高考物理:匀变速直线运动三大规律总结
- 格式:docx
- 大小:102.22 KB
- 文档页数:8
1 / 4关于高中物理匀变速直线运动规律三大推论推论一、物体在一段时间内的平均速度等于这段时间中间时刻的瞬时速度,还等于初、末时刻速度矢量和的一半,即:v =2v t =v 0+v 2;位移与平均速度关系:02v vx vt t +==推论二、匀变速运动的中间位置速度2x v =推论三、任意两个连续相等的时间间隔T 内的位移之差为一恒量,即:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2.以上三个推论是高中物理的基础,历次考试高频考点,学生务必掌握.一个物体做匀加速直线运动,它在第3 s 内的位移为5 m ,则下列说法正确的是( ) A .物体在第3 s 末的速度一定是6 m/s B .物体的加速度一定是2 m/s 2 C .物体在前5 s 内的位移一定是25 m D .物体在第5 s 内的位移一定是9 m【解析】考查匀变速直线运动规律,匀变速直线运动的中间时刻的瞬时速度等于该段的平均速度,根据第3 s 内的位移为5 m ,则2.5 s 时刻的瞬时速度为v =5 m/s ,2.5 s 时刻即为前5 s 的中间时刻,因此前5 s 内的位移为x =vt =5 m/s×5 s =25 m ,C 项对;由于无法确定物体在零时刻的速度以及匀变速运动的加速度,故A 、B 、D 项均错.(2016·河北石家庄调研)滑板爱好者由静止开始沿一斜坡匀加速下滑,经过斜坡中点时的速度为v ,则到达斜坡底端时的速度为( ) A.2vB.3vC .2vD.5v【解析】由匀变速直线运动的中间位置的速度公式v x 2=v 20+v22,有v =0+v 2底2,得v 底=2v ,故A 正确。
【答案】a【江西省赣州市十三县(市)十四校2017届高三上学期期中联考】一辆汽车沿着一条平直的公路行驶,公路旁边与公路平行有一行电线杆,相邻电线杆间的间隔均为50m ,取汽车驶过某一根电线杆的时刻为零时刻,此电线杆作为第1根电线杆,此时刻汽车行驶的速度为5m/s ,若汽车的运动为匀变速直线运动,在10s 末汽车恰好经过第3根电线杆,则下列说法中不正确的是( )A .汽车的加速度为1m/s 2B .汽车继续行驶,经过第7根电线杆时瞬时速度大小为25m/sC .汽车在第3根至第7根间的平均速度为20m/sD .汽车在第3根至第7根间运动所需要的时间为20s【答案】D【解析】汽车在10s 内的位移是:13502100s m =⨯=,由2112s v t at =+,代入数据解得:21/a m s =。
高考物理复习专题:匀变速直线运动的规律总结
匀变速直线运动的规律总结:
1、匀变速直线运动是指在恒定时间内,物体以恒定的加速度
向某一方向(正方向或负方向)运动的运动方式。
2、运动的时间t和速度v的关系可以用公式表示为:v=at,其中a是加速度。
3、运动的时间t和位移s的关系可以用公式表示为:s=1/2at²,其中a是加速度。
4、当匀变速直线运动中,物体以恒定的加速度a向正方向运动,它的速度v和位移s都随时间t呈线性增长。
5、当匀变速直线运动中,物体以恒定的加速度a向负方向运动,它的速度v和位移s都随时间t呈线性减少。
6、物体以匀变速直线运动时,根据它所处时刻t的位置,可
以求出它在该时刻t时的速度v,也可以求出它在该时刻t时
的加速度a。
7、匀变速直线运动时,物体运动的距离s和运动的速度v之
间有一定的关系,可以用s=vt来表示。
8、在匀变速直线运动过程中,物体运动的速度v和时间t之
间有一定的关系,可以用v=at来表示。
9、在匀变速直线运动过程中,物体的加速度a和时间t之间有一定的关系,可以用a=v/t来表示。
10、在匀变速直线运动过程中,物体的加速度a、速度v和位移s之间有一定的关系,可以用s=1/2at²来表示。
总的来说,匀变速直线运动是一种物体以恒定的加速度向某一方向(正方向或负方向)运动的运动方式,在匀变速直线运动过程中,存在物体运动距离s与速度v、时间t、加速度a之间的物理关系,可以用物理公式来描述。
高二物理《匀变速直线运动基本规律》知识点总结一、匀变速直线运动的规律1. 匀变速直线运动沿一条直线且加速度不变的运动。
2. 匀变速直线运动的基本规律(1)速度公式:v =v 0+at ;(2)位移公式:x =v 0t +12at 2; (3)位移速度关系式:v 2-v 20=2ax 。
二、匀变速直线运动的推论1. 三个推论(1)做匀变速直线运动的物体在某段时间内的中间时刻的瞬时速度等于这段时间内的平均速度,等于这段时间初、末时刻速度矢量和的一半。
平均速度公式:2v t =v =v 0+v 2; (2)连续相等的相邻时间间隔T 内的位移差为一定值:即∆x =aT 2(或x m −x n =(m −n)aT 2);(3)位移中点速度2v x =v 20+v 22。
2. 初速度为零的匀加速直线运动的四个重要推论(1)1T 末,2T 末,3T 末,…,nT 末的瞬时速度之比为v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n ;(2)1T 内,2T 内,3T 内,…,nT 内的位移之比为x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2 ;(3)第1个T 内,第2个T 内,第3个T 内,…,第n 个T 内的位移之比为x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x N =1∶3∶5∶…∶(2n -1).(4)从静止开始通过连续相等的位移所用时间之比为t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶(2-3)∶…∶(n -n -1) .三、自由落体运动和竖直上抛运动1. 自由落体运动 (1)条件:物体只在重力作用下,从静止开始下落;(2)基本规律①速度公式:v =gt ;②位移公式:x =12gt 2; ③速度位移关系式:v 2=2gx 。
2.竖直上抛运动(1)运动特点:加速度为g ,上升阶段做匀减速运动,下降阶段做自由落体运动;(2)运动性质:匀变速 直线运动;(3)基本规律①速度公式:v =v 0-gt ;②位移公式:x =v 0t -12gt 2。
匀变速直线运动规律
一、加速度与运动性质:
1.a=0 时,其运动形式为匀速直线运动;
2.a 为恒量时,其运动形式为匀加速直线运动,若 a 与 v 同向,为匀加速直线运动, a 与 v 反向,为匀减速直线运动。
二、匀变速直线运动的公式:
1.匀变速直线运动的速度公式:υt=υ0+a t
2.匀变速直线运动的位移公式:S=υ0 t+1/2a t^2
3.匀变速直线运动的速度位移公式:υt^2=υ0^2+2aS
三、速度时间图像与位移时间图像
1.匀速直线运动的速度时间图像是一条与时间轴平
行的直线。
匀速直线运动的位移时间图像是一条与
倾斜的直线。
2.匀变速直线运动的位移时间图像是一条
抛物线。
匀变速直线运动的速度时间图像
是一条倾斜的直线。
例题一:
用升降机从井底提升物体。
升降机先由静止开始作匀加速运动,经过 5s 达到
10m/s,然后匀速运动 2s 后作匀减速运动,又经过 5s 恰好到达井口而停止, 试画出该
过程的速度图象,并求出井的深度?
