2021年分数乘法单位1的确定
- 格式:doc
- 大小:90.51 KB
- 文档页数:5
分数乘除法应用题解题方法总结汇总在小学数学中,分数乘除法应用题是一个重点和难点。
很多同学在面对这类题目时,常常感到困惑,不知道如何下手。
其实,只要掌握了正确的解题方法和思路,这类问题就能迎刃而解。
接下来,我将为大家详细总结分数乘除法应用题的解题方法。
一、分数乘法应用题1、求一个数的几分之几是多少这是分数乘法应用题中最常见的类型。
例如:“小明有 120 元零花钱,花去了 1/3,花了多少钱?”解题思路:单位“1”的量×分率=对应量在这个例子中,单位“1”的量是小明原有的 120 元零花钱,分率是1/3,所以用 120×1/3 = 40(元),即小明花了 40 元。
2、连续求一个数的几分之几是多少例如:“果园里有苹果树 180 棵,梨树的棵数是苹果树的 2/3,桃树的棵数是梨树的 3/4,桃树有多少棵?”解题思路:先求出梨树的棵数,即 180×2/3 = 120(棵),再求出桃树的棵数,120×3/4 = 90(棵)。
二、分数除法应用题1、已知一个数的几分之几是多少,求这个数例如:“一本书,已经看了 1/4,正好是 50 页,这本书共有多少页?”解题思路:对应量÷分率=单位“1”的量在这里,对应量是 50 页,分率是 1/4,所以用 50÷1/4 = 200(页),即这本书共有 200 页。
2、已知比一个数多(或少)几分之几的数是多少,求这个数例如:“一件衣服,现价 120 元,比原价降低了 1/5,原价是多少元?”解题思路:如果单位“1”的量未知,设单位“1”的量为 x,根据数量关系列出方程求解。
设原价为 x 元,则(1 1/5)x = 120,解得 x = 150 元。
三、解题关键1、找准单位“1”单位“1”是分数乘除法应用题中的关键。
通常情况下,“是”“比”“占”后面的量就是单位“1”。
例如“男生人数是女生人数的3/4”,这里女生人数就是单位“1”。
分数乘分数的计算算理较难理解,是学习的重点也是难点,关键是要明白分数乘分数中,第一个分数是第二个分数的单位“1”。
例如23×35,先涂23就是把一个长方形看作单位“1”,23就表示把它平均分成3份,把2份涂色,这就表示出了23,然后再以涂色的部分,也就是23为单位“1”,把它再分成5份,取其中的3份涂上另一种颜色,这块涂另一种颜色的就表示23的35是多少。
操作过程还能看出,两次平均分,相当于把长方体平均分成了3×5=15份,最后涂色的部分占整个长方形的25。
如右图:一个数乘分数的意义,就是求(这个数的几分之几是多少)。
反过来求一个数的几分之几是多少?就用乘法解决。
例如:35千克的25是( )千克,120米的13是( )米。
答案:35×25=14(千克),120×13=40(米)分数乘除法应用题解题思路解题技巧:一抓,二找,三确定,四对应。
1、一抓:抓住关键句——分率句:(含几分之几的句子)2、二找:找准单位“1”的量;(“的”前,“是、比、占等”后的量)3、三确定:确定单位“1”是已知还是未知(单位“1”已知用乘法,单位“1”未知用除法)4、四对应:找出相对应得数量于分率,列出算式。
(单位“1”的量×分率=分率对应量;分率对应量÷分率=单位“1”的量)以上四点难点在于如何找准单位“1”,除了(“的”前,“是、比、占、相当于”后的量);还可以通过分率是谁的,谁就是单位“1”来确定。
甚至当遇到如:某单位上个月计划用水43.5吨,实际节约了110,实际用水多少吨?之类的问题是,还可以用语文上的扩句,将“分率句”实际节约了110,扩成实际用水比计划用水节约了110,就出现了“比”字,进而快速断定计划用水是单位“1”。
2021-2022学年吉林省长春市榆树市北师大版六年级上册期末测试数学试卷学校:___________姓名:___________班级:___________考号:___________一、填空题1.1.5=()(填分数)=()%=()÷()=()∶()。
2.实际参加的人数比计划的多310,这里是把()作单位“1”,实际相当于计划的()。
3.在2:7中,如果比的前项增加6,要使比值不变,后项应增加()。
4.一个圆有()条对称轴,()是圆的对称轴。
5.一个立体图形从上面看到的形状是,从左面看到的形状是,搭这个立体图形至少需要()个,最多需要()个。
6.我们观察物体时,距离物体较近时,物体显得________;相反,距离物体较远时,物体显得________。
7.一个正方形的周长是47米,它的面积是()平方米。
8.小圆半径6厘米,大圆半径8厘米,大圆和小圆直径的比是(),周长的比是(),面积的比是()。
9.15千克比25千克少()%,比28吨多14是()吨。
10.五年一班有50人,今天缺席2人,出勤率是()%。
11.如图,有一辆小汽车在平坦的大路上行驶,前方有两座建筑物。
当小汽车行驶到位置①时,司机只能看到建筑物________,如果想看到另一个建筑物。
司机应把小汽车往________开。
二、判断题12.把11:23化成最简比是3:2,比值是32。
()13.从条形统计图中,可以清楚地看出各种数量的变化趋势。
()14.走同样的路,小红用了3小时,小兰用了4小时,小红和小兰的速度比是4:3。
()15.将一个圆通过切拼,转化成一个长方形,面积和周长没有变化。
()16.甲工厂人数比乙工厂多13,乙工厂人数就比甲工厂少13。
()17.如图,梯形的高是3厘米。
()三、选择题18.下面不可以写成百分数的是()。
A .王强的一步约长25米B .正方形的边长是周长的14C .甲数是乙数的1.5倍19.一袋大米吃掉30%后,还剩21千克,这袋大米共有()千克。
北师大版数学五年级下册章节复习知识点、达标训练附解析第三单元《分数乘法》知识点一:分数乘整数1.分数乘整数的意义:与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
