【原创】广州市2016届高三下学期高考数学模拟试题精选汇总:立体几何02 Word版含答案
- 格式:doc
- 大小:401.50 KB
- 文档页数:7
第一部分 2016高考试题立体几何1.【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是()(A)17π(B)18π(C)20π(D)28π2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A)20π(B)24π(C)28π(D)32π3.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.14.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)18+(B)54+(C)90 (D)815.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A )1233+π (B )133+π (C )136+π (D )16+π 6.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n7.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图338.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.9.【2016高考新课标2理数】 ,αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号)10.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .11.【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,αI 平面ABCD =m ,αI 平面AB B 1A 1=n ,则m 、n 所成角的正弦值为(A)2 (B )2 (C)3 (D)1312.【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )13.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3.14.【2016高考新课标1卷】(本小题满分为12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD , 90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60. (I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.15.【2016高考新课标2理数】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF∆沿EF 折到D EF '∆位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.16.【2016高考山东理数】在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(I )已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;CABDEF(II )已知EF =FB =12AC =AB =BC .求二面角F BC A --的余弦值.17.【2016高考江苏卷】(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥. 求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .18.【2016高考天津理数】(本小题满分13分)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2. (I )求证:EG ∥平面ADF ; (II )求二面角O -EF -C 的正弦值; (III )设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.19.【2016年高考北京理数】(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.20.【2016高考新课标3理数】如图,四棱锥P ABC -中,PA ⊥地面ABCD ,ADBC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I)证明MN平面PAB;(II)求直线AN与平面PMN所成角的正弦值.21.【2016高考浙江理数】(本题满分15分)如图,在三棱台ABC DEF-中,平面BCFE⊥平面ABC,=90ACB∠,BE=EF=FC=1,BC=2,AC=3.(I)求证:EF⊥平面ACFD;(II)求二面角B-AD-F的平面角的余弦值.22.【2016年高考四川理数】(本小题满分12分)如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=12AD,E为边AD的中点,异面直线PA与CD所成的角为90°.(Ⅰ)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(Ⅱ)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.E D CB PA23. 【2016高考上海理数】将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧。
2016年广州市普通高中毕业班模拟考试理科数学一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若全集U=R ,集合{}124xA x =<<,{}10B x x =-≥,则U A B I ð=(A ){}12x x << (B ){}01x x <≤ (C ){}01x x << (D ){}12x x ≤< (2)已知,a b ∈R ,i 是虚数单位,若i a -与2i b +互为共轭复数,则()2i =a b +(A )3+4i (B )5+4i (C )34i - (D )54i - (3)下列说法中正确的是(A )“(0)0f =”是“函数()f x 是奇函数”的充要条件(B )若2000:,10p x x x ∃∈-->R ,则2:,10p x x x ⌝∀∈--<R(C )若p q ∧为假命题,则p ,q 均为假命题(D )命题“若6απ=,则1sin 2α=”的否命题是“若6απ≠,则1sin 2α≠”(4)已知()f x 在R 上是奇函数,且满足()()4f x f x +=,当()0,2x ∈时,()22f x x =,则()7f =(A ) 2 (B )2- (C )98- (D )98 (5)执行如图所示的程序框图,输出的结果为(A )()22-, (B )()40-,(C )()44--,(D )()08-,(6)各项均为正数的等差数列{}n a 中,3694=a a ,则前12项和12S 的最小值为(A )78 (B )48 (C )60(D )72(7)一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1的四分之一圆周和两条半径,则这个 几何体的体积为 (A)12 (B)6π (C)4π (D)3π(8)已知3sin 5ϕ=,且2ϕπ⎛⎫∈π ⎪⎝⎭,,函数()sin()(0)f x x ωϕω=+>的图像 的相邻两条对称轴之间的距离等于2π,则4f π⎛⎫⎪⎝⎭的值为 (A )35- (B )45- (C )35 (D )45(9)若实数,x y 满足约束条件220,240,2,x y x y y --≤⎧⎪+-≥⎨⎪≤⎩则x y 的取值范围是(A )2,23⎡⎤⎢⎥⎣⎦ (B )13,22⎡⎤⎢⎥⎣⎦ (C )3,22⎡⎤⎢⎥⎣⎦(D )[]1,2(10)过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若2FB FA =uu r uu r,则此双曲线的离心率为(A(B(C )2 (D(11)将5位同学分别保送到北京大学,上海交通大学,中山大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有(A ) 150种 (B ) 180种 (C ) 240种 (D )540种 (12)已知ABC ∆的三个顶点A ,B ,C 的坐标分别为())()0,1,,0,2-,O 为坐标原点,动点P 满足1CP =uu r,则OA OB OP ++uu r uu u r uu u r 的最小值是(A1 (B1 (C1 (D1 二.填空题:本大题共4小题,每小题5分.(13)已知向量a ,b 满足||4=b ,a 在b 方向上的投影是12,则=a b . (14)已知()1cos 3θ+π=-,则sin 22θπ⎛⎫+= ⎪⎝⎭ . (15)102a x ⎫⎪⎭展开式中的常数项为180,则a = .(16)已知()y f x =为R 上的连续可导函数,且()()0xf x f x '+>,则函数()()1g x xf x =+()0x >的零点个数为___________.三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)设n S 为数列{}n a 的前n 项和,已知12a =,对任意*n ∈N ,都有()21n n S n a =+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列4(2)n n a a ⎧⎫⎨⎬+⎩⎭的前n 项和为n T ,求证:112n T ≤<.(18)(本小题满分12分) 如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠= ,1,D D 分别是线段11,BC B C 的中点,过线段AD 的中点P 作BC 的平行线,分别交AB ,AC 于点M ,N .(Ⅰ)证明:MN ⊥平面11ADD A ;(Ⅱ)求二面角1A A M N --的余弦值.ABCDPMN A 1B 1C 1D 1(19)(本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(Ⅰ)求在未来4年中,至多1年的年入流量超过120的概率;(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;若某台发电机运行,则该台发电机年利润为5000万元;若某台发电机未运行,则该台发电机年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?