例题二:
电车由静止开始作匀加速直线运动,加速度 0.5m/s2,途径相隔 125 米的 AB 两点,共用 10 秒钟,那么,电车经过 B 点的速度是多少?。
高考物理知识点匀变速直线运动的规律一、匀变速直线运动的规律1.条件:物体遭到的合外力恒定,且与运动方向在一条直线上.2.特点:a恒定,即相等时间内速度的变化量恒定.3.规律:(1)vt=v0+at(2)s=v0t+ at2(3)vt2-v02=2as4.推论:(1)匀变速直线运动的物体,在恣意两个延续相等的时间里的位移之差是个恒量,即Δs=si+1-si=aT 2=恒量.(2)匀变速直线运动的物体,在某段时间内的平均速度等于该段时间的中间时辰的瞬时速度,即vt/2= = 以上两个推论在"测定匀变速直线运动的减速度"等先生实验中经常用到,要熟练掌握.(3)初速度为零的匀减速直线运动(设T为等分时间距离):①1T末、2T末、3T末……瞬时速度的比为:v1∶v2∶v3∶……∶vN=1∶2∶3∶…∶n②1T内、2T内、3T内……位移的比为:s1∶s2∶s3∶…∶sN=12∶22∶32∶…∶n2③第一个T内、第二个T内、第三个T内…… 位移的比为:sⅠ∶sⅡ∶sⅢ∶…∶sN=1∶3∶5∶…∶(2n-1)④从运动末尾经过延续相等的位移所用时间的比:t1∶t2∶t3∶…∶tN=1∶( -1)∶( - )∶…∶( - )5.自在落体运动是初速度为0、减速度为g的匀减速直线运动,初速度为零的匀减速运动的一切规律和比例关系均适用于自在落体运动二.解题方法指点(1)要养成依据题意画出物体运动表示图的习气.特别对较复杂的运动,画出草图可使运动进程直观,物理图景明晰,便于剖析研讨。
(2)要留意剖析研讨对象的运动进程,搞清整个运动进程按运动性质的转换可分为哪几个运动阶段,各个阶段遵照什么规律,各个阶段间存在什么联络。
(3)由于本章公式较多,且各公式间有相互联络,因此,本章的标题常可一题多解。
解题时要思绪开阔,联想比拟,挑选最简捷的解题方案。
解题时除采用惯例的公式解析法外,图象法、比例法、极值法、逆向转换法(如将一匀减速直线运动视为反向的匀减速直线运动)等也是本章解题中常用的方法。
匀变速直线运动公式、规律总结一.基本规律:=ts 1. =t v v t 0-(1)加速度 =20t v v + at v v t +=0 2021at t v s +=2 t v v t 20+= t v t 22022v v as t -= 注意:基本公式中(1)式适用于一切变速运动,其余各式只适用于匀变速直线运动..................................。
二.匀变速直线运动的两个重要规律:1.匀变速直线运动中某段时间内中间时刻的瞬时速度等于这段时间内的平均速度: 即2tv =t s 20t v v + 2.匀变速直线运动中连续相等的时间间隔内的位移差是一个恒量:设时间间隔为T ,加速度为a ,连续相等的时间间隔内的位移分别为S 1,S 2,S 3,……S N ; 则S=S 2-S 1=S 3-S 2= …… =S N -S N -1=aT 2注意:设在匀变速直线运动中物体在某段位移中初速度为,末速度为,在位移中点的瞬时速度为2s v ,则中间位置的瞬时速度为2s v =2220t v v + 无论匀加速还是匀减速总有2t v ==20t v v +<2s v =2220t v v +三.自由落体运动和竖直上抛运动:=2tv2tv总结:自由落体运动就是初速度=0,加速度=的匀加速直线运动.(1)瞬时速度gtvt-2021gttvs-=(3)重要推论22vvt-=-总结:竖直上抛运动就是加速度ga-=的匀变速直线运动.四.初速度为零的匀加速直线运动规律:设T为时间单位,则有:(1)1s末、2s末、3s末、…… ns末的瞬时速度之比为:v1∶v2∶v3∶……:vn=1∶2∶3∶……∶n同理可得:1T末、2T末、3T末、…… nT末的瞬时速度之比为:v1∶v2∶v3∶……:vn=1∶2∶3∶……∶n(2)1s内、2s内、3s内……ns内位移之比为:S1∶S2∶S3∶……:S n=12∶22∶32∶……∶n2同理可得:1T内、2T内、3T内……nT内位移之比为:S1∶S2∶S3∶……:S n=12∶22∶32∶……∶n2(3)第一个1s内,第二个2s内,第三个3s内,……第n个1s内的位移之比为:SⅠ∶SⅡ∶SⅢ∶……:S N=1∶3∶5∶……∶(2n-1)同理可得:第一个T内,第二个T内,第三个T内,……第n个T内的位移之比为:SⅠ∶SⅡ∶SⅢ∶……:S N=1∶3∶5∶……∶(2n-1)(4)通过连续相等的位移所用时间之比为:t1∶t2∶t3∶……:t n=1∶(12-)∶(23-)∶………∶(1--nn)课时4:匀速直线运动、变速直线运动基本概念(例题)一.变速直线运动、平均速度、瞬时速度:例1:一汽车在一直线上沿同一方向运动,第一秒内通过5m,第二秒内通过10m,第三秒内通过20m,第四秒内通过5m,则最初两秒的平均速度是_________m/s,则最后两秒的平均速度是_________m/s,全部时间的平均速度是_________m/s.例2:做变速运动的物体,若前一半时间的平均速度为4m/s,后一半时间的平均速度为8m/s,则全程内的平均速度是_________m/s;若物体前一半位移的平均速度为4m/s,后一半位移的平均速度为8m/s,则全程内的平均速度是_________m/s.二.速度、速度变化量、加速度:提示:1、加速度:是表示速度改变快慢的物理量,是矢量。
匀变速直线运动的基本规律
匀变速直线运动:
1、概念:匀变速直线运动是指运动物体的速度不断变化的直线运动,其中速度的大小和方向一直沿着运动方向一致。
2、基本性质:
(1)直线运动:匀变速直线运动是物体在给定时间内移动的路线是一条实线,没有曲线,且运动方向不会发生变化。
(2)速度不断变化:物体的运动,其瞬时速度不一定相等,而是随实际情况而变化,沿着一个恒定的方向变化,这种运动叫做匀变速直线运动。
(3)时间长度:匀变速直线运动是指运动物体在任意时间段内,其速度沿着一个恒定的方向变化。
它可以是瞬时运动,也可以是短时段内的运动或长时段内的运动。
3、基本公式:
(1)速度公式:v=v_0+at,其中v表示物体在某一时刻的速度,v_0是初始速度,a表示加速度值,t表示时间;
(2)位移公式:S′=S+v_0t+½at²,其中S为物体经过一段时间t后的位移,v_0为瞬时速度。
4、示意图:
5、应用:
(1)万有引力:万有引力即物体试图沿着空间的直线运动,匀变速直线运动就是由于物体受到外力影响而在不断变化的速度下沿着一定的方向移动的过程。
(2)电路:电子运行的路径是直线的,所以电路中的电子经过适当的装置,能够通过变调和运行速度,实现匀变速直线运动。
(3)机床加工:机床的加工是试图沿着某一指定方向运动,匀变速直线运动能够得到按照指定方向平稳运动的状态,以满足机床加工时的要求。
高中匀变速知识点总结匀变速运动的知识点主要包括直线匀变速运动和曲线匀变速运动的运动规律、位移、速度、加速度以及相关的公式和图解等内容。
一、直线匀变速运动的知识点总结1. 运动规律直线匀变速运动的速度每隔相等的时间段增加相等的数值,这就是匀变速运动的运动规律。
2. 位移直线匀变速运动的位移随时间的变化而变化,其公式为:s=v0t+1/2at^2,其中s表示位移,v0表示初速度,t表示时间,a表示加速度。
3. 速度直线匀变速运动的速度随时间的变化而变化,其公式为:v=v0+at,其中v表示速度,v0表示初速度,a表示加速度,t表示时间。
4. 加速度直线匀变速运动的加速度保持不变,其公式为:a=(v-v0)/t,其中a表示加速度,v表示速度,v0表示初速度,t表示时间。
二、曲线匀变速运动的知识点总结1. 运动规律曲线匀变速运动也遵循速度每隔相等的时间段增加相等的数值的运动规律,但由于其运动方向可能不断改变,所以需要考虑速度的瞬时方向。
2. 位移曲线匀变速运动的位移随时间的变化而变化,其计算方法与直线匀变速运动相似,只是需要考虑速度的瞬时方向。
3. 速度曲线匀变速运动的速度随时间的变化而变化,同样需要考虑速度的瞬时方向。
4. 加速度曲线匀变速运动的加速度保持不变,但由于其运动方向可能不断改变,所以需要考虑速度的瞬时方向。
三、匀变速运动的相关公式和图解1. 位移-时间图像匀变速运动的位移-时间图像通常为一个抛物线,其斜率表示速度,而曲线的弧度表示加速度。
2. 速度-时间图像匀变速运动的速度-时间图像通常为一条直线,其斜率表示加速度。
3. 加速度-时间图像匀变速运动的加速度-时间图像通常为一条水平直线,表示加速度保持不变。
以上就是匀变速运动的主要知识点总结,希望能对学习匀变速运动的同学有所帮助。