2.分数乘整数的计算方法:分数的分子与整数相乘的积做分子,分母不变。
3. 分数乘整数,当整数与分母有共同的因数时,先约分,再计算比较简便。
4.一个整数乘一个真分数,积比这个整数小。
5.整数乘法中积与乘数的变化规律同样适用于分数乘法。
6.整数乘分数的意义:求一个数的几分之几是多少,用乘法计算。
7.整数乘分数的计算方法与分数乘整数的计算方法相同。
知识点二:解决“一个数比另一个数多(少)几分之几”的问题1.解决此类题的关键是理解“一个数比另一个数多(少)几分之几”的意思,即把另一个数看作单位“1”,多或少的部分占另一个数的几分之几。
2. 在解决多个单位“1”的实际问题时,首先要清楚每个分数分别对应的单位“1”的量,找准数量关系后再列式解答。
3. 打几折就是按原价的十分之几销售,即几折就是原价的十分之几。
已知原价和打几折,求现价,就是求原价的十分之几是多少,用乘法计算。
知识点三:分数乘以分数1.分数乘分数的意义:求一个分数的几分之几是多少,用乘法计算。
2.分数乘分数的计算方法:分子相乘的积做分子,分母相乘的积做分母,能约分的要约分。
3. 一个数(不为0)乘一个小于1的分数,积就小于这个数;乘等于1的分数,积就等于这个数;乘大于1的分数,积就大于这个数。
知识点四:倒数1.倒数是相对于两个数来说的,它们互相依存,可以说一个数是另一个数的倒数,不能孤立地说某一个数是倒数。
2.乘积为1的两个数互为倒数。
3.求一个数的倒数的方法:分子、分母交换位置。
求整数的倒数,可以先把整数看成分母是1的分数,再交换分子、分母的位置。
求小数的倒数,可以先把小数化成分数。
4. 1的倒数是它本身,0没有倒数。
一、精挑细选(共5题;每题2分,共10分)1. 两个相同的分数相乘,积是,这个分数是()。
如何确定分数乘除法应用题中的单位1(只要找出关键字,关键字后面的就是单位1)正确找准单位“1”,是解答分数(百分数)应用题的关键,每一道分数应用题中总是有关键句(含有分率的句子)。
如何从关键句中找准单位“1”,我觉得可以从以下这些方面进行考虑。
一、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。
再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。
解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。
二、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”、“正好”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多1/2。
就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。
在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
例如,一个长方形的宽是长的5/12。
在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。
又如,今年的产量相当于去年的4/3倍。
那么相当于后面的去年的产量就是标准量,也就是单位“1”。
三、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。
象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。
180分数乘除法问题的解决策略★ 任广慧在我们的小学数学的学习过程中,分数乘除法解决问题是其中的重点,又是难点。
它不仅在小学数学中起到非常重要的作用,也是初中深层次知识学习的基础,它对逻辑思维能力和解题能力都有很高的要求,所以很多同学在遇到这类问题时,经常混淆计算方法,找不到解题思路。
下面老师就来介绍几种解决策略,帮助大家突破难点,化繁为简。
一、找准单位“1”是基础找单位“1”是解决分数乘除法问题的基础,只有找准了单位“1",才能明确题目的数量关系,找到解决问题的方法。
那怎样来找单位“1"呢?单位“1”都藏在含有分率的句子中,我们把这个句子叫关键句。
它可以分为以下三种情况:1、标准句式直接找2、一般在“的”字前,“是”、“占”、“比”、“相当于”等字词后面的量是单位“1”。
这几个字叫关键字。
3、省略句式补充找如:现价降低4/7,没有关键字,我们就要根据这句话的意思补充成“现价(比原价)降低4/7",这时就回到了前面说的标准句式,“比”后面是“原价”就是单位“1”。
4、特殊句式慎重找5、有些关键句比较特殊,就像“吃去的比剩下的多总量的2/ 5”,这个关键句中,既出现了“的”,又出现了“比”,这就要仔细思考了。
当“比”和“的”都出现时,以“的”优先,所以单位“1”是总量,而不是剩下的量。
二、分清类型是关键找准单位“1”,就进入了解决问题的重要环节,分清类型,根据类型写出数量关系式,确定解题方法。
通过学习,我们知道分数乘除法解决问题可以分为三大类型,把它整理在下表格中。
通过表格,我们就可以看出第一种类型是分数乘法,后两种是分数除法,它们都有三个量单位“1”、比较量和对应分率,并已知其中两个量,求第三个。
那如何才能区分类型,确定方法呢?老师有妙招,只要区分问题,就能确定方法。
三、多种策略要灵活在解决实际问题时,除了上面的策略,还得学会从不同的方法入手,灵活解题。
1、从“量率对应”入手找出解题方法分数乘除法解决问题中,有“量率对应”的明显特点,对一个单位“1”来说,每个分率都对应着一个具体的数量,而每一个具体的数量,也同样对应着一个分率,因此,正确确定“量率对应”是解题的关键。