(20)(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆221221x y C a b +=:()1a b >≥的离心率e =1C 上一点M 到点()30,Q 的距离的最大值为4.(Ⅰ)求椭圆1C 的方程;(Ⅱ)设1016A ⎛⎫⎪⎝⎭,,N 为抛物线22x y C =:上一动点,过点N 作抛物线2C 的切线交椭圆1C 于B ,C 两点,求ABC ∆面积的最大值.(21)(本小题满分12分)已知函数()e xf x ax =-(e 为自然对数的底数,a 为常数)在点()0,1处的切线斜率为1-.(Ⅰ)求a 的值及函数()x f 的极值; (Ⅱ)证明:当0>x 时,2e xx <;(III )证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,0x x ,恒有2e xx c <.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号. (22)(本小题满分10分)选修4—1:几何证明选讲如图90ACB ∠=︒,CD AB ⊥于点D ,以BD 为直径的圆O 与BC 交于点E (Ⅰ)求证:BC CE AD DB ⋅=⋅;(Ⅱ)若4BE =,点N 在线段BE 上移动,90ONF ∠=o ,NF 与O e 相交于点F ,求NF 的最大值.(23)(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线1C :1,12x t y t =+⎧⎨=-⎩(t 为参数)与曲线2C :cos 3sin x a y θθ=⎧⎨=⎩,(θ为参数,0a >).(Ⅰ)若曲线1C 与曲线2C 有一个公共点在x 轴上,求a 的值;(Ⅱ)当3a =时,曲线1C 与曲线2C 交于A ,B 两点,求A ,B 两点的距离.(24)(本小题满分10分)选修4—5:不等式选讲已知定义在R 上的函数()||||f x x m x =-+,*m ∈N ,存在实数x 使()2f x <成立.(Ⅰ)求实数m 的值;(Ⅱ)若,1αβ>,()()2f f αβ+=,求证:4192αβ+≥.016年广州市普通高中毕业班模拟考试理科数学答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一.选择题(1)C (2)A (3)D (4)B (5)B (6)D (7)A (8)B(9)B(10)C(11)A(12)A二.填空题(13)2(14)79- (15)2或2- (16)0 (其中第15题中,答对2个给5分,答对1个给3分)三.解答题(17)证明:(Ⅰ)因为()21n n S n a =+,当2≥n 时,112n n S na --=,两式相减,得()121n n n a n a na -=+-, 即()11n n n a na --=, 所以当2≥n 时,11n n a a n n -=-. 所以11n a a n =. 因为12a =,所以2n a n =. (Ⅱ)因为2n a n =,4(2)n n n b a a =+,*∈N n ,所以41112(22)(1)1n b n n n n n n ===-+++.所以12n n T b b b =+++ 1111112231n n ⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭=1111nn n -=++. 因为101n >+,所以1111n -<+. 因为()11f n n =+在*N 上是单调递减函数,所以111n -+在*N 上是单调递增函数.所以当1n =时,n T 取最小值21.所以112n T ≤<.广东数学教师QQ 群:179818939。
广东省2016届高三数学理一轮复习专题突破训练立体几何2016年广东省高考将采用全国卷,下面是近三年全国卷的高考试题及2015届广东省部分地区的模拟试题,供同学们在复习时参考。
立体几何在全国卷中占据着重要的位置,既在选择或填空题出现,又在解答题中出现,一般考试2-3题,既考查立体几何知识,又考试立体几何知识在实际问题中的应用。
一、选择、填空题1、(2015年全国I卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有()A.14斛B.22斛C.36斛D.66斛2、(2015年全国I卷)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。
若该几何体的表面积为16 + 20 ,则r=(A )1(B )2(C )4(D )83、(2014年全国I 卷)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .B .C .6D .44、(2013年全国I 卷)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 35、(2013年全国I 卷)某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C .1616π+D .816π+6、(佛山市2015届高三二模)已知a , b , c 均为直线,α, β为平面.下面关于直线与平面关系的命题:(1)任意给定一条直线a 与一个平面α,则平面α内必存在与a 垂直的直线;(2)任意给定的三条直线a , b , c ,必存在与a , b , c 都相交的直线; (3)α//β,βα⊂⊂b a , ,必存在与a , b 都垂直的直线; (4)βαβαβα⊂⊂=⊥b a c , , , ,若a 不垂直c ,则a 不垂直b .其中真命题的个数为( )A . 1B . 2C .3D .47、(广州市2015届高三二模).如图2,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是ABC.3D.28、(华南师大附中2015届高三三模)某三棱锥的三视图如图二所示,正视图、侧视图均为直角三角形,则该三棱锥的四个面中,面积最大的面的面积是*** .9、(惠州市2015届高三4月模拟)多面体MN ABCD的底面ABCD矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的体积为 ( )A.163BC.203D.610、(茂名市2015届高三二模)某三棱锥的三视图如图所示,则该几何体的体积为().A.23B.43C.83D.411、(梅州市2015届高三一模)若某几何体的三视图如右图所示,则此几何体的体积等于A、30B、12C、24D、422 24A B CDM N12、(汕头市2015届高三二模)某师傅用铁皮制作一封闭的工件,其三视图如图所示(单位长度:cm ,图中水平线与竖线垂直),则制作该工件用去铁皮的面积为(制作过程中铁皮的损耗和厚度忽略不计)A.(21003cmB. (22003cmC. (23003cm +D. 2300cm13、(深圳市2015届高三二模)如图1,已知某品牌墨水瓶的外形三视图和尺寸,则该墨水瓶的容积为(瓶壁厚度忽略不计)A .π8+B .π48+C .π16+D .π416+14、(汕尾市2015届高三上期末)已知直线l ⊥平面α,直线m ⊆平面β,则下列四个结论:①若//αβ,则l m ⊥ ②若αβ⊥,则//l m③若//l m ,则αβ⊥ ④若l m ⊥,则//αβ。
2016年高考数学联考模拟试题分项版 专题6 立体几何 文(含解析)1.【2016高考新课标1文数】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π 【答案】A 【解析】考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键. 2.【2016高考新课标1文数】平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为( )(A (B (C(D )13【答案】A【解析】【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.3.【2016高考上海文科】如图,在正方体ABCD−A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()(A)直线AA1 (B)直线A1B1(C)直线A1D1 (D)直线B1C1【答案】D【解析】考点:1.正方体的几何特征;2.直线与直线的位置关系.【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好的考查考生分析问题解决问题的能力、空间想象能力等. 4.【2016高考浙江文数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n 【答案】C 【解析】试题分析:由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .考点:线面位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.5.【2016高考天津文数】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.6. [2016高考新课标Ⅲ文数]如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)18+(B)54+(C)90 (D)81【答案】B【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积S=⨯⨯+⨯⨯+⨯⨯=+,故选B.2362332354考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.7.【2016高考山东文数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )12+π33(B )1+π33(C )1+π36(D )1+π6【答案】C 【解析】考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等. 8.【2016高考山东文数】已知直线a ,b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面b 相交”的( )(A )充分不必要条件(B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A 【解析】考点:1.充要条件;2.直线与平面的位置关系.