2019高考物理知识点匀变速直线运动的规律一、匀变速直线运动的规律1.条件:物体受到的合外力恒定,且与运动方向在一条直线上.2.特点:a恒定,即相等时间内速度的变化量恒定.3.规律:(1)vt=v0+at(2)s=v0t+ at2(3)vt2-v02=2as4.推论:(1)匀变速直线运动的物体,在任意两个连续相等的时间里的位移之差是个恒量,即Δs=si+1-si=aT 2=恒量.(2)匀变速直线运动的物体,在某段时间内的平均速度等于该段时间的中间时刻的瞬时速度,即vt/2= =以上两个推论在"测定匀变速直线运动的加速度"等学生实验中经常用到,要熟练掌握.(3)初速度为零的匀加速直线运动(设T为等分时间间隔):①1T末、2T末、3T末……瞬时速度的比为:v1∶v2∶v3∶……∶vN=1∶2∶3∶…∶n②1T内、2T内、3T内……位移的比为:s1∶s2∶s3∶…∶sN=12∶22∶32∶…∶n2③第一个T内、第二个T内、第三个T内…… 位移的比为:sⅠ∶sⅡ∶sⅢ∶…∶sN=1∶3∶5∶…∶(2n-1)④从静止开始通过连续相等的位移所用时间的比:t1∶t2∶t3∶…∶tN=1∶( -1)∶( - )∶…∶( - )5.自由落体运动是初速度为0、加速度为g的匀加速直线运动,初速度为零的匀加速运动的所有规律和比例关系均适用于自由落体运动二.解题方法指导(1)要养成根据题意画出物体运动示意图的习惯.特别对较复杂的运动,画出草图可使运动过程直观,物理图景清晰,便于分析研究。
(2)要注意分析研究对象的运动过程,搞清整个运动过程按运动性质的转换可分为哪几个运动阶段,各个阶段遵循什么规律,各个阶段间存在什么联系。
(3)由于本章公式较多,且各公式间有相互联系,因此,本章的题目常可一题多解。
解题时要思路开阔,联想比较,筛选最简捷的解题方案。
解题时除采用常规的公式解析法外,图象法、比例法、极值法、逆向转换法(如将一匀减速直线运动视为反向的匀加速直线运动)等也是本章解题中常用的方法。
高考物理一轮复习讲义—匀变速直线运动的规律考点一匀变速直线运动的基本规律及应用1.匀变速直线运动沿着一条直线且加速度不变的运动.如图所示,v-t图线是一条倾斜的直线.2.匀变速直线运动的三个基本公式(1)速度与时间的关系式:v=v0+at.(2)位移与时间的关系式:x=v0t+1at2.2(3)速度与位移关系v2-v02=2ax.3.三个基本公式选用原则(1)v=v0+at,不涉及位移x;(2)x=v0t+1at2,不涉及末速度v;2(3)v2-v02=2ax,不涉及运动的时间t.1.匀变速直线运动是加速度均匀变化的直线运动.(×)2.匀加速直线运动的位移是均匀增加的.(×)3.匀变速直线运动中,经过相同的时间,速度变化量相同.(√)1.基本思路画过程示意图→判断运动性质→选取正方向→选用公式列方程→解方程并加以讨论2.正方向的选定无论是匀加速直线运动还是匀减速直线运动,通常以初速度v0的方向为正方向;当v0=0时,一般以加速度a的方向为正方向.速度、加速度、位移的方向与正方向相同时取正,相反时取负.3.解决匀变速运动的常用方法(1)逆向思维法:对于末速度为零的匀减速运动,采用逆向思维法,可以看成反向的初速度为零的匀加速直线运动.(2)图象法:借助v-t图象(斜率、面积)分析运动过程.考向1基本公式的应用例1在研究某公交车的刹车性能时,让公交车沿直线运行到最大速度后开始刹车,公交车开始刹车后位移与时间的关系满足x=16t-t2(物理量均采用国际制单位),下列说法正确的是()A.公交车运行的最大速度为4m/sB.公交车刹车的加速度大小为1m/s2C.公交车从刹车开始10s内的位移为60mD.公交车刹车后第1s内的平均速度为15m/s答案D解析根据x=v0t-12at2与x=16t-t2的对比,可知刹车过程为匀减速直线运动,运行的最大速度就是刹车时车的速度,为16m/s,刹车的加速度大小为2m/s2,故A、B错误;已知刹车时车的速度,以及加速度,由t=va=8s可知,刹车停止需要8s时间,从刹车开始10s内的位移,其实就是8s内的位移,t=8s时有x=64m,故C错误;t′=1s时,有x′=15m,由平均速度公式可得v =x ′t ′=15m/s ,故D 正确.例2对某汽车刹车性能测试时,当汽车以36km/h 的速率行驶时,可以在18m 的距离被刹住;当以54km/h 的速率行驶时,可以在34.5m 的距离被刹住.假设两次测试中驾驶员的反应时间(驾驶员从看到障碍物到做出刹车动作的时间)与刹车的加速度都相同.问:(1)这位驾驶员的反应时间为多少;(2)某雾天,该路段能见度为50m ,则行车速率不能超过多少.考向2逆向思维法解决匀变速直线运动问题例3假设某次深海探测活动中,“蛟龙号”完成海底科考任务后竖直上浮,从上浮速度为v时开始匀减速并计时,经过时间t ,“蛟龙号”上浮到海面,速度恰好减为零,则“蛟龙号”在t 0(t 0<t )时刻距离海面的深度为()A .vt 0(1-t 02t)B.v t -t 022tC.vt 2D.vt 022t答案B解析“蛟龙号”上浮时的加速度大小为:a =vt,根据逆向思维,可知“蛟龙号”在t 0时刻距离海面的深度为:h =12a (t -t 0)2=12×vt×(t -t 0)2=v t -t 022t,故选B.考向3两种匀减速直线运动的比较1.刹车类问题(1)其特点为匀减速到速度为零后停止运动,加速度a 突然消失.(2)求解时要注意确定实际运动时间.(3)如果问题涉及最后阶段(到停止)的运动,可把该阶段看成反向的初速度为零的匀加速直线运动.2.双向可逆类问题(1)示例:如沿光滑固定斜面上滑的小球,到最高点后仍能以原加速度匀加速下滑,全过程加速度大小、方向均不变.(2)注意:求解时可分过程列式也可对全过程列式,但必须注意x 、v 、a 等矢量的正负号及物理意义.例4若飞机着陆后以6m/s 2的加速度做匀减速直线运动,其着陆时的速度为60m/s ,则它着陆后12s 内滑行的距离是()A .288mB .300mC .150mD .144m答案B解析设飞机着陆后到停止所用时间为t ,由v =v 0+at ,得t =v -v 0a =0-60-6s =10s ,由此可知飞机在12s 内不是始终做匀减速直线运动,它在最后2s 内是静止的,故它着陆后12s内滑行的距离为x =v 0t +at 22=60×10m +-6×1022m =300m.例5(多选)在足够长的光滑固定斜面上,有一物体以10m/s 的初速度沿斜面向上运动,物体的加速度大小始终为5m/s 2、方向沿斜面向下,当物体的位移大小为7.5m 时,下列说法正确的是()A .物体运动时间可能为1sB .物体运动时间可能为3sC .物体运动时间可能为(2+7)sD .物体此时的速度大小一定为5m/s 答案ABC解析以沿斜面向上为正方向,a =-5m/s 2,当物体的位移为沿斜面向上7.5m 时,x =7.5m ,由运动学公式x =v 0t +12at 2,解得t 1=3s 或t 2=1s ,故A 、B 正确.当物体的位移为沿斜面向下7.5m 时,x =-7.5m ,由x =v 0t +12at 2解得:t 3=(2+7)s 或t 4=(2-7)s(舍去),故C 正确.由速度公式v =v 0+at ,解得v 1=-5m/s 或v 2=5m/s 、v 3=-57m/s ,故D 错误.考点二匀变速直线运动的推论及应用1.匀变速直线运动的常用推论(1)平均速度公式:做匀变速直线运动的物体在一段时间内的平均速度等于这段时间内初、末时刻速度矢量和的一半,还等于中间时刻的瞬时速度.即:v =v 0+v2=2t v .此公式可以求某时刻的瞬时速度.(2)位移差公式:连续相等的相邻时间间隔T 内的位移差相等.即:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2.不相邻相等的时间间隔T 内的位移差x m -x n =(m -n )aT 2,此公式可以求加速度.2.初速度为零的匀加速直线运动的四个重要比例式(1)T末、2T末、3T末、…、nT末的瞬时速度之比为v1∶v2∶v3∶…∶v n=1∶2∶3∶…∶n.(2)前T内、前2T内、前3T内、…、前nT内的位移之比为x1∶x2∶x3∶…∶x n=1∶4∶9∶…∶n2.(3)第1个T内、第2个T内、第3个T内、…、第n个T内的位移之比为xⅠ∶xⅡ∶xⅢ∶…∶x N =1∶3∶5∶…∶(2n-1).(4)从静止开始通过连续相等的位移所用时间之比为t1∶t2∶t3∶…∶t n=1∶(2-1)∶(3-2)∶…∶(n-n-1).考向1平均速度公式例6做匀变速直线运动的质点在第一个7s内的平均速度比它在第一个3s内的平均速度大6m/s,则质点的加速度大小为()A.1m/s2B.1.5m/s2C.3m/s2D.4m/s2答案C解析物体做匀变速直线运动时,第一个3s内中间时刻,即1.5s时的速度为v1=v3,第一个7s内中间时刻,即3.5s时的速度为v2=v7,由题意可知v2-v1=6m/s,又v2=v1+aΔt,其中Δt=2s,可得a=3m/s2.故选C.考向2位移差公式例7(2022·重庆市实验外国语学校高三开学考试)物体从静止开始做匀加速直线运动,已知第4s内与第2s内的位移之差是8m,则下列说法错误的是()A.物体运动的加速度为4m/s2B.第2s内的位移为6mC.第2s末的速度为2m/sD.