三个关系式均是矢量表达式,使用时应注意方向性,一般选初速度v 0的方向为正方向,与正方向相同者视为正,与正方向相反者视为负.反映匀变速直线运动规律的公式较多,对同一个问题往往有许多不同的解法,不同解法的繁简程度是不同的,所以应注意每个公式的特点,它反应了哪些物理量之间的关系,与哪些物理量无直接关系.例如公式不涉及位移,2021at t v x +=不涉及末速度,不涉及时间等. 应根据题目所给的条件恰当、灵活地选用相关的公式,尽可能简化解题的过程.2. 平均速度法平均速度的定义式对于任何性质的运动都适用,而对于匀变速这一特殊性质的运动除上式之外,还有一个只适用于它的关系式,即.3. 中间时刻速度法利用“匀变速运动中任一时间中间时刻的瞬时速度,等于这段时间t 内的平均速度”,即,适用于任何一个匀变速直线运动,有些题目应用该关系式可以避免常规解法中用位移公式列出含有t 2的复杂式子,从而简化解题过程,提高解题速度.4. 比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可以利用初速度为零的匀加速直线运动的五大重要特征的比例关系,用比例法求解. 前面我们已经多次讲到具体的比例式,这里不再进行罗列.5. 逆向思维法把运动过程的“末态”当作“初态”的反向研究方法. 一般适用于末态已知的情况.6. 图象法应用v -t 图象可以把复杂的问题转变为较为简单的数学问题解决,尤其是用图象定性分析,可避开繁杂的计算,快速找出答案.7. 巧用推论解题匀变速直线运动中,在连续相等的时间T 内的位移变化量为一恒量,即,对一般的匀变速直线运动问题,若出现相等的时间间隔问题,应优先考虑用求解.当然,这个推论还可以拓展为.【典例分析】例1、 某物体做匀减速直线运动,初速度为3m/s ,加速度大小为0.4m/s 2。
专题04 实验:研究匀变速直线运动一、实验中纸带的处理方法 1.判定物体的运动性质(1)若纸带上各相邻点间距相等,则物体做匀速运动.(2)若相邻计数点时间间隔为T ,计算各个连续相等时间内位移的差Δx ,若Δx =aT 2(恒量),则物体做匀变速直线运动。
2.某点瞬时速度的计算根据在匀变速直线运动中,某段时间内的平均速度等于该段时间中点时刻的瞬时速度:v n=,即n 点的瞬时速度等于(n –1)点和(n +1)点间的平均速度。
3.加速度的计算:一般有两种方法(1)利用“逐差法”求加速度由于物体做匀变速运动,所以满足在连续相等的时间间隔内位移差相等,即Δx =aT 2,可得a =。
但利用一个Δx 求得的加速度偶然误差太大,为了减小实验中的偶然误差,分析纸带时,纸带上的各段位移最好都用上,方法如下:(a )如图所示,若为偶数段,设为6段,则,,,然后取平均值,即或由直接求得;(b )若为奇数段,则中间段往往不用,如5段,则不用第三段,则,,然后取平均值,即;或去掉一段变为偶数段由;T x x n n 21++2T x ∆41123x x a T -=52223x x a T -=63323x x a T -=1233a a a a ++=4561232()()33x x x x x x a T ++-++=⨯41123x x a T -=52223x x a T -=122a a a +=45122()()23x x x x a T +-+=⨯(2)先求出第n 点时纸带的瞬时速度(一般要5点以上),然后作出v –t图象,用v –t 图象的斜率求物体运动的加速度。
二、实验的注意事项(1)平行:纸带、细绳要和木板平行.(2)两先两后:实验中应先接通电源,后让小车运动;实验完毕应先断开电源,后取纸带。
(3)防止碰撞:在到达长木板末端前应让小车停止运动,防止钩码落地和小车与滑轮相撞。
(4)减小误差:小车的加速度宜适当大些,可以减小长度的测量误差,加速度大小以能在约50 cm 的纸带上清楚地取出6~7个计数点为宜。
推论 1 做匀变速直线运动的物体在中间时刻的即时速度等于这段时间的平均速度,即202tt v v tS v +==推导:设时间为t ,初速0v ,末速为t v ,加速度为a ,根据匀变速直线运动的速度公式at v v +=0得: ⎪⎪⎩⎪⎪⎨⎧⨯+=⨯+=22202t a v v t a v v t t t ⇒ 202tt v v v +=推论2 做匀变速直线运动的物体在一段位移的中点的即时速度22202tsv v v +=推导:设位移为S ,初速0v ,末速为t v ,加速度为a ,根据匀变速直线运动的速度和位移关系公式as vv t 2202+=得:⎪⎪⎩⎪⎪⎨⎧⨯+=⨯+=22222222022S a v v S a v v s t s ⇒ 22202ts