【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及直线与平面的位置关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、空间想象能力等.9. [2016高考新课标Ⅲ文数]在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π(C )6π (D )323π【答案】B 【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.10.【2016高考浙江文数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80;40. 【解析】考点:三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积.11.【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD ∠ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______.【答案】9【解析】试题分析:设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得AC ,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC垂直的直线为z 轴,建立空间直角坐标系,由2A ,(2B ,(0,2C -,作DH AC⊥于H,翻考点:异面直线所成角.【思路点睛】先建立空间直角坐标系,再计算与C A 平行的单位向量n 和D 'B ,进而可得直线C A 与D 'B 所成角的余弦值,最后利用三角函数的性质可得直线C A 与D 'B 所成角的余弦值的最大值.12.【2016高考四川文科】已知某三菱锥的三视图如图所示,则该三菱锥的体积 .侧视图俯视图【解析】考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.13.【2016高考北京文数】某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3.2【解析】试题分析:四棱柱高为1,底面为等腰梯形,面积为13(12)122⨯+⨯=,因此体积为3.2考点:三视图【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.14.【2016高考新课标1文数】(本题满分12分)如图,在已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE【答案】(I )见解析(II )作图见解析,体积为43【解析】所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得,PA PB =,从而G 是AB 的中点.(II )在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,⊥PB PC ,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(I )知,G 是AB 的中点,所以D 在CG 上,故2.3=CD CG 由题设可得⊥PC 平面PAB ,⊥DE 平面PAB ,所以//DE PC ,因此21,.33==PE PG DE PC由已知,正三棱锥的侧面是直角三角形且6=PA ,可得2,==DE PE在等腰直角三角形EFP 中,可得 2.==EF PF所以四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V 考点:线面位置关系及几何体体积的计算【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.15.[2016高考新课标Ⅲ文数]如图,四棱锥P ABC -中,PA ⊥平面ABCD ,AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN 平面PAB ;(II )求四面体N BCM -的体积.【答案】(Ⅰ)见解析; 【解析】(Ⅱ)因为⊥PA 平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为PA 21. ....9分 取BC 的中点E ,连结AE .由3==AC AB 得BC AE ⊥,522=-=BE AB AE . 由BC AM ∥得M 到BC 的距离为5,故525421=⨯⨯=∆BCM S , 所以四面体BCM N -的体积354231=⨯⨯=∆-PA S V BCM BCM N . .....12分 考点:1、直线与平面间的平行与垂直关系;2、三棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又推出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解.16.【2016高考北京文数】(本小题14分)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥(I )求证:DC PAC ⊥平面;(II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(III )存在.理由见解析.【解析】所以C P ⊥AB .所以AB ⊥平面C PA .所以平面PAB ⊥平面C PA .考点:空间垂直判定与性质;空间想象能力,推理论证能力【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等. 17.【2016高考山东文数】(本小题满分12分)在如图所示的几何体中,D是AC的中点,EF∥DB.(I)已知AB=BC,AE=EC.求证:AC⊥FB;(II)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.【答案】(Ⅰ))证明:见解析;(Ⅱ)见解析.【解析】B考点:1.平行关系;2.垂直关系.【名师点睛】本题主要考查直线与直线垂直、直线与平面平行.此类题目是立体几何中的基本问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,给出规范的证明.本题能较好的考查考生的空间想象能力、逻辑推理能力及转化与化归思想等.18.【2016高考天津文数】(本小题满分13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF||AB,AB=2,BC=EF=1,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证://FG 平面BED ;(Ⅱ)求证:平面BED⊥平面AED ;(Ⅲ)求直线EF 与平面BED 所成角的正弦值.【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅲ)65 【解析】试题分析:(Ⅰ)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行寻找与论证,往往结合平几知识,如本题构造一个平行四边形:取BD 的中点为O ,可证四边形OGFE 是平行四边形,从而得出OE FG //(Ⅱ)面面垂直的证明,一般转化为证线面垂直,而线面垂直的证明,往往需多次利用线面垂直判定与性质定理,而线线垂直的证明有时需要利用平几条件,如本题可由余弦定理解出090=∠ADB ,即AD BD ⊥(Ⅲ)求线面角,关键作出射影,即面的垂线,可利用面面垂直的性质定理得到线面垂直,即面的垂线:过点A 作DE AH ⊥于点H ,则⊥AH 平面BED ,从而直线AB 与平面BED 所成角即为ABH ∠.再结合三角形可求得正弦值试题解析:(Ⅰ)证明:取BD 的中点为O ,连接OG OE ,,在BCD ∆中,因为G 是BC 的中点,所以DC OG //且121==DC OG ,又因为DC AB AB EF //,//,所以OG EF //且OG EF =,即四边形OGFE 是平行四边形,所以OE FG //,又⊄FG 平面BED ,⊂OE 平面BED ,所以//FG 平面BED .考点:直线与平面平行和垂直、平面与平面垂直、直线与平面所成角【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.19.【2016高考浙江文数】(本题满分15分)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(I)求证:BF⊥平面ACFD;(II)求直线BD与平面ACFD所成角的余弦值.【答案】(I)证明见解析;(II.【解析】考点:空间点、线、面位置关系、线面角.【方法点睛】解题时一定要注意直线与平面所成的角的范围,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.20.【2016高考上海文科】(本题满分12分)将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC 长为56π ,11A B 长为3π,其中B 1与C 在平面AA 1O 1O 的同侧. (1)求圆柱的体积与侧面积;(2)求异面直线O 1B 1与OC 所成的角的大小.【答案】(1;(2)2π. 【解析】考点:1.几何体的体积;2.空间的角.【名师点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,将空间问题转化成平面问题.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好的考查考生的空间想象能力、逻辑推理能力\转化与化归思想及基本运算能力等.21.【2016高考四川文科】(12分)如图,在四棱锥P-ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC=∠PAB=90°,12BC CD AD ==.D CBAP(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(II)证明:平面PAB⊥平面PBD.【答案】(Ⅰ)取棱AD的中点M,证明详见解析;(Ⅱ)证明详见解析. 【解析】(I)取棱AD的中点M(M∈平面PAD),点M即为所求的一个点.理由如下:因为AD‖BC,BC=12AD,所以BC‖AM, 且BC=AM.所以四边形AMCB是平行四边形,从而CM‖AB.又AB⊂平面PAB,CM ⊄平面PAB,所以CM∥平面PAB.(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)考点:线面平行、线线平行、线线垂直、线面垂直.【名师点睛】本题考查线面平行、面面垂直的判断,考查空间想象能力、分析问题的能力、计算能力.