物体在0~5s内的平均速度为10m/s答案C解析根据位移差公式x Ⅳ-x Ⅱ=2aT 2,得a =x Ⅳ-x Ⅱ2T2=82×12m/s 2=4m/s 2,故A 正确,不符合题意;第2s 内的位移为:x 2-x 1=12at 22-12at 12=12×4×(22-12)m =6m ,故B 正确,不符合题意;第2秒末速度为v =at 2=4×2m/s =8m/s ,故C 错误,符合题意;物体在0~5s 内的平均速度v =x 5t 5=12at 52t 5=12×4×525m/s =10m/s ,故D 正确,不符合题意.考向3初速度为零的匀变速直线运动比例式例8(多选)如图所示,一冰壶以速度v 垂直进入三个完全相同的矩形区域做匀减速直线运动,且刚要离开第三个矩形区域时速度恰好为零,则冰壶依次进入每个矩形区域时的速度之比和穿过每个矩形区域所用的时间之比分别是()A .v 1∶v 2∶v 3=3∶2∶1B .v 1∶v 2∶v 3=3∶2∶1C .t 1∶t 2∶t 3=1∶2∶3D .t 1∶t 2∶t 3=(3-2)∶(2-1)∶1答案BD解析因为冰壶做匀减速直线运动,且末速度为零,故可以看成反向的初速度为零的匀加速直线运动来研究.初速度为零的匀加速直线运动中通过连续三段相等位移的时间之比为1∶(2-1)∶(3-2),故所求时间之比为(3-2)∶(2-1)∶1,选项C 错误,D 正确;由v 2-v 02=2ax 可得,初速度为零的匀加速直线运动中通过连续相等位移时的速度之比为1∶2∶3,故所求的速度之比为3∶2∶1,选项A 错误,B 正确.课时精练1.如图所示,一小球从A 点由静止开始沿斜面向下做匀变速直线运动,若到达B 点时速度为v ,到达C 点时速度为2v ,则AB ∶BC 等于()A .1∶1B .1∶2C .1∶3D .1∶4答案C解析根据匀变速直线运动的速度—位移公式v 2-v 02=2ax知,x AB =v 22a ,x AC =2v 22a,所以AB ∶AC =1∶4,则AB ∶BC =1∶3,故C 正确,A 、B 、D 错误.2.汽车以20m/s 的速度在平直公路上行驶,急刹车时的加速度大小为5m/s 2,则自驾驶员急踩刹车开始,经过2s 与5s 汽车的位移之比为()A .5∶4B .4∶5C .3∶4D .4∶3答案C解析汽车速度减为零的时间为:t 0=Δv a =0-20-5s =4s,2s 时位移:x 1=v 0t +12at 2=20×2m -12×5×4m =30m ,刹车5s 内的位移等于刹车4s 内的位移,为:x 2=0-v 022a =40m ,所以经过2s 与5s 汽车的位移之比为3∶4,故选项C 正确.3.(2022·吉林通化县综合高级中学高三月考)物体做匀加速直线运动,相继经过两段距离为16m 的路程,第一段用时4s ,第二段用时2s ,则物体的加速度是()A.23m/s 2 B.43m/s 2C.8 9m/s2D.169m/s2答案B解析根据某段时间内的平均速度等于中间时刻的瞬时速度知,从开始运动第一段时计时,则2s时的瞬时速度等于0~4s内的平均速度,v1=164m/s=4m/s5s时的瞬时速度等于4~6s内的平均速度v2=162m/s=8m/s 两个中间时刻的时间间隔为Δt=2s+1s=3s根据加速度定义可得a=v2-v1Δt=43m/s2故选B.4.汽车在平直的公路上行驶,发现险情紧急刹车,汽车立即做匀减速直线运动直到停止,已知汽车刹车时第1s内的位移为13m,最后1s内的位移为2m,则下列说法正确的是() A.汽车在第1s末的速度可能为10m/sB.汽车加速度大小可能为3m/s2C.汽车在第1s末的速度一定为11m/sD.汽车的加速度大小一定为4.5m/s2答案C解析采用逆向思维法,由于最后1s内的位移为2m,根据x′=12at2得,汽车加速度大小a=2x′t2=2×212m/s2=4m/s2,第1s内的位移为13m,根据x1=v0t-12at2,代入数据解得,初速度v0=15m/s,则汽车在第1s末的速度v1=v0-at=15m/s-4×1m/s=11m/s,故C正确,A、B、D错误.5.(2022·山西长治市第八中学高三月考)木块A、B、C并排固定在水平地面上,一子弹以30m/s的速度射入木块A,A、B、C三木块的厚度比为5∶3∶1,子弹在木块中运动时加速度恒定,子弹刚好射穿木块C,则下列说法正确的是()A.子弹射出木块A时的速度为10m/sB.子弹在木块A中的运动时间大于子弹在木块B中的运动时间C.子弹在木块B和C中的运动时间相等D.子弹在木块A中的平均速度是子弹在木块C中平均速度的2倍答案C解析子弹运动的逆过程为初速度为零的匀加速直线运动,则在连续相等时间内的位移比为1∶3∶5,故子弹在三个木块中的运动时间相等,速度之比为1∶2∶3,知刚射穿B时速度为10m/s,刚射出A时速度为20m/s,A、B错误,C正确;子弹在木块A中的平均速度为v A=30+202m/s=25m/s,子弹在木块C中平均速度为v C=10+02m/s=5m/s,D错误.6.(多选)高铁进站的过程近似为高铁做匀减速直线运动,高铁车头依次经过A、B、C三个位置,已知AB=BC,测得AB段的平均速度为30m/s,BC段平均速度为20m/s.根据这些信息可求得()A.高铁车头经过A、B、C的速度B.高铁车头在AB段和BC段运动的时间C.高铁运动的加速度D.高铁车头经过AB段和BC段的时间之比答案AD解析设高铁车头在经过A、B、C三点时的速度分别为v A、v B、v C,根据AB段的平均速度为30m/s,可以得到v AB=v A+v B2=30m/s;根据在BC段的平均速度为20m/s,可以得到vBC=v B+v C2=20m/s;设AB=BC=x,整个过程中的平均速度为v=2xt AB+t BC=2xx30m/s+x20m/s =24m/s,所以有v AC=v A+v C2=24m/s,联立解得v A=34m/s,v B=26m/s,v C =14m/s ,由于不知道AB 和BC 的具体值,则不能求解运动时间及其加速度的大小,选项A 正确,B 、C 错误;t AB ∶t BC =xv AB ∶x v BC=2∶3,选项D 正确.7.汽车在水平面上刹车,其位移与时间的关系是x =24t -6t 2(m),则它在前3s 内的平均速度为()A .8m/sB .10m/sC .12m/sD .14m/s 答案A 解析由位移与时间的关系结合运动学公式可知,v 0=24m/s ,a =-12m/s 2;则由v =v 0+at 可知,汽车在2s 末停止运动,故前3s 内的位移等于前2s 内的位移,x =24×2m -6×4m =24m ,则汽车的平均速度v =x t =243m/s =8m/s ,故A 正确.8.(多选)汽车在路上出现故障时,应在车后放置三角警示牌(如图所示),以提醒后面驾驶员减速安全通过.在夜间,有一货车因故障停驶,后面有一小轿车以30m/s 的速度向前驶来,由于夜间视线不好,小轿车驾驶员只能看清前方50m 内的物体,并且他的反应时间为0.6s ,制动后最大加速度大小为5m/s 2.假设小轿车始终沿直线运动.下列说法正确的是()A .小轿车从刹车到停止所用的最短时间为6sB .小轿车的最短刹车距离(从刹车到停止运动所走的距离)为80mC .小轿车运动到三角警示牌时的最小速度为25m/sD .三角警示牌至少要放在车后58m 远处,才能有效避免两车相撞答案AD 解析设小轿车从刹车到停止所用时间为t 2,则t 2=0-v 0-a =0-30-5s =6s ,故A 正确;小轿车的刹车距离x =0-v 02-2a =0-3022×-5m =90m ,故B 错误;反应时间内小轿车通过的位移为x 1=v 0t 1=30×0.6m =18m ,小轿车减速运动到三角警示牌通过的位移为x ′=50m -18m =32m ,设减速到警示牌的速度为v ′,则-2ax ′=v ′2-v 02,解得v ′=2145m/s ,故C 错误;小轿车通过的总位移为x 总=(90+18)m =108m ,放置的位置至少为车后Δx =(108-50)m =58m ,故D 正确.9.假设列车经过铁路桥的全过程都做匀减速直线运动,已知某列车长为L ,通过一铁路桥时的加速度大小为a ,列车全身通过桥头的时间为t 1,列车全身通过桥尾的时间为t 2,则列车车头通过铁路桥所需的时间为()A.L a ·t 1+t 2t 1t 2B.L a ·t 1+t 2t 1t 2-t 2-t 12C.L a ·t 2-t 1t 1t 2-t 2-t 12D.L a ·t 2-t 1t 1t 2+t 2-t 12答案C 解析设列车车头通过铁路桥所需要的时间为t 0,从列车车头到达桥头时开始计时,列车全身通过桥头时的平均速度等于t 12时刻的瞬时速度v 1,可得:v 1=L t 1,列车全身通过桥尾时的平均速度等于t 0+t 22时刻的瞬时速度v 2,则v 2=L t 2,由匀变速直线运动的速度时间关系式可得:v 2=v 1-a (t 0+t 22-t 12),联立解得:t 0=L a ·t 2-t 1t 1t 2-t 2-t 12.故选C.10.从固定斜面上的O 点每隔0.1s 由静止释放一个同样的小球.释放后小球做匀加速直线运动.某一时刻,拍下小球在斜面滚动的照片,如图所示.测得小球相邻位置间的距离x AB =4cm ,x BC =8cm.已知O 点与斜面底端的距离为l =35cm.由以上数据可以得出()A .小球的加速度大小为12m/s 2B .