v v v +=注:无论匀加速还是匀减速,都有证明方法:推论3 做匀变速直线运动的物体,如果在连续相等的时间间隔t 内的位移分别为1S 、2S 、3S ……nS ,加速度为a ,则=-=-=∆2312S S S S S ……21at S S n n =-=-推导:设开始的速度是0v经过第一个时间t 后的速度为at v v +=01,这一段时间内的位移为20121att v S +=,经过第二个时间t 后的速度为at v v +=022,这段时间内的位移为202122321at t v at t v S +=+= 经过第三个时间t 后的速度为at v v +=3,这段时间内的位移为2251at t v at t v S +=+=04)(4242220022002202202222>-=-+=++-+=-t t t t t t t s v v v v v v v v v v v v v v…………………经过第n 个时间t 后的速度为at nv v n +=0,这段时间内的位移为202121221atn t v at t v S n n -+=+=-则=-=-=∆2312S S S S S ……21at S S n n =-=-推论4 初速度为零的匀变速直线运动的位移与所用时间的平方成正比,即t 秒内、2t 秒内、3t 秒内......n t 秒内物体的位移之比1S :2S :3S :... :n S =1 :4 :9 (2)推导:已知初速度00=v ,设加速度为a ,根据位移的公式221atS =在t 秒内、2t 秒内、3t 秒内……n t 秒内物体的位移分别为: 2121atS =、22)2(21t a S =、23)3(21t a S = (2))(21nt a S n =则代入得 1S :2S :3S :... :n S =1 :4 :9 (2)推论5 初速度为零的匀变速直线运动,从开始运动算起,在连续相等的时间间隔内的位移之比是从1开始的连续奇数比,即1S :2S :3S :… :n S =1 :3 :5…… :(2n-1)推导:连续相同的时间间隔是指运动开始后第1个t 、第2个t 、第3个t ……第n 个t ,设对应的位移分别为、、、321S S S ……n S ,则根据位移公式得 第1个t 的位移为2121atS =第2个t 的位移为22222321)2(21at att a S =-=第3个t 的位移为222325)2(21)3(21att a t a S =-=……第n 个t 的位移为222212])1[(21)(21atn t n a nt a S n -=--=代入可得: )12(:5:3:1::::321-=n S S S S n可以推广到 如果在任意连续相等时间T 内位移之差相等,说明物体做匀变速直线运动。
证明物体做匀变速直线运动的方法
物体做匀变速直线运动是指物体在相等时间内所移动的距离是逐渐增加的,而且物体的速度也在不断改变。
要证明物体做匀变速直线运动,可以通过以下几个方面进行观察和分析。
我们可以通过观察物体的位移与时间的关系来判断物体是否做匀变速直线运动。
如果物体在相等时间内所移动的距离是不断增加的,那么就可以推断物体在做匀变速直线运动。
例如,我们可以在一段时间内记录物体所移动的距离,如果每个相等时间间隔内物体移动的距离都不同,并且呈现出逐渐增加的趋势,那么可以推断物体在做匀变速直线运动。
我们可以通过观察物体的速度与时间的关系来判断物体是否做匀变速直线运动。
在匀变速直线运动中,物体的速度是不断改变的。
因此,我们可以记录物体在不同时刻的速度,如果每个时刻的速度都不同,并且呈现出逐渐增加或逐渐减小的趋势,那么可以推断物体在做匀变速直线运动。
我们还可以通过观察物体的加速度与时间的关系来判断物体是否做匀变速直线运动。
在匀变速直线运动中,物体的加速度是常数。
因此,我们可以记录物体在不同时刻的加速度,如果每个时刻的加速度都相等,并且保持不变,那么可以推断物体在做匀变速直线运动。
除了观察位移、速度和加速度的变化规律,我们还可以通过分析物
体的运动轨迹来判断物体是否做匀变速直线运动。
在匀变速直线运动中,物体的运动轨迹是一条直线。
因此,我们可以观察物体在运动过程中的轨迹,如果轨迹是一条直线,并且没有发生偏移或弯曲,那么可以推断物体在做匀变速直线运动。
总结起来,要证明物体做匀变速直线运动,可以通过观察位移、速度和加速度的变化规律,以及分析物体的运动轨迹来判断。
当物体在相等时间内所移动的距离逐渐增加,速度逐渐改变且加速度保持不变,并且物体的运动轨迹是一条直线时,可以确定物体在做匀变速直线运动。
这种方法可以通过实验或者观察物体的运动来验证,是判断物体运动状态的有效手段。