证明线面平行时,可根据判定定理的条件在平面内找一条平行线,而这条平行线一般是由过面外的直线的一个平面与此平面相交而得,证明时注意定理的另外两个条件(线在面内,线在面外)要写全,否则会被扣分,求线面角(以及其他角),证明面面垂直时,要证线面垂直,要善于从图形中观察有哪些线线垂直,从而可能有哪个线面垂直,确定要证哪个线线垂直,切忌不加思考,随便写.第二部分 2016优质模拟试题1. 【2016吉林长春质量监测二】几何体三视图如图所示,则该几何体的体积为A. 323B. 2163π-C. 403D. 8163π- 【答案】C 【解析】该几何体可视为长方体挖去一个四棱锥,所以其体积为14022422233⨯⨯-⨯⨯⨯=. 故选C.2. 【2016安徽省“江南十校”联考】某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为(A) 416π++(B) 516π++(C) 416π++(D) 516π++【答案】D【解析】由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为16242=⨯⨯,两个底面面积之和为3232212=⨯⨯⨯;半圆柱的侧面积为ππ44=⨯,两个底面面积之和为ππ=⨯⨯⨯21212,所以几何体的表面积为32165++π,故选D3. 【2016年大连市高三双基测试卷】已知互不重合的直线,a b ,互不重合的平面,αβ,给出下列四个命题,错误..的命题是( ) (A )若a //α,a //β,b αβ=,则a //b (B)若βα⊥,a α⊥,β⊥b ,则b a ⊥(C)若βα⊥,γα⊥,a =γβ ,则a α⊥ (D)若α//β,a //α,则a //β 【答案】D4. .【2016东北三省三校联考】已知三棱锥ABC P -,若PA ,PB ,PC 两两垂直,且2=PA ,1==PC PB ,则三棱锥ABC P -的内切球半径为 . 【答案】14【解析】由题意,设三棱锥P ABC -的内切球的半径为r ,球心为O ,则由等体积B PAC O PAB O PAC O ABC V V V V ----=++ 可得1111 211213232r ⨯⨯⨯⨯=⨯111132r +⨯⨯⨯⨯1132+⨯⨯r ,∴14r =.。
2016年广东省广州市高考数学二模试卷(理科)(解析版)2016年广东省广州市高考数学二模试卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|﹣1<x<1},N={x|x2<2,x∈Z},则A.M?N B.N?M C.M∩N={0} D.M∪N=N 2.已知复数z=,其中i为虚数单位,则|z|= A.B.1 C.D.2 )的值是3.已知cos=,则sin ,且P=,则P=A.B.C.D.5.不等式组b)的解集记为D,若A.﹣4 B.﹣1 C.1 6.使n展开式中含有常数项的n 的最小值是C.5 D.6 )的图象的一个对称中心为,则函7.已知函数f=sin0<φ<数f的单调递减区间是A.[2kπ﹣C.[kπ﹣,2kπ+,kπ+] B.[2kπ+,2kπ+] ]D.[kπ+,kπ+] 8.已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为R.AB=AC=2,∠BAC=120°,则球O 的表面积为A.π B.π C.π D.π ,则下列命题9.已知命题p:?x∈N*,x≥x,命题q:?x∈N*,2x+21﹣x=2中为真命题的是A.p∧q B.C.p∧D.∧q ∧10.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积是第1页A.4+6π B.8+6π C.4+12π D.8+12π 11.已知点O为坐标原点,点M在双曲线C:x2﹣y2=λ上,过点M作双曲线C 的某一条渐近线的垂线,垂足为N,则|ON|?|MN|的值为A.B.C.λ D.无法确定12.设函数f的定义域为R,f=f,f=f,当x∈[0,1]时,f =x3.则函数g=|cos|﹣f在区间[﹣,]上的所有零点的和为A.7 B.6 C.3 D.2 二.填空题:本大题共4小题,每小题5分.13.曲线f=+3x在点)处的切线方程为______.14.已知平面向量与的夹角为,=,|﹣2|=2.则||=______.15.已知中心在坐标原点的椭圆C的右焦点为F,点F关于直线y=x的对称点在椭圆C上,则椭圆C的方程为______.16.在△ABC中,a,b,c分别为内角A,B,C的对边,a+c=4,tan=sinA,则△ABC 的面积的最大值为______.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.设Sn是数列{an}的前n项和,已知a1=3,an+1=2Sn+3 求数列{an}的通项公式;令bn=an,求数列{bn}的前n项和Tn.18.班主任为了对本班学生的考试成绩进行分折,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.如果按照性别比例分层抽样,可以得到多少个不同的样本?如果随机抽取的7名同学的数学,物理成绩对应如表: 2 3 4 5 6 7学生序号i 1 数学成绩60 65 70 75 85 87 90 xi 物理成绩70 77 80 85 90 86 93 yi 若规定85分以上为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;第2页根据上表数据,求物理成绩y关于数学成绩x的线性回归方程;若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:回归直线的方程是:,其中b=,a=.76 83 812 526 19.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB ⊥平面BCD.求证:CD⊥AM;若AM=BC=2,求直线AM与平面BDM所成角的正弦值.20.已知点F,点A是直线l1:x=﹣1上的动点,过A 作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P.求点P的轨迹C的方程;若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求的取值范围.21.已知函数f=e﹣x ﹣ax.当a=﹣1时,求函数f的最小值;若x≥0时,f+ln≥1,求实数a的取值范围;求证:.四.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-1:几何证明选讲] 22.如图,四边形ABCD是圆O的内接四边形,AB是圆O 的直径,BC=CD,AD的延长线与BC 的延长线交于点E,过C作CF⊥AE,垂足为点F.证明:CF是圆O的切线;若BC=4,AE=9,求CF的长.第3页[选修4-4:坐标系与参数方程] 23.在直角坐标系xOy 中,曲线C的参数方程为.以点O 为极=.点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin将曲线C和直线l化为直角坐标方程;设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.[选修4-5:不等式选讲] 24.已知函数f=log2.当a=7时,求函数f的定义域;若关于x的不等式f≥3的解集是R,求实数a的最大值.第4页2016年广东省广州市高考数学二模试卷参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|﹣1<x<1},N={x|x2<2,x∈Z},则A.M?N B.N?M C.M∩N={0} D.M ∪N=N 【考点】集合的包含关系判断及应用.【分析】N={x|x2<2,x∈Z}={﹣1,0,1},从而解得.【解答】解:N={x|x2<2,x∈Z}={﹣1,0,1},故M∩N={0},故选:C.2.已知复数z=,其中i为虚数单位,则|z|= A.B.1 C.D.2 【考点】复数求模.【分析】先根据复数的运算法则化简,再根据计算复数的模即可.【解答】解:z=∴|z|=1,故选:B.3.已知cos=,则sin的值是===,【考点】三角函数的化简求值.【分析】已知及诱导公式即可计算求值.【解答】解:cos=sin[﹣]=sin=,故选:A.4.已知随机变量x服从正态分布N ,且P=,则P=A.B.C.D.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据对称性,P=的概率可求出P=P=,即可求出P.【解答】解:∵P=,第5页∴P=1﹣= ∴P=P=,∴P=P﹣P=﹣= 故选B.5.不等式组b)的解集记为D,若A.﹣4 B.﹣1 C.1 D.4 【考点】简单线性规划.【分析】题意作平面区域,从而可得当a=﹣2,b=0时有最小值,从而求得.【解答】解:题意作平面区域如下,,结合图象可知,当a=﹣2,b=0,即过点A时,z=2a﹣3b 有最小值为﹣4,故选:A.6.使n 展开式中含有常数项的n的最小值是C.5 D.6 【考点】二项式定理的应用.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出n与r的关系值,即可求得n的最小值.【解答】解:n展开式的通项公式为Tr+1=??x2n﹣5r,令2n ﹣5r=0,求得2n=5r,可得含有常数项的n的最小值是5,故选:C.第6页7.已知函数f=sin0<φ<数f的单调递减区间是A.[2kπ﹣C.[kπ﹣,2kπ+,kπ+] B.[2kπ+,2kπ+] )的图象的一个对称中心为,则函] D.[kπ+,kπ+] 【考点】正弦函数的图象.【分析】题意和函数的对称性待定系数可得函数解析式,可得单调递减区间.【解答】解:题意可得sin,≤2kπ+可得kπ+≤x≤kπ+,+φ)=0,故2×可得φ=,+φ=kπ,∴f=sin的单凋递减区间为[kπ+故选:D.,kπ+],k∈Z.8.已知球O的半径为R,A,B,C三点在球O 的球面上,球心O到平面ABC的距离为R.AB=AC=2,∠BAC=120°,则球O 的表面积为A.π B.π C.π D.π 【考点】球的体积和表面积.【分析】利用余弦定理求出BC的长,进而正弦定理求出平面ABC 截球所得圆的半径,结合球心距,求出球的半径,代入球的表面积公式,可得答案.【解答】解:在△ABC中,∵AB=AC=2,∠BAC=120°,∴BC= =2,正弦定理可得平面ABC 截球所得圆的半径,r==2,又∵球心到平面ABC的距离d=R,∴球O的半径R=∴R2=第7页,故球O的表面积S=4πR2=故选:D.π,9.已知命题p:?x∈N*,x≥x,命题q:?x∈N*,2x+21﹣x=2,则下列命题中为真命题的是A.p∧q B.C.p∧D.∧q ∧【考点】复合命题的真假.