小球在A 点的速度为0C.斜面上最多有5个小球在滚动D.该照片是距A点处小球释放后0.3s拍摄的答案C解析根据Δx=aT2可得小球的加速度大小为a=x BC-x ABT2=0.040.12m/s2=4m/s2,选项A错误;小球在B点时的速度v B=x AB+x BC2T=0.120.2m/s=0.6m/s,小球在A点时的速度为v A=v B-aT=0.6m/s-4×0.1m/s=0.2m/s,选项B错误;t A=v Aa=0.24s=0.05s,即该照片是距A点小球释放后0.05s拍摄的,选项D错误;当最高点的球刚释放时,最高处两球之间的距离为x1=1 2aT2=12×4×0.12m=0.02m=2cm,根据初速度为零的匀加速直线运动的规律可知,各个球之间的距离之比为1∶3∶5∶7……,则各个球之间的距离分别为2cm,6cm,10cm,14cm,18cm……,因为O点与斜面底端距离为35cm,而前5个球之间的距离之和为32cm,斜面上最多有5个球,选项C正确.11.(2022·安徽省六安一中月考)ETC是不停车电子收费系统的简称.最近,某ETC通道的通行车速由原来的20km/h提高至40km/h,车通过ETC通道的流程如图所示.为简便计算,假设汽车以v0=30m/s的速度朝收费站沿直线匀速行驶,如过ETC通道,需要在收费站中心线前d=10m处正好匀减速至v1=4m/s,匀速通过中心线后,再匀加速至v0正常行驶.设汽车匀加速和匀减速过程中的加速度大小均为1m/s2,忽略汽车车身长度.求:(1)汽车过ETC通道时,从开始减速到恢复正常行驶过程中的位移大小;(2)如果汽车以v2=10m/s的速度通过匀速行驶区间,其他条件不变,求汽车提速后过收费站过程中比提速前节省的时间.答案(1)894m(2)10.7s解析(1)设汽车匀减速过程位移大小为d 1,由运动学公式得v 12-v 02=-2ad 1解得d 1=442m根据对称性可知从开始减速到恢复正常行驶过程中的位移大小x 1=2d 1+d =894m(2)如果汽车以v 2=10m/s 的速度通过匀速行驶区间,设汽车提速后匀减速过程位移大小为d 2,由运动学公式得v 22-v 02=-2ad 2解得d 2=400m提速前,汽车匀减速过程时间为t 1,则d 1=v 0+v 12t 1解得t 1=26s通过匀速行驶区间的时间为t 1′,有d =v 1t 1′解得t 1′=2.5s从开始减速到恢复正常行驶过程中的总时间为T 1=2t 1+t 1′=54.5s 提速后,匀减速过程时间为t 2,则d 2=v 0+v 22t 2解得t 2=20s通过匀速行驶区间的时间为t 2′,则d =v 2t 2′解得t 2′=1s匀速通过(d 1-d 2)位移时间Δt =d 1-d 2v 0=1.4s 通过与提速前相同位移的总时间为T 2=2t 2+t 2′+2Δt =43.8s 所以汽车提速后过收费站过程中比提速前节省的时间ΔT =T 1-T 2=10.7s.。
高考物理匀变速直线运动三大规律总结一、内容简述大家都知道,高考物理中的匀变速直线运动是一大重点。
关于这个知识点,它其实有一些核心规律我们得掌握。
接下来我就给大家简单梳理一下这三大规律,希望能帮大家更好地理解和掌握这部分内容。
毕竟高中物理是个难关,我们得一起加油才行。
第一个规律呢,是关于匀变速直线运动的速度和时间的关系。
简单来说就是物体在固定的速度下加速或者减速,它的速度是怎么随着时间变化的。
这个规律很重要,因为它能帮助我们理解物体运动的速度变化过程。
第二个规律是位移和时间的关系,在匀变速直线运动中,物体在不同的时间段里会走不同的距离。
这个规律就是告诉我们这个距离和时间是怎么关联的,掌握了这一点,我们就能更好地预测物体在一段时间内会移动多远。
这三大规律都是帮助我们理解和预测匀变速直线运动的物体的运动过程。
掌握了这些,我们在解决物理问题时就能事半功倍了。
所以大家得好好琢磨琢磨这些规律,加油哦!1. 简述匀变速直线运动在高考物理中的重要性高考物理中,匀变速直线运动可是个重头戏。
无论是初学者还是资深考生,都得好好掌握。
这个运动规律不仅基础,还非常实用。
毕竟很多物理现象都能用匀变速直线运动来解释,简单地说它就是物体速度一直增加或减少,方向还保持不变的那种运动。
高考物理里,它的重要性可不是闹着玩的。
掌握了匀变速直线运动,就等于迈过了物理学习的一大门槛。
接下来我们就来详细说说匀变速直线运动的三大规律。
2. 引出本文将重点介绍的三大规律接下来就让我带你一起深入了解一下高考物理中的匀变速直线运动的三大规律。
你可能会觉得,高中物理是不是都是高深莫测的公式和理论?其实不然只要你掌握了基础,理解这些规律其实并不难。
接下来我们就一起来揭开这三大规律的神秘面纱,让你在高考物理中轻松应对匀变速直线运动的问题。
二、匀变速直线运动的基本概念高中物理中,匀变速直线运动是考察重点之一,这类运动有规律可循,对于我们高考备考非常关键。
大家都知道什么是匀变速直线运动吗?简单来说就是速度一直按照一定规律变化的直线运动,这种运动有个特点,那就是加速度恒定不变。
匀变速直线运动的基本规律在斜面上滚动的物体的运动规律,证明了重力加速度对物体的运动是独立于物体的质量的。
4.XXX的研究成果对现代科学的发展产生了深远的影响,为物理学、力学等领域的发展奠定了基础。
第一章直线运动1.1 匀变速直线运动的规律基础知识梳理一、匀变速直线运动1.定义:沿着一条直线,加速度不变的运动。
2.分类:1) 匀加速直线运动:a与v方向相同;2) 匀减速直线运动:a与v方向相反。
二、匀变速直线运动的基本规律1.匀变速直线运动的三大基本公式:1) 速度与时间的关系:v = v0 + at;2) 位移与时间的关系:x = v0t + 1/2at²;3) 位移与速度的关系:v² - v0² = 2ax。
2.匀变速直线运动的两个常用推论:1) 平均速度公式:匀变速直线运动的平均速度等于初速度与末速度的平均值,也等于中间时刻的速度,即v = (v0 + v)/2.2) 位移差公式:匀变速直线运动在相邻且相等的时间间隔内的位移之差是个恒量,即Δx = ax²。
3.初速度为零的匀加速直线运动的几个比例关系:1) 1T末,2T末,3T末,…,nT末的瞬时速度之比为 = 1:2:3:…:n。
2) 1T内,2T内,3T内,…,nT内的位移之比为 =1²:2²:3²:…:n²。
3) 第1个T内,第2个T内,第3个T内,…,第n个T 内的位移之比为xⅠ:xⅡ:xⅢ:…:xN = 1:3:5:…:(2n-1)。
4) 从静止开始通过连续相等的位移所用时间之比为 = 1:(2-1):(3-2):(2-3):…:(n-n-1)。
三、自由落体运动1.定义:物体只在重力作用下,从静止开始下落的运动叫自由落体运动。
2.基本特征:初速度为零、加速度为g的匀加速直线运动。
3.基本规律:v = gt,h = 1/2gt²,v² = 2gh。
匀变速直线运动规律的总结
一、匀变速直线运动规律:
1、匀变速直线运动:匀变速直线运动是指物体在直线上运动,且速
度在运动过程中保持恒定时,叫做匀变速直线运动。
2、运动路程的计算:在匀变速直线运动中,按照分段计算的方法可
以求出在给定时间内运动的距离,公式为:S=V*t。
其中,V为物体运动
的速度,t为运动的时间。
3、速度的计算:在匀变速直线运动中,可以求出物体在给定时间内
走的路程,按照分段计算的方法可以求出运动速度,公式为:V=S/t。
其中,S为物体走的路程,t为运动的时间。
4、加速度的计算:加速度是物体速度变化的速率,它是物体变化速
度的程度。
在匀变速直线运动中,由于物体的速度保持不变,所以其加速
度也为0。
二、匀变速直线运动特点:
1、速度恒定:在匀变速直线运动中,物体运动的速度在整个运动过
程中都是恒定的,既不会减少也不会增加。
2、加速度为零:在匀变速直线运动中,物体的加速度一直为零,因
为物体的速度保持不变,所以其加速度不变。
3、曲线不能直接代表速度:匀变速直线运动曲线不能直接代表速度,我们必须以路程或时间等绝对量准确地衡量速度。
4、受力状态复杂:匀变速直线运动中,物体受到的力可能不定,它
会受外力的影响。