【分析】命题p:利用指数函数的性质可得:是真命题;命题q:2x+21﹣x=22﹣2?2x+2=0,解得2x=,化为:,∴x=,即可判断出真假,再利用复合命题真假的判定方法即可得出.【解答】解:命题p:?x ∈N*,x≥x,利用指数函数的性质可得:是真命题;命题q:2x+21﹣x=2,化为:2﹣2?2x+2=0,解得2x=,∴x=,因此q是假命题.则下列命题中为真命题的是P∧,故选:C.10.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积是A.4+6π B.8+6π C.4+12π D.8+12π 【考点】三视图求面积、体积.【分析】根据三视图知几何体是组合体:下面是半个圆柱、上面是一个以圆柱轴截面为底的四棱锥,并求出圆柱的底面半径、母线,四棱锥的高和底面边长,代入体积公式求值即可.【解答】解:根据三视图知几何体是组合体,下面是半个圆柱、上面是一个以圆柱轴截面为底的四棱锥,圆柱的底面半径为2,母线长为3;四棱锥的高是2,底面是边长为4、3的矩形,∴该几何体的体积V==6π+8,故选:B.11.已知点O为坐标原点,点M在双曲线C:x2﹣y2=λ上,过点M 作双曲线C的某一条渐近线的垂线,垂足为N,则|ON|?|MN|的值为A.B.C.λ D.无法确定第8页【考点】双曲线的简单性质.【分析】设M,即有m2﹣n2=λ,求出双曲线的渐近线为y=±x,运用点到直线的距离公式,结合勾股定理可得|ON|,化简整理计算即可得到所求值.【解答】解:设M,即有m2﹣n2=λ,双曲线的渐近线为y=±x,可得|MN|=,勾股定理可得|ON|===,可得|ON|?|MN|=?==.故选:B.12.设函数f的定义域为R,f=f,f=f,当x∈[0,1]时,f =x3.则函数g=|cos|﹣f在区间[﹣,]上的所有零点的和为A.7 D.2 【考点】函数零点的判定定理.【分析】根据f的对称性和奇偶性可知f在[﹣,]上共有3条对称轴,x=0,x=1,x=2,根据三角函数的对称性可知y=|cos|也关于x=0,x=1,x=2对称,故而g在[﹣,]上3条对称轴,根据f和y=|cos|在[0,1]上的函数图象,判断g在[﹣,]上的零点分布情况,利用函数的对称性得出零点之和.【解答】解:∵f=f,∴f关于x=1对称,∵f=f,∴f根与x=0对称,∵f=f=f,∴f=f,∴f是以2为周期的函数,∴f在[﹣,]上共有3条对称轴,分别为x=0,x=1,x=2,又y=|cos关于x=0,x=1,x=2对称,∴x=0,x=1,x=2为g的对称轴.作出y=|cos|和y=x3在[0,1]上的函数图象如图所示:B.6 C.3 第9页图象可知g在和上各有1个零点.∴g在[﹣,]上共有6个零点,设这6个零点从小到大依次为x1,x2,x3,…x6,则x1,x2关于x=0对称,x3,x4关于x=1对称,x5,x6关于x=2对称.∴x1+x2=0,x∴x1+x2+x+x4=2,x5+x6=4,+x4+x5+x6=6.故选:B.二.填空题:本大题共4小题,每小题5分.13.曲线f=+3x在点)处的切线方程为y=x+4 .【考点】利用导数研究曲线上某点切线方程.【分析】求函数的导数,利用导数的几何意义进行求解即可.【解答】解:函数的导数f′=﹣+3,则f′=﹣2+3=1,即切线斜率k=1,∵f=2+3=5,∴切点坐标为,则切线方程为y﹣5=x﹣1,即y=x+4,故答案为:y=x+4 14.已知平面向量与的夹角为,=,|﹣2|=2.则||= 2 .【考点】平面向量数量积的运算.【分析】对|﹣2|=2两边平方得出关于||的方程,即可解出.【解答】解:||=2,∵|﹣2|=2,∴2=第10页=||,,即4||2﹣4||+4=12,解得||=2.故答案为:2.15.已知中心在坐标原点的椭圆C的右焦点为F,点F关于直线y=x的对称点在椭圆C上,则椭圆C的方程为【考点】椭圆的简单性质.【分析】设椭圆的方程为++=1 .=1,题意可得c=1,设点F关于直线y=x的对称点为,两直线垂直的条件:斜率之积为﹣1,以及中点坐标公式,解方程可得a,b,进而得到椭圆方程.【解答】解:设椭圆的方程为题意可得c=1,即a2﹣b2=1,设点F关于直线y=x的对称点为,可得=﹣2,且n=?,+=1,解得m=,n=,即对称点为.代入椭圆方程可得解得a2=,b2=,+=1,可得椭圆的方程为+=1.故答案为:+=1.16.在△ABC中,a,b,c 分别为内角A,B,C的对边,a+c=4,tan=sinA,则△ABC的面积的最大值为.【考点】余弦定理;正弦定理.【分析】使用半角公式化简条件式,利用正弦定理得出a,b,c的关系,使用海伦公式和基本不等式得出面积的最大值.【解答】解:在△ABC 中,∵tan=sinA,∴第11页=sinA,即2sinB=sinA+sinAcosB+cosAsinB=sinA+s inC,∴2b=a+c=4,∴b=2.∵a+c=4,∴a=4﹣c.∴S=∵≤==1,∴S≤.故答案为:.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.设Sn是数列{an}的前n项和,已知a1=3,an+1=2Sn+3 求数列{an}的通项公式;令bn=an,求数列{bn}的前n项和Tn.【考点】数列的求和;数列递推式.【分析】利用递推关系与等比数列的通项公式即可得出;利用“错位相减法”与等比数列的其前n项和公式即可得出.【解答】解:∵an+1=2Sn+3,∴当n≥2时,an=2Sn﹣1+3,∴an+1﹣an=2=2an,化为an+1=3an.∴数列{an}是等比数列,首项为3,公比为3.∴an=3n.bn=an=?3n,∴数列{bn}的前n项和Tn=3+3×32+5×33+…+?3n,3Tn=32+3×33+…+?3n+?3n+1,∴﹣2Tn=3+2﹣?3n+1=2n)?3n+1﹣6,∴Tn=?3n+1+3.18.班主任为了对本班学生的考试成绩进行分折,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.如果按照性别比例分层抽样,可以得到多少个不同的样本?如果随机抽取的7名同学的数学,物理成绩对应如表: 2 3 4 5 6 7 学生序号i 1 数学成绩60 65 70 75 85 87 90 xi 物理成绩70 77 80 85 90 86 93 yi 若规定85分以上为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;根据上表数据,求物理成绩y关于数学成绩x的线性回归方程;若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?第12页﹣3﹣?3n+1=根据分层抽样的定义建立比例关系即可得到结论.ξ的取值为0,1,2,3,计算出相应的概率,即可得ξ的分布列和数学期望.根据条件求出线性回归方程,进行求解即可.【解答】解:依据分层抽样的方法,24名女同学中应抽取的人数为18名男同学中应抽取的人数为故不同的样本的个数为.18=3名,名,解:∵7名同学中数学和物理成绩均为优秀的人数为3名,∴ξ的取值为0,1,2,3.∴P==,P==,P==,P==,∴ξ的分布列为ξ 0 1 2 P Eξ=0×+1× 3 +3×,a==.=83﹣×75=.+2×解:∵b=∴线性回归方程为=+ 当x=96时,=×96+=96.可预测该同学的物理成绩为96分.19.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB ⊥平面BCD.求证:CD⊥AM;若AM=BC=2,求直线AM与平面BDM所成角的正弦值.第13页【考点】直线与平面所成的角;空间中直线与直线之间的位置关系.【分析】取CD的中点O,连接OB,OM,则可证OM∥AB,CD⊥OM,CD⊥OB得出CD⊥平面ABOM,于是CD⊥AM;以O为原点建立空间直角坐标系,求出和平面BDM的法向量,则直线AM与平面BDM所成角的正弦值为|cos<>|.【解答】证明:取CD的中点O,连接OB,OM.∵△BCD是等边三角形,∴OB⊥CD.∵△CMD是等腰直角三角形,∠CMD=90°,∴OM ⊥CD.∵平面CMD⊥平面BCD,平面CMD∩平面BCD=CD,OM?平面CMD,∴OM⊥平面BCD.又∵AB⊥平面BCD,∴OM∥AB.∴O,M,A,B四点共面.∵OB∩OM=O,OB?平面OMAB,OM?平面OMAB,∴CD⊥平面OMAB.∵AM?平面OMAB,∴CD⊥AM.作MN⊥AB,垂足为N,则MN=OB.∵△BCD是等边三角形,BC=2,∴,CD=2.在Rt△ANM 中,∵△CMD是等腰直角三角形,∠CMD=90°,∴..∴AB=AN+NB=AN+OM=2.以点O 为坐标原点,以OC,BO,OM为坐标轴轴建立空间直角坐标系O﹣xyz,则M,,D,.∴,,.设平面BDM的法向量为=,n?,n?,∴,令y=1,得=.设直线AM与平面BDM所成角为θ,第14页则==.∴直线AM与平面BDM所成角的正弦值为.20.已知点F,点A是直线l1:x=﹣1上的动点,过A作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P.求点P的轨迹C的方程;若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求的取值范围.【考点】直线与圆锥曲线的综合问题.【分析】点P到点F的距离等于它到直线l1的距离,从而点P的轨迹是以点F为焦点,直线l1:x=﹣1为准线的抛物线,此能求出曲线C的方程.设P,点M,点N,直线PM的方程为x﹣y++m=0,△PMN的内切圆的方程为x2+y2=1,圆心到直线PM的距离为1,x0>1,得m2+2y0m﹣=0,同理,,此利用韦达定理、弦长公式、直线斜率,结合已知条件能求出的取值范围.【解答】解:∵点F,点A是直线l1:x=﹣1上的动点,过A 作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P,∴点P到点F的距离等于它到直线l1的距离,∴点P的轨迹是以点F为焦点,直线l1:x=﹣1为准线的抛物线,∴曲线C的方程为y2=4x.设P,点M,点N,直线PM的方程为:y﹣m=,化简,得x﹣y++m=0,∵△PMN的内切圆的方程为x2+y2=1,∴圆心到直线PM的距离为1,即=1,∴=第15页,题意得x0>1,∴上式化简,得m2+2y0m﹣=0,同理,有∴m,n是关于t的方程t2+2y∴m+n=,mn=,,t﹣=0的两根,∴|MN|=|m﹣n|==,∵,|y0|=2,∴|MN|==2,直线PF的斜率,则k=||=,∴==,∵函数y=x﹣在上单调递增,∴,∴,∴0<∴<.的取值范围是.21.已知函数f=e﹣x﹣ax.当a=﹣1时,求函数f的最小值;若x≥0时,f+ln≥1,求实数a 的取值范围;求证:.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值;得到ex+ax+ln﹣1≥0.令g=ex+ax+ln﹣1,通过讨论a的范围,确定函数的单调性,从而求出满足条件的a的具体范围即可;第16页令a=2,得到,从而证出结论.【解答】解:当a=﹣1时,f=e ﹣x+x,则.…1分令f’=0,得x=0.当x<0时,f’<0;当x >0时,f’>0.…2分∴函数f在区间上单调递减,在区间上单调递增.∴当x=0时,函数f取得最小值,其值为f=1.…3分若x≥0时,f+ln≥1,即ex+ax+ln﹣1≥0.令g=ex+ax+ln﹣1,则.①若a≥﹣2,知e﹣x+x≥1,即e﹣x≥1﹣x,故ex≥1+x.∴∴函数g在区间[0,+∞)上单调递增.∴g≥g=0.∴式成立.…5分②若a<﹣2,令,.…4分则∴函数φ在区间[0,+∞)上单调递增.于φ=2+a<0,..…6分故?x0∈,使得φ=0.…7分则当0<x<x0时,φ<φ=0,即g’<0.∴函数g在区间上单调递减.∴g<g=0,即式不恒成立.…8分综上所述,实数a的取值范围是[﹣2,+∞)....9分证明:知,当a=﹣2时,g=ex﹣2x+ln ﹣1在[0,+∞)上单调递增.则,即....10分∴∴. (11)分,即.…12分.第17页四.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-1:几何证明选讲] 22.如图,四边形ABCD是圆O的内接四边形,AB是圆O 的直径,BC=CD,AD的延长线与BC 的延长线交于点E,过C作CF⊥AE,垂足为点F.证明:CF是圆O的切线;若BC=4,AE=9,求CF的长.【考点】与圆有关的比例线段;圆的切线的判定定理的证明.【分析】连接OC,AC,证明:AE∥OC,利用CF⊥AE,可得CF⊥OC,即可证明CF是圆O的切线;割线定理:EC?EB=ED?EA,且AE=9,得【解答】证明:连接OC,AC,∵BC=CD,∴∠CAB=∠CAD.…1分∵AB是圆O的直径,∴OC=OA.∴∠CAB=∠ACO....2分∴∠CAD=∠ACO.∴AE∥OC....3分∵CF⊥AE,∴CF⊥OC....4分∴CF是圆O的切线....5分解:∵AB是圆O的直径,∴∠ACB=90°,即AC⊥BE.∵∠CAB=∠CAD,∴点C为BE的中点.∴BC=CE=CD=4....6分割线定理:EC?EB=ED?EA,且AE=9. (7)分得.…8分,利用勾股定理求CF的长.在△CDE中,CD=CE,CF⊥DE,则F为DE的中点.∴.…9分在Rt△CFD 中,.…10分第18页∴CF的长为.[选修4-4:坐标系与参数方程] 23.在直角坐标系xOy中,曲线C的参数方程为.以点O为极=.点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin将曲线C和直线l化为直角坐标方程;设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】曲线C的参数方程为曲线C的直角坐标方程.ρsin利用cos2θ+sin2θ=1可得,,点解法1:于点Q是曲线C上的点,则可设点Q的坐标为Q到直线l的距离为d=.利用三角函数的单调性值域即可得出.解法2:设与直线l平行的直线l’的方程为x+y=m,与椭圆方程联立消去y得4x2﹣6mx+3m2﹣3=0,令△=0,解得m即可得出.【解答】解:解:曲线C的参数方程为∴曲线C 的直角坐标方程为ρsin可得,化简得,ρsinθ+ρcosθ=2,∴x+y=2.∴直线l的直角坐标方程为x+y=2.解法1:于点Q是曲线C上的点,则可设点Q的坐标为点Q到直线l的距离为=.,当时,.第19页∴点Q 到直线l的距离的最大值为.解法2:设与直线l平行的直线l’的方程为x+y=m,,消去y得4x2﹣6mx+3m2﹣3=0,令△=2﹣4×4×=0,解得m=±2.∴直线l’的方程为x+y=﹣2,即x+y+2=0.∴两条平行直线l与l’之间的距离为∴点Q到直线l的距离的最大值为[选修4-5:不等式选讲] ..24.已知函数f=log2.当a=7时,求函数f的定义域;若关于x的不等式f≥3的解集是R,求实数a的最大值.【考点】对数函数的图象与性质;其他不等式的解法.【分析】a=7时便可得出x满足:|x+1|+|x﹣2|>7,讨论x,从而去掉绝对值符号,这样便可求出每种情况x的范围,求并集即可得出函数f的定义域;f≥3即可得出|x+1|+|x﹣2|≥a+8恒成立,而可求出|x+1|+|x﹣2|≥3,这样便可得出3≥a+8,解出该不等式即可得出实数a的最大值.【解答】解:题设知:|x+1|+|x﹣2|>7;①当x>2时,得x+1+x﹣2>7,解得x>4;②当1≤x≤2时,得x+1+2﹣x>7,无解;③当x<﹣1时,得﹣x﹣1﹣x+2>7,解得x<﹣3;∴函数f的定义域为∪;解:不等式f≥3,即|x+1|+|x﹣2|≥a+8;∵x∈R时,恒有|x+1|+|x﹣2|≥|﹣|=3;又不等式|x+1|+|x ﹣2|≥a+8解集是R;∴a+8≤3,即a≤﹣5;∴a的最大值为﹣5.第20页2016年10月6日第21页。
2016年广州市普通高中毕业班模拟考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若全集U=R ,集合{}124xA x =<<,{}10B x x =-≥,则U A B I ð=(A ){}12x x << (B ){}01x x <≤ (C ){}01x x << (D ){}12x x ≤< (2)已知,a b ∈R ,i 是虚数单位,若i a -与2i b +互为共轭复数,则()2i =a b +(A )3+4i (B )5+4i (C )34i - (D )54i - (3)下列说法中正确的是(A )“(0)0f =”是“函数()f x 是奇函数”的充要条件(B )若2000:,10p x x x ∃∈-->R ,则2:,10p x x x ⌝∀∈--<R(C )若p q ∧为假命题,则p ,q 均为假命题(D )命题“若6απ=,则1sin 2α=”的否命题是“若6απ≠,则1sin 2α≠”(4)已知()f x 在R 上是奇函数,且满足()()4f x f x +=,当()0,2x ∈时,()22f x x =,则()7f =(A ) 2 (B )2- (C )98- (D )98 (5)执行如图所示的程序框图,输出的结果为(A )()22-, (B )()40-,(C )()44--,(D )()08-,(6)各项均为正数的等差数列{}n a 中,3694=a a ,则前12项和12S 的最小值为(A )78 (B )48 (C )60(D )72(7)一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2开始x =1,y =1,k =0s =x -y ,t =x +y x =s ,y =tk =k +1k ≥3输出(x ,y )结束是否的直角三角形,俯视图是半径为1的四分之一圆周和两条半径,则这个 几何体的体积为 (A(Bπ (C(Dπ (8)已知3sin 5ϕ=,且2ϕπ⎛⎫∈π ⎪⎝⎭,,函数()sin()(0)f x x ωϕω=+>的图像 的相邻两条对称轴之间的距离等于2π,则4f π⎛⎫⎪⎝⎭的值为 (A )35- (B )45- (C )35 (D )45(9)若实数,x y 满足约束条件220,240,2,x y x y y --≤⎧⎪+-≥⎨⎪≤⎩则x y 的取值范围是(A )2,23⎡⎤⎢⎥⎣⎦ (B )13,22⎡⎤⎢⎥⎣⎦ (C )3,22⎡⎤⎢⎥⎣⎦(D )[]1,2(10)过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若2FB FA =uu r uu r,则此双曲线的离心率为(A(B(C )2 (D(11)将5位同学分别保送到北京大学,上海交通大学,中山大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有(A ) 150种 (B ) 180种 (C ) 240种 (D )540种 (12)已知ABC ∆的三个顶点A ,B ,C 的坐标分别为())()0,1,,0,2-,O 为坐标原点,动点P 满足1CP =uu r ,则OA OB OP ++uu r uu u r uu u r的最小值是(A1 (B1- (C1 (D1第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题:本大题共4小题,每小题5分.(13)已知向量a ,b 满足||4=b ,a 在b 方向上的投影是12,则=g a b . (14)已知()1cos 3θ+π=-,则sin 22θπ⎛⎫+= ⎪⎝⎭ .(15)102a x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为180,则a = .(16)已知()y f x =为R 上的连续可导函数,且()()0xf x f x '+>,则函数()()1g x xf x =+()0x >的零点个数为___________.三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)设n S 为数列{}n a 的前n 项和,已知12a =,对任意*n ∈N ,都有()21n n S n a =+.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列4(2)n n a a ⎧⎫⎨⎬+⎩⎭的前n 项和为nT ,求证:112n T ≤<.(18)(本小题满分12分)如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=o,1,D D分别是线段11,BC B C 的中点,过线段AD 的中点P 作BC 的平行线,分别交AB ,AC 于点M ,N . (Ⅰ)证明:MN ⊥平面11ADD A ; (Ⅱ)求二面角1A A M N --的余弦值.(19)(本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频ABCDPMNA 1B 1C 1D 1率作为相应段的概率,并假设各年的年入流量相互独立. (Ⅰ)求在未来4年中,至多1年的年入流量超过120的概率;(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;若某台发电机运行,则该台发电机年利润为5000万元;若某台发电机未运行,则该台发电机年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?(20)(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆221221x y C a b +=:()1a b >≥的离心率2e =,且椭圆1C 上一点M 到点()30,Q 的距离的最大值为4. (Ⅰ)求椭圆1C 的方程;(Ⅱ)设1016A ⎛⎫⎪⎝⎭,,N 为抛物线22x y C =:上一动点,过点N 作抛物线2C 的切线交椭圆1C 于B ,C 两点,求ABC ∆面积的最大值.