匀变速直线运动的规律一.考点整理匀变速直线运动规律1.匀变速直线运动:沿着一条直线,且加速度的运动.分为匀加速直线运动〔a与v方向〕和匀减速直线运动〔a与v向〕.2.三个根本规律:①速度公式:v = ;②位移公式:x = ;③位移速度关系式:v2t–v02 = .3.三个推论:①做匀变速直线的物体在连续相等的相邻时间间隔T内的位移差等于恒量,即x2–x1 = x3–x2 =……= x n–x n – 1 = ;②做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初末时刻速度矢量和的一半,还等于中间时刻的瞬时速度,即v平均= v t/2= ;③匀变速直线运动的某段位移中点的瞬时速度v x/2 = .4.初速度为零的匀加速直线运动的特别规律:⑴在1T末,2T末,3T末,…,n T末的瞬时速度之比为v1∶v2∶v3∶…∶v n = ;⑵在1T内,2T内,3T内,…,n T内的位移之比为x1∶x2∶x3∶…∶x n = ;⑶在第1个T内,第2个T内,第3个T内,…,第n个T内的位移之比为:xⅠ∶xⅡ∶xⅢ∶…∶x N =____________________________________;⑷从静止开始通过连续相等的位移所用时间之比为t1∶t2∶t3∶…∶t n = ;⑸从静止开始通过连续相等的位移时的速度之比为v1∶v2∶v3∶…∶v n = ;5.自由落体运动:物体只在作用下,从开始下落的运动叫自由落体运动.⑴根本特征:只受,且初速度为、加速度为的匀加速直线运动.⑵根本规律:由于自由落体运动是直线运动,所以匀变速直线运动的根本公式及其推论都适用于自由落体运动.①速度公式:v = ;②位移公式:h = ;③位移与速度的关系:v2 = .⑶推论:①平均速度等于中间时刻的瞬时速度,也等于末速度的一半,即v平均= v/2 = ;在相邻的相等时间内下落的位移差Δh = 〔T为时间间隔〕.二.思考与练习思维启动1.依据给出的速度和加速度的正负,对物体运动性质的推断正确的选项是〔〕A.v > 0,a < 0,物体做加速运动B.v < 0,a < 0,物体做加速运动C.v < 0,a > 0,物体做减速运动D.v > 0,a >0,物体做加速运动2.一物体由静止开始沿光滑斜面做匀加速直线运动,运动6秒到达斜面底端,斜面长为18米,则:⑴物体在第3秒内的位移多大?⑵前3秒内的位移多大?3.甲物体的质量是乙物体质量的5倍,甲从H高处自由下落,同时乙从2H高处自由下落,以下说法中正确的选项是〔高度H远大于10 m〕〔〕A.两物体下落过程中,同一时刻甲的速率比乙的大B.下落1 s末,它们的速度相等C.各自下落1 m,它们的速度相等D.下落过程中甲的加速度比乙的大三.考点分类探讨典型问题〖考点1〗匀变速直线运动规律的应用【例1】珠海航展现场空军八一飞行表演队两架“歼-10〞飞机表演剪刀对冲,上演精彩空中秀.质量为m的“歼-10〞飞机表演后返回某机场,降落在跑道上减速过程简化为两个匀减速直线运动.飞机以速度v0着陆后马上翻开减速阻力伞,加速度大小为a1,运动时间为t1;随后在无阻力伞情况下匀减速直至停下.在平直跑道上减速滑行总路程为x.求:第二个减速阶段飞机运动的加速度大小和时间.【变式跟踪1】如下列图,是某型号全液体燃料火箭发射时第—级发动机工作时火箭的a– t图象,开始时的加速度曲线比较平滑,在120 s的时候,为了把加速度限制在4g以内,第—级的推力降至60%,第—级的整个工作时间为200s.由图线可以看出,火箭的初始加速度为15 m/s2,且在前50 s内,加速度可以看做均匀变化,试计算:⑴t = 50 s时火箭的速度大小;⑵如果火箭是竖直发射的,在t = 10 s前看成匀加速运动,则t =10 s时离地面的高度是多少?如果此时有一碎片脱落,不计空气阻力,碎片将需多长时间落地?〔取g = 10 m/s2,结果可用根式表示〕〖考点2〗自由落体运动和竖直上抛运动例2某人在高楼的平台边缘,以20 m/s的初速度竖直向上抛出一石子.不考虑空气阻力,取g=10 m/s2,求:⑴物体上升的最大高度;回到抛出点所用的时间;⑵石子抛出后通过距抛出点下方20 m处所需的时间.【变式跟踪2】在塔顶上将一物体竖直向上抛出,抛出点为A,物体上升的最大高度为20m,不计空气阻力,设塔足够高,则物体位移大小为10 m时,物体通过的路程可能为〔〕A.10 m B.20 m C.30 m D.50 m考点3:实际应用:汽车的“刹车〞问题.汽车刹车问题的实质是汽车做单方向匀减速直线运动问题.汽车在刹车过程中做匀减速直线运动,速度减为0后,车相对地面无相对运动,加速度消逝,汽车停止不动,不再返回.汽车运动时间满足t≤v0/a,发生的位移满足x≤v02/2a〔停止时取“=〞号〕.例3一辆汽车以10 m/s的速度沿平直的公路匀速前进,因故紧急刹车,加速度大小为0.2 m/s2,则刹车后汽车在1 min内通过的位移大小为〔〕A.240 m B.250 m C.260 m D.90 m【变式跟踪3】一辆公共汽车进站后开始刹车,做匀减速直线运动,开始刹车后的第1 s内和第2 s内位移大小依次为9 m和7 m,则刹车后6 s内的位移是〔〕C.25 m D.75 m四.考题再练高考真题1.〔202xX高考〕某航母跑道长200m,飞机在航母上滑行的最大加速度为6m/s2,起飞需要的X速度为50m/s.那么,飞机在滑行前,需要借助弹射系统获得的最小初速度为〔〕A.5m/s B.10m/s C.15m/s D.20m/s【预测1】中国首架空客A380大型客机在最大重量的状态下起飞需要滑跑距离约3000m,着陆距离大约为202xm.设起飞滑跑和着陆时都是匀变速运动,起飞时速度是着陆时速度的1.5倍,则起飞滑跑时间和着陆滑跑时间之比是〔〕A.3∶2 B.1∶1 C.1∶2 D.2∶12.〔202x全国卷大纲版〕一客运列车匀速行驶,其车轮在铁轨间的接缝处会产生周期性撞击.坐在该客车中的某旅客测得从第1次到第16次撞击声之间的时间间隔为10.0s.在相邻的平行车道上有一列货车,当该旅客经过货车车尾时,货车恰好从静止开始以恒定加速度沿客车行进方向运动.该旅客在此后的20.0s内,看到恰好有30节货车车厢被他连续超过.每根铁轨的长度为25.0m,每节货车车厢的长度为16.0m,货车车厢间距忽略不计.求:⑴客车运行速度的大小;⑵货车运行加速度的大小【预测2】小明同学乘坐“和谐号〞动车组,觉察车厢内有速率显示屏.当动车组在平直轨道上经历匀加速、匀速与再次匀加速运行期间,他记录了不同时刻的速率,局部数据列于表格中.动车组的总质量M = 2.0×105kg,假设动车组运动时受到的阻力是其重力的0.1倍,取g = 10m/s2.在小明同学记录动车组速率这段时间内,求:⑴动车组的加速度值;⑵动车组牵引力的最大值;⑶动车组位移的大小.五.课堂演练自我提升t/s v/m·s-1 0 30 100 40 300 50 400 50 500 60 550 70 600 801.一个物体从静止开始做匀加速直线运动.它在第1 s内与第2 s内的位移之比为x1∶x2,在走完第1 m时与走完第2 m时的速度之比为v1∶v2.以下说法正确的选项是〔〕A.x1∶x 2 = 1∶3,v1∶v2 = 1∶2 B.x1∶x2 = 1∶3,v1∶v2 = 1∶ 2C.x1∶x2 = 1∶4,v1∶v2 = 1∶2 D.x1∶x2 = 1∶4,v1∶v2 = 1∶ 22.某做匀加速直线运动的物体初速度为2 m/s,经过一段时间t后速度变为6 m/s,则t/2时刻的速度为〔〕A.由于t未知,无法确定t/2时刻的速度B.5 m/sC.由于加速度a及时间t未知,无法确定t/2时刻的速度D.4 m/s3.科技馆里有一个展品,该展品放在暗处,顶部有一个不断均匀向下喷射水滴的装置,在频闪光源的照耀下,可以看到水滴好似静止在空中固定的位置不动,如下列图.某同学为计算该装置喷射水滴的时间间隔,用最小刻度为毫米的刻度尺测量了空中几滴水间的距离,由此可计算出该装置喷射水滴的时间间隔为〔g取10 m/s2〕〔〕A.0.01 s B.0.02 s C.0.1 s D.0.2 s4.做匀减速直线运动的物体经4 s后停止,假设在第1 s内的位移是14 m,则最后1 s内的位移是〔〕A.3.5 m B.2 m C.1 m D.05.沙尘暴天气会严峻影响交通.有一辆卡车以54 km/h的速度匀速行驶,司机突然模糊看到正前方十字路口一个老人跌倒〔假设没有人扶起他〕,该司机刹车的反响时间为0.6 s,刹车后卡车匀减速前进,最后停在老人前1.5 m处,预防了一场事故.刹车过程中卡车加速度大小为5 m/s2,则〔〕A.司机觉察情况后,卡车经过3 s停下B.司机觉察情况时,卡车与该老人的距离为33 mC.从司机觉察情况到停下来的过程,卡车的平均速度为11 m/sD.假设卡车的初速度为72 km/h,其他条件都不变,则卡车将撞到老人6.从地面竖直上抛一物体A,同时在离地面某一高度处有一物体B自由下落,两物体在空中同时到达同一高度时速度大小均为v,则以下说法正确的选项是〔〕A.A上抛的初速度与B落地时速度大小相等,都是2vB.两物体在空中运动的时间相等C.A上升的最大高度与B开始下落时的高度相同D.两物体在空中同时到达的同一高度处肯定是B开始下落时高度的中点7.一条东西方向的平直公路边上有两块路牌A、B,A在西B在东,一辆匀速行驶的汽车自东向西经过B路牌时,一只小鸟恰自A路牌向B匀速飞去,小鸟飞到汽车正上方马上折返,以原速率飞回A,过一段时间后,汽车也行驶到A.以向东为正方向,它们的位移-时间图像如下列图,图中t2 = 2t1,由图可知〔〕A.小鸟的速率是汽车速率的两倍B.相遇时小鸟与汽车位移的大小之比是3:1C.小鸟飞行的总路程是汽车的1.5倍D.小鸟和汽车在0-t2 时间内位移相等8.汽车刹车后,停止转动的轮胎在地面上发生滑动产生明显的滑动痕迹,即常说的刹车线.由刹车线长短可以得知汽车刹车前的速度大小,因此刹车线的长度是分析交通事故的一个重要依据.假设某汽车刹车后至停止的加速度大小为7 m/s2,刹车线长为14 m,求:⑴该汽车刹车前的初始速度v0的大小;⑵该汽车从刹车至停下来所用的时间t0;⑶在此过程中汽车的平均速度.参考答案:一.考点整理匀变速直线运动规律1.