(21)(本小题满分12分)已知函数()e xf x ax =-(e 为自然对数的底数,a 为常数)在点()0,1处的切线斜率为1-.(Ⅰ)求a 的值及函数()x f 的极值; (Ⅱ)证明:当0>x 时,2e xx <;(III )证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,0x x ,恒有2e xx c <.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号.(22)(本小题满分10分)选修4—1:几何证明选讲如图90ACB ∠=︒,CD AB ⊥于点D ,以BD 为直径的圆O与BC 交于点E . (Ⅰ)求证:BC CE AD DB ⋅=⋅;(Ⅱ)若4BE =,点N 在线段BE 上移动,90ONF ∠=o,NF 与O e 相交于点F ,求NF 的最大值.(23)(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线1C :1,12x t y t =+⎧⎨=-⎩(t 为参数)与曲线2C :cos 3sin x a y θθ=⎧⎨=⎩,(θ为参数,0a >).(Ⅰ)若曲线1C 与曲线2C 有一个公共点在x 轴上,求a 的值;(Ⅱ)当3a =时,曲线1C 与曲线2C 交于A ,B 两点,求A ,B 两点的距离.(24)(本小题满分10分)选修4—5:不等式选讲已知定义在R 上的函数()||||f x x m x =-+,*m ∈N ,存在实数x 使()2f x <成立. (Ⅰ)求实数m 的值;(Ⅱ)若,1αβ≥,()()4f f αβ+=,求证:413αβ+≥.2016年广州市普通高中毕业班模拟考试理科数学答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一.选择题(1)C (2)A (3)D (4)B (5)B (6)D (7)A (8)B(9)B(10)C(11)A(12)A二.填空题(13)2(14)79- (15)2或2- (16)0 (其中第15题中,答对2个给5分,答对1个给3分)三.解答题(17)证明:(Ⅰ)因为()21n n S n a =+,当2≥n 时,112n n S na --=,两式相减,得()121n n n a n a na -=+-, 即()11n n n a na --=, 所以当2≥n 时,11n n a a n n -=-. 所以11n a a n =. 因为12a =,所以2n a n =. (Ⅱ)因为2n a n =,4(2)n n n b a a =+,*∈N n ,所以41112(22)(1)1n b n n n n n n ===-+++.所以12n n T b b b =+++L 1111112231n n ⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭L =1111nn n -=++. 因为101n >+,所以1111n -<+.因为()11f n n =+在*N 上是单调递减函数, 所以111n -+在*N 上是单调递增函数. 所以当1n =时,n T 取最小值21.所以112n T ≤<.广东数学教师QQ 群:179818939。
1 / 17广东省广州市2016年普通高中毕业班模拟考试理科数学试题2016.1注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若全集U=R ,集合124xAx ,10B x x ,则U A B I e =(A )12x x (B )01x x(C )01x x(D )12x x (2)已知,a bR ,i 是虚数单位,若i a 与2i b 互为共轭复数,则2i=a b (A )3+4i (B )5+4i(C )34i (D )54i(3)下列说法中正确的是(A )“(0)0f ”是“函数()f x 是奇函数”的充要条件(B )若20:,10p x xx R ,则2:,10p x xx R (C )若p q 为假命题,则p ,q 均为假命题(D )命题“若6,则1sin2”的否命题是“若6,则1sin2”(4)已知f x 在R 上是奇函数,且满足4f xf x,当0,2x 时,22f xx ,则7f (A )2(B )2(C )98(D )98(5)执行如图所示的程序框图,输出的结果为(A )22,(B )40,(C )44,(D )08,(6)各项均为正数的等差数列n a 中,3694a a ,则前12项和12S 的最小值为(A )78(B )48(C )60(D )72开始x=1,y=1,k=0s =x -y ,t=x+yx=s ,y=tk=k+1k ≥3输出(x ,y)结束是否。
集合一、选择题1.已知集合,,则()A .B .C .D .2.(天津市新华中学2012届高三上学期第二次月考理科数学)设集合{1}A x x a x R =-<∈,,B={x|1<x<5,x∈R},若A ⋂B=φ,则实数a 的取值范围是()A .{a|0≤a≤6}B .{a|a≤2,或a≥4}C .{a|a≤0,或a≥6}D .{a|2≤a≤4}3.已知集合2A={|log <1},B={x|0<<c}x x x ,若=A B B ,则c 的取值范围是()A .(0,1]B .[1,+)∞C .(0,2]D .[2,+)∞二、填空题4.若不等式4+-2+1x m x ≥对一切非零实数x 均成立,记实数m 的取值范围为M .已知集合{}=A x x M ∈,集合{}2=--6<0B x R x x ∈,则集合=A B ___________.5.设集合是A={32|()=83+6a f x x ax x -是(0,+∞)上的增函数},5={|=,[-1,3]}+2B y y x x ∈,则()R A B ð=;6.己知集合222{|28},{|240}x x A x B x x mx -=<=+-<,若{|11},{|43}A B x x A B x x =-<<=-<< ,则实数m 等于__________.7.(天津市天津一中2013届高三上学期第三次月考数学理试题)设集合{}1,R A x x a x =-<∈,{}15,R B x x x =<<∈,若∅=B A ,则实数a 取值范围是___________.三、解答题8.已知={()|1},B={()|3,0x 3}2A x,y y =-x +mx -x,y x+y =≤≤,若AB ⋂是单元素集,求实数m 的取值范围.参考答案一、选择题1.【答案】B【解析】{(3)0}{03}P x x x x x =-<=<<,={2}{22}Q x x x x <=-<<,所以{02}(0,2)P Q x x =<<= ,选B.2.【答案】C【解析】{1}{11}A x x a x R x a x a =-<∈==-<<+,,因为=A B φ ,所以有15a -≥或11a +≤,即6a ≥或0a ≤,选C.3.【答案】D 【解析】2{log 1}{01}A x x x x =<=<<.因为A B B = ,所以A B ⊆.所以1c ≥,即[1,)+∞,选B.二、填空题4.{}-1<3x x ≤;5.【答案】(,1)(4,)-∞+∞ 【解析】2()=2466f 'x x ax -+,要使函数在(0,)+∞上是增函数,则2()=24660f 'x x ax -+>恒成立,即14a x x <+,因为144x x +≥=,所以4a ≤,即集合{4}A a a =≤.集合5={|=,[-1,3]}+2B y y x x ∈{15}y x =≤≤,所以{14}A B x x ⋂=≤≤,所以()=R A B ð(,1)(4,)-∞+∞ .6.【答案】32222{|28}{|230}{13}x x A x x x x x x -=<=--<=-<<,因为{|11},{|43}A B x x A B x x =-<<=-<< ,所以由数轴可知{|41}B x x =-<<,即4,1-是方程2240x mx +-=的两个根,所以4123m -+=-=-,解得32m =。
2016届广州二模高考模拟试卷(文数)2016届广州二模高考模拟试卷数 学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数321iz i i =+-(i 为虚数单位)的共轭复数为( )(A )12i + (B )1i - (C )1i - (D )12i -(2)已知集合{}1,0=A ,{}A y A x y x z z B ∈∈+==,,,则B 的子集..个数为( ) (A )3 (B )4 (C )7 (D )8(3)已知2.12=a ,8.021-⎪⎭⎫⎝⎛=b ,2log 25=c ,则c b a ,,的大小关系为( )(A )a b c << (B )b a c << (C ) c a b << (D )a c b <<(4)已知向量(a =r,()3,b m =r,若向量b r 在ar 方向上的投影为3,则实数m =( )(A )3 (B )3- (C (D )-(5)设nS 为等差数列{}na 的前n 项和,且65101=-+a aa ,则11S =( )(A )55 (B )66 (C )110 (D )132(6)已知34cos sin =+θθ)40(πθ<<,则θθcos sin -的值为( )(A )32 (B )32- (C )31(D )31-(7)已知圆O :224x y +=上到直线:l x y a +=的距离等于1的点恰有3个,则实数a 的值为( )(A(B(C ) (D -或(8)某程序框图如图所示,该程序运行后输出的S 的值是( )(A )1007 (B )2015 (C )2016 (D )3024(9)已知双曲线122=-my x 与抛物线x y 82=的 一个交点为P ,F 为抛物线的焦点,若5=PF , 则双曲线的渐近线方程为( )(A )03=±y x (B )3=±y x (C )02=±y x (D )2=±y x(10)记数列{}na 的前n 项和为nS ,若2(1)4nn S a n++=,则na =( )(A )2nn (B )12-⋅n n (C )nn 2⋅(D )12n n -(11)某几何体的三视图如图,其正视图中的曲线部分为半个圆弧,则该几何体的表面积为( ) (A )π42616++ (B )π32616++俯视图(C)π42610++(D)π32610++(12)如图,偶函数()x f的图象如字母M,奇函数()x g的图象如字母N,g实根个数分别为m、n)(A)18(C)14 (D)12第Ⅱ卷本卷包括必考题和选考题两部分。
立体几何02
三、解答题
1.如图,四棱柱
1111D C B A A B C D -的底面A B C D
是平行四边形,且1=AB ,2=BC ,060=∠ABC ,E 为BC 的中点, ⊥1AA 平面ABCD .