保持不变同反2.v0 + at v0t + at2/2 2ax 3.aT2(v0 + v t)/22220tvv4.1∶2∶3∶…∶n 12∶22∶32∶…∶n21∶3∶5∶…∶(2n–1) 1∶(2–1)∶(3–2)∶…∶(n–n-1) 1∶2∶3∶…∶n5.重力静止重力零g初速度为零的匀加速gt gt2/2 2gh gt/2 gT2二.思考与练习思维启动1.BCD;速度和加速度都是矢量,假设二者符号相同,物体就做加速运动,故B、D正确;假设二者符号相反,物体就做减速运动,故A错误,C正确.2.⑴第1 s,第2 s,第3 s……第6 s内的位移之比为1∶3∶5∶7∶9∶11,因此第3秒内的位移xⅢ=51+3+5+7+9+11×18 m = 2.5 m,⑵将6 s的时间分成2个3 s,前3 s内的位移x3=11+3×18 m=4.5 m.3.BC三.考点分类探讨典型问题例1如图,A为飞机着陆点,AB、BC分别为两个匀减速运动过程,C点停下.A到B过程,依据运动学规律有:x1 = v0t1–12a1t12,v B = v0–a1t1,B到C过程,依据运动学规律有:x2 = v B t2–12a2t22,0 = v B–a2t2,A到C过程,有:x = x1 + x2,联立解得:a2 = (v 0–a1t1)2/(2x + a1t12– 2 v0t1) t2 = (2x + a1t12– 2v0t1)/( v 0–a1t1)变式1 ⑴因为在前50 s内,加速度可以看做均匀变化,则加速度图线是倾斜的直线,它与时间轴所围的面积就表示该时刻的速度大小,所以有:v = (1/2)(15+20)×50 m/s = 875 m/s.⑵如果火箭是竖直发射的,在t = 10 s前看成匀加速运动,则t = 10 s时离地面的高度是h=at2/2 =(1/2)×15×102 m = 750 m,如果有一碎片脱落,它的初速度v1=at=150 m/s,离开火箭后做竖直上抛运动,有-h = v1t-12gt2,代入数据解得t=5(3+15) s,t′=5(3-15) s舍去.例2 法1:⑴上升过程,匀减速直线运动,取竖直向上为正方向,v0 = 20 m/s,a1 = –g,v = 0,依据匀变速直线运动公式:v2–v02 = 2ax,v= v0 + at,得物体上升的最大高度:H = v02/2a1 = v02/2g = 20 m;上升时间:t1 = v0/g = 2 s;下落过程,自由落体运动,取竖直向下为正方向.v02 = 0,a2 = g,回到抛出点时,x1 = H,到抛出点下方20 m处时,x2 = 40 m,依据自由落体公式,得下落到抛出点的时间:t2=2x1g =2×2010s=2 s,回到抛出点所用的时间为t = t1+t2 = 4 s.⑵下落到抛出点下方20 m处的时间:t2′=2x2g=2×4010s = 2 2 s;从抛出到落到抛出点下方20 m处所经历时间为t′ = t1 + t2′= 2(1+2) s.法2:⑴全过程分析,取向上为正方向,v0 = 20 m/s,a= –g,最大高度时v = 0,回到原抛出点时x1 =0 m,由匀变速运动公式得最大高度:H = v02/2g = 20 m,回到原抛出点:x1 = v0t–12gt2,t = 2 v0/g =4 s.⑵落到抛出点下方20 m处时,x = – 20 m:x = v0t2–12gt22,代入数据得:–20 = 20t2–12×10t22,解得⎩⎨⎧t2=〔2+22〕 s t2′=〔2-22〕 s.舍去.所以石子落到抛出点下方20 m 处所需时间t 2=2(1+2) s 变式2 A CD ;物体在塔顶上的A 点抛出,位移大小为10 m 的位置有两处,如下列图,一处在A 点之上,另一处在A 点之下,在A 点之上时,通过位移为10 m 处又有上升和下降两种过程,上升通过时,物体的路程s 1等于位移x 1的大小,即s 1=x 1=10 m ;下落通过时,路程s 2=2H -x 1=2×20 m -10 m =30 m ,在A 点之下时,通过的路程s 3=2H +x 2=2×20 m +10 m =50 m .故A 、C 、D 正确例3 B ;因汽车刹车后一直做匀减速直到运动速度为零为止,所以t = v 0/a = 50 s ,所以汽车刹车后在1 min内通过的位移为x = v 0t /2 = 250 m . 变式3 C ;因汽车做匀减速直线运动.由x = v 0t +12at 2得 9=v 0×1-12a ×12,9+7=v 0×2-12a ×22,解得v 0 = 10 m/s ,a = 2 m/s 2.汽车从刹车到停止所需时间t = v 0/a = 5s ;刹车后6 s 内的位移即5 s 内的位移x = v 0t – 12at 2,代入数据解得x = 25 m .四.考题再练 高考真题 1.B预测1:B ;由x = v t /2解得起飞滑跑时间和着陆滑跑时间之比是 t 1:t 2 =(x 1/x 2)(v 2/v 1) =1∶1,选项B 正确. 2.⑴ 设连续两次撞击铁轨的时间间隔为Δt ,每根铁轨长度为l ,则客车速度为v = l /Δt ,其中l = 25.0m 、Δt = 10.0/(16–1) s 得 v = 37.5m/s .⑵ 设从货车开始运动后t = 20.0s 内客车行驶了s 1米,货车行驶了s 2米,货车加速度为a ,30节货车车厢的总长度为L = 30×16.0m .由运动学公式有 s 1 = v t 、s 2 = at 2/2,由题给条件有L = s 1 – s 2,联立上述各式,并代入数据解得a = 1.35m/s 2.预测2:⑴ 通过记录表格可以看出,动车组有两个时间段处于加速状态,设加速度分别为a 1、a 2,由 a =Δv /Δt 代入数据后得a 1 = 0.1m/s 2、a 2 = 0.2m/s 2.⑵ 由牛顿第二定律 F - F f = Ma ,F f = 0.1Mg 当加速度大时,牵引力也大.代入数据得 F = F f + Ma 2 =2.4×105N .⑶ 通过作出动车组的 v – t 图可知,第—次加速运动的结束时刻是200s ,第二次加速运动的开始时刻是450s .x 1 = (v 1 + v 2)/2]t 1、x 2 = v 2t 2、x 3 = (v 2 + v 3)/2]t 3、x = x 1 + x 2 + x 3,代入数据解得x = 30250m .五.课堂演练 自我提升1.B ;由x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶xn =1∶3∶5∶…∶(2n – 1)知x 1∶x 2=1∶3,由x =12at 2知t 1∶t 2=1∶2,又v=at 可得v 1∶v 2=1∶2,正确.2.D ;中间时刻的速度等于这段时间内的平均速度,即v t/2 = (v 0 + v )/2 = 4 m/s3.C ;自上而下第—、二和三点之间的距离分别为x 1 = (10.00 – 1.00)×10-2 m = 9.00×10-2 m ,x 2 = (29.00 –10.00)×10-2 m =19.00×10-2 m ,依据公式Δx = aT 2得x 2–x 1 = gT 2,故T = 0.1 s . 4.B ;设加速度大小为a ,则开始减速时的初速度大小为v 0=at =4a ,第1 s 内的位移是x 1=v 0t 1-12at 12=3.5a = 14 m ,所以a =4 m/s 2,物体最后1 s 的位移是x =12at 22=2 m .此题也可以采纳逆向思维的方法,把物体的运动看做是初速度为零的匀加速直线运动,其在连续相邻相等时间内的位移之比为1∶3∶5∶7,第4 s 内的位移是14 m ,所以第1 s 内的位移是2 m .5.BD ;v 0=15 m/s ,故刹车后卡车做匀减速运动的时间t 2 = v 0/a = 3 s ,故卡车经过3.6 s 停下来,A 错误;卡车与该老人的距离x =v 0t 1 + v 02/2a +Δx =33 m ,B 正确;v 平 = (x –Δx )/(t 1 + t 2) =8.75 m/s ,C 错误;x ′ = v ′t 1 + v ′2/2a = 52 m > 33 m ,所以D 正确.6.AC ;设两物体从下落到相遇的时间为t ,竖直上抛物体初速度为v 0,由题gt = v 0 – gt = v 得v 0=2v .故A 正确.依据竖直上抛运动的对称性可知,B 自由落下到地面的速度为2v ,在空中运动时间为t B = 2v /2g ,A 竖直上抛,在空中运动时间t A = 2×(2v /g ) = 4v /g .故B 错误.物体A 能上升的最大高度h A = (2v )2/2g ,B 开始下落的高度h B =g (2v /g )2/2,显然两者相等.故C 正确.两物体在空中同时到达同一高度为h = gt 2/2 = g (v /g )2/2 = v 2/2g = h B /4.故D 错误.