(Ⅰ)证明:平面⊥AE A 1平面DE A 1;
(Ⅱ)若E A DE 1=,试求异面直线AE 与D A 1所成角的余弦值; (Ⅲ)在(Ⅱ)的条件下,试求二面角1--C A D E 的余弦值.
2.如图,直三棱柱ABC-A 1B 1C 1中∠ACB=90°,M,N 分别为A 1B,B 1C 1的中点,BC=AA 1=2AC=2,求证:
(1)求三棱柱C 1-A 1CB 的体积;
(2)求直线A 1C 与直线MB 1所成角的余弦值;
(3)求平面B 1MN 与平面A 1CB 所成锐二面角的余弦值
.
A
B
C
D
E
1
A 1
B 1
C 1
D
3.已知四棱锥P-ABCD 的底面为直角梯形,AB∥DC,⊥=∠PA DAB ,90
底面ABCD,
且PA=AD=DC=
2
1
AB=1,M 是PB 的中点. (Ⅰ)证明:面PAD⊥面PCD; (Ⅱ)求AC 与PB 所成角的余弦值;
(Ⅲ)求面AMC 与面BMC 所成二面角的余弦值.
4.如图,已知四棱锥E-ABCD 的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=
2
(1)求证:平面EAB⊥平面ABCD (2)求二面角A-EC-D 的余弦值
5.在长方体1111ABCD A B C D -中,1AB BC ==,12AA =,E 为1BB 中点.(Ⅰ)证明:
1AC D E ⊥;
(Ⅱ)求DE 与平面1AD E 所成角的正弦值;(Ⅲ)在棱AD 上是否存在一点P ,使得BP ∥平面1AD E ?若存在,求DP 的长;若不存在,说明理由.
D 1
C 1
B 1
A 1
E
D C
B
A
答案
三、解答题
1.解(Ⅰ)依题意,CD AB BC EC BE ===
=2
1
所以ABE ∆是正三角形,0
60=∠AEB 又00030)120180(2
1
=-⨯=
∠CED 所以0
90=∠AED ,AE DE ⊥
因为⊥1AA 平面ABCD ,⊂DE 平面ABCD ,所以DE AA ⊥1 因为A AE AA = 1,所以⊥DE 平面AE A 1
因为⊂DE 平面DE A 1,所以平面⊥AE A 1平面 DE A 1
(Ⅱ)取1BB 的中点F ,连接EF 、AF ,连接C B 1,则D A C B EF 11//// 所以AEF ∠是异面直线AE 与D A 1所成的角 因为3=DE ,2211AE A A E A +=
,
所以21=
A A ,22
=
BF ,2
6121=+==EF AF 所以6
6
2cos 222=
⨯⨯-+=∠EF AE AF EF AE AEF
(Ⅰ)(Ⅱ)解法2:以A 为原点,过A 且垂直于BC 的直线为x 轴,AD 所在直线为y 轴、
1AA 所在直线为z 建立右手系空间直角坐标系
设a AA =1(0>a ),)0 , 0 , 0(A 则)0 , 2 , 0(D ) , 0 , 0(1a A )0 , 2
1
, 23(
E (Ⅰ)设平面AE A 1的一个法向量为) , , (1p n m n =,
则⎪⎩⎪⎨⎧==⋅=+=⋅0
02123111ap AA n n m n 0=p ,取1=m ,则3-=n ,从而)0 , 3 , 1(1-=n ,
同理可得平面DE A 1的一个法向量为)2
, 1 , 3(2a
n =, 直接计算知021=⋅n n ,所以平面⊥AE A 1平面DE A 1 (Ⅱ)由E A DE 1=即22222)2
1
()23(0)212()23(a ++=+-+ 解得2=
a
)0 , 2
1
, 23(
=AE ,)2 , 2 , 0(1-=A 所以异面直线AE 与D A 1所成角的余弦值
6
6cos 11=
=
θ (Ⅲ)由(Ⅱ)可知21=A A ,平面DE A 1
的一个法向量为2n =
又1=,02CD ⎛⎫ ⎪ ⎪⎝⎭ ,)2 , 2 , 0(1-=D A 设平面1CA D 的法向量()3=,,n x y z 则133=0=0
A D n CD n ⎧⋅⎪⎨⋅⎪⎩
得(3=n
设二面角1--C A D E 的平面角为ϕ,且ϕ为锐角
则232323
cos =cos ,=n n n n n n ϕ⋅
5所以二面角1--C A D E
2.解:
(1)
3
2=
V --------------4 (2)
5
5------------8
(3)
5
3
------------------13
3.
4.解:(1)证明:取AB 的中点O,连接EO,CO
∴==,2EB AE △AEB 为等腰直角三角形
∴EO⊥AB,EO=1
又∵AB=BC,∠ABC=60°,∴△ABC 是等边三角形,
3=∴CO ,又CO EO CO EO EC EC ⊥∴+=∴=,,2222
∵EO⊥平面ABCD,又EO ⊂平面EAB,∴平面EAB⊥平面ABCD
(2)以AB 的中点O 为坐标原点,OB 所在直线为y 轴,OE 所在直线为z 轴,如图建系则
)1,0,0(),0,2,3(),0,0,3(),0,1,0(E D C A --,)1,0,3(),0,1,3(-==,=(
0,2,0)
设平面DCE 的法向量为)1,,(y x n =,则⎪⎩⎪⎨⎧=⋅=⋅00
n EC ,即⎩⎨⎧==-02013y x ,解得:
⎪
⎩⎪⎨⎧=⎪⎪⎭
⎫ ⎝⎛=∴=0
1,0,33,33
y n x
同理求得平面EAC 的一个法向量为⎪
⎪⎭
⎫
⎝⎛-=1,1,33
7
7
2,cos =
>=
<∴,所以二面角A-EC-D 的余弦值为772
5. (Ⅰ)证明:连接BD ∵1111ABCD A B C D -是长方体,∴1D D ⊥平面ABCD , 又AC ⊂
平面ABCD ∴1D D AC
⊥
……1分
在长方形ABCD 中,AB BC = ∴BD AC ⊥ …………2分 又1BD D D D = ∴AC ⊥平面11BB D D , …………3分 而1D E ⊂平面11BB D D ∴1AC D E
⊥
………4分
(Ⅱ)如图建立空间直角坐标系Dxyz ,则
1(1,0,0),(0,0,2),(1,1,1),(1,1,0)A D E B ,1(0,1,1),(1,0,2),(1,1,1)AE AD DE ==-=
……
…5分
设平面1AD E 的法向量为(,,)n x y z = ,则10
0n AD n AE ⎧=⎪⎨=⎪⎩ 200
x z y z -+=⎧⎨+=⎩
令1z =,则(2,1,1)
n =-
………7分
cos ,n DE n DE n DE <>===
…………8分
所以 DE 与平面1AD E
………………9分
(Ⅲ)假设在棱AD 上存在一点P ,使得BP ∥平面1AD E .
设P 的坐标为(,0,0)(01)t t ≤≤,则(1,1,0)BP t =--
因为 BP ∥平面1AD E 所以 BP n ⊥ , 即0BP n = , 2(1)10t -+=,解得1
2
t =, ………………12分
所以 在棱AD 上存在一点P ,使得BP ∥平面1AD E ,此时DP 的长1
2
.……13分。