应选AC7.BC ;设AB 之间的距离为L ,小鸟的速率是v 1,汽车的速率是v 2,小鸟从出发到与汽车相遇的时间与返回的时间相同,故它们相向运动的时间为t 1/2,则在小鸟和汽车相向运动的过程中有v 1t 1/2 + v 2t 1/2 = L ,即〔v 1 + v 2〕t 1/2 = L ,对于汽车来说有v 2t 2 = L ;联立以上两式可得v 1 =3 v 2,故A 错误B 正确.汽车通过的总路程为x 2 = v 2t 2,小鸟飞行的总路程为x 1 = v 1t 1=3 v 2×(t 2/2) = (3/2)x 2,故C 正确.小鸟回到出发点,故小鸟的位移为0,故D 错误.应选BC .8.⑴ 由题意依据运动学公式v 2 – v 20 = 2ax 得– v 20 = 2ax 代入数据解得v 0 = 14 m/s . ⑵ 法1:由v = v 0 + at 0得t 0 = (v – v 0)/a = 2s ;法2:(逆过程) 由x = 12at 02 得t 0 =2xa= 2 s . ⑶ 法1:v 平均 = x /t = 7 m/s ;法2:v 平均 = (v 0 + v )/2 = 7 m/s .附:9.物体以肯定的初速度v 0冲上固定的光滑斜面,到达斜面X 点C 时速度恰为零,如下列图.物体第—次运动到斜面长度3/4处的B 点时,所用时间为t ,求物体从B 滑到C 所用的时间. 法1〔比例法〕:对于初速度为0的匀加速直线运动,在连续相等的时间里通过的位移之比为 x 1∶x 2∶x 3∶…∶x n = 1∶3∶5∶…∶(2n – 1),现有x BC ∶x AB = (x AC /4)∶(3x AC /4) = 1∶3,通过x AB 的时间为t ,故通过x BC 的时间t BC = t . 法2〔中间时刻速度法〕:中间时刻的瞬时速度等于这段位移的平均速度.v AC = (v 0 + 0)/2 = v 0/2,又v 02 =2ax AC ① v B 2 = 2ax BC ② x BC = x AC /4 ③ 解①②③得:v B = v 0/2,可以看出v B 正好等于AC 段的平均速度,因此B 点是中间时刻的位置.因此有t BC = t . 法3〔利用有关推论〕:对于初速度为0的匀加速直线运动,通过连续相等的各段位移所用的时间之比为 t 1∶t 2∶t 3∶…∶t n = 1∶(2-1)∶(3-2)∶(4-3)∶…∶(n-n -1).现将整个斜面分成相等的四段,如下列图.设通过BC段的时间为t x ,那么通过BD ,DE ,EA 的时间分别为:t BD = (2-1)t x ,t DE = (3-2)t x ,t EA = (2-3)t x ,又t BD + t DE + t EA = t ,得t x = t .v /m·s -1t/s100 200 300 400 500 600 20406080。
匀变速直线运动规律归纳总结目录一、匀变速直线运动概述 (2)1. 定义与特点 (2)2. 公式与定理 (3)二、基本公式及推导 (4)1. 速度公式 (4)2. 位移公式 (5)3. 加速度公式 (6)三、运动过程分析 (6)1. 匀加速直线运动 (7)(1)速度与时间关系 (8)(2)位移与时间关系 (8)2. 匀减速直线运动 (9)(1)速度与时间关系 (10)(2)位移与时间关系 (10)四、相关概念辨析与拓展 (11)1. 速度、加速度、力之间的关系分析 (13)2. 匀变速直线运动中的相对运动概念探讨 (14)五、实际应用举例与解题技巧 (14)1. 典型例题解析 (15)2. 解题技巧与思路梳理 (16)六、实验验证与操作技巧分享 (17)一、匀变速直线运动概述匀变速直线运动是一种基本的机械运动形式,其特点在于物体在一条直线上运动,且速度变化呈现均匀性。
在这种运动中,物体的加速度保持不变,方向也不变。
匀变速直线运动广泛存在于日常生活和各种科学领域,如物理学、工程学等。
对于理解物体的运动规律、力学原理以及解决相关问题具有重要意义。
匀变速直线运动的基本规律可以通过速度公式、位移公式和加速度公式来描述。
这些公式为我们提供了分析物体运动状态的基本工具,通过运用这些公式,我们可以对匀变速直线运动进行深入的研究,揭示其内在规律,并解决实际问题。
在实际生活中,许多运动现象可以近似为匀变速直线运动。
自由落体运动、竖直上抛运动等。
对于这些运动现象,我们可以通过匀变速直线运动规律进行分析和计算,从而得到较为准确的结果。
匀变速直线运动也是学习更复杂的运动形式(如曲线运动、变速运动等)的基础,掌握其概念和规律对于后续学习具有重要的帮助作用。
1. 定义与特点在物理学中,匀变速直线运动是指物体在一条直线上运动,并且其加速度保持不变的运动形式。
这种运动的特点在于,物体的速度随时间均匀变化,即加速度的大小和方向均不发生改变。
高考物理:匀变速直线运动三大规律总结
匀变速直线运动
如图所示,物体的v-t图像是一条平行于时间轴的直线,这表示物体的速度不随时间变化,它是匀速运动。
如图,由于v-t图像是一条倾斜的直线,无论△t 选什么区间,对应的速度v的变化量和时间t的变化量△t 的比
都是定值。
即物体的加速度保持不变,所以,物体在做加速度不变的运动。
沿着一条直线,且加速度保持不变的运动,叫做匀变速直线运动。
匀变速直线运动的v-t图像是一条倾直的直线。
在匀变速直线运动中,物体的速度随时间均匀增加,这个运动叫做匀加速直线运动。
加速度a与速度v方向相同。
物体的速度随时间均匀减小,这个运动叫做匀减速直线运动。
加速度a与速度方向相反。
速度与时间的关系
由于匀变速直线运动的v-t图像是一条倾斜直线。
我们把运动开始时刻到t时刻额时间间隔作为时间的变化量,而t 时刻的速度v与开始时刻的速度v0 。
之差就是速度的变化量。
△t= t-0
△v=v-v0
所以
v=v0+at
位移与时间
匀度直线运动的位移
它的位移和它的v-t图像之间的关系
做匀速直线运动的物体在时间t内的位移x=vt。
在它的v-t图像中着色的矩形的面积刚好是vt。
思考
对于匀变速直线运动,它的位移和它的v-t图像有没有类似的关系。
匀变速直线运动的位移
匀变速直线运动的v-t图像
在v-t图像中把所用时间t分割为非常多的小段,如图,当这些小矩形的宽足够小时,可以用这些小矩形的面积之和代表物体运动的位移。
那么途中紫色梯形的面积
把线条换成各自对应的物理量,则
又因为v=v0+at 代入上式
当初速度v0=0时,上式为
用图像表示位移
小车沿平直的公路作直线运动。
下图表示它从出发点的位移随时间变化的情况。
从图像可以看出,0到t1这段时间,小车位移不断增加,并且斜率为一定值,说明小车在做匀速直线运动。
在t1和t2之间,小车的位移不变,说明小车是静止的。
速度与位移
匀变速直线运动位移与速度的关系
匀变速直线运动问题中三个基本公式的选择
应用:三个基本公式及推论,一共四个公式,共涉及五个物理量( v0、 v、t、a、x)。
只要知道三个量,就可以求其他两个量。
匀变速直线运动两个特殊点的速度
①时间中点的瞬时速度
②位移中点的瞬时速度
比较大小——公式法
所以中间时刻瞬时速度总小于中间位移瞬时速度
习题练习
1.如图示A,B两个质点做直线运动的x-t图像,下面说法正确的是()
A 在运动过程中A质点比B质点快
B 当t1=t2时,两只点相遇
C 当t=t1时,两只点的速度相等
D 当t=t1时,A,B两质点的加速度都大于零
A B
有x-t图像可知质点A,B做匀速直线运动,且Va>Vb,计时时,B在A的前方。
在t=t1时,A,B两的位移相等,说明AB两质点相遇,t1后质点A超越质点B
2. 如图所示为上、下两端相距L=5m、倾角α=30°、始终以v=3m/s的速率顺时针转动的传送带(传送带始终绷紧).将一物体放在传送带的上端由静止释放滑下,经过t=2s 到达下端.重力加速度g取10m/s2,求:
(1)传送带与物体间的动摩擦因数多大?
(2)如果将传送带逆时针转动,速率至少多大时,物体从传送带上端由静止释放能最快地到达下端?
(1)传送带顺时针转动,物块下滑时受到的向上的滑动摩擦力,根据运动学基本公式及牛顿第二定律列式即可求解动摩擦因数;
(2)如果传送带逆时针转动,要使物体从传送带上端由静止释放能最快地到达下端,则需要物体有沿传送带向下的最大加速度即所受摩擦力沿传送带向下,根据牛顿第二定律求出最大加速度,再根据匀加速运动位移速度公式求解.
解析
(1)传送带顺时针转动,有题意得:
L=
解得:a=2.5m/s2
根据牛顿第二定律得:
mgsinα-μmgcosα=ma
解得:μ=
(2)如果传送带逆时针转动,要使物体从传送带上端由静止释放能最快地到达下端,则需要物体有沿传送带向下的最大加速度即所受摩擦力沿传送带向下,设此时传送带速度为v m,物体加速度为a'.
由牛顿第二定律得
mgsinα+F f=ma′
(2)如果传送带逆时针转动,要使物体从传送带上端由静止释放能最快地到达下端,则需要物体有沿传送带向下的最大加速度即所受摩擦力沿传送带向下,设此时传送带速度为v m,物体加速度为a'.
由牛顿第二定律得mgsinα+F f=ma′
而F f=μmgcosα
根据位移速度公式得:v m2=2La'
解得:vm=8.66m/s
答:
(1)传送带与物体间的动摩擦因数为0.29;
(2)如果将传送带逆时针转动,速率至少8.66m/s时,物体从传送带上端由静止释放能最快地到达下端.。