七级数学单元试题三角形
- 格式:doc
- 大小:441.55 KB
- 文档页数:2
北师大版初中数学七年级下册第四单元《三角形》单元测试卷(标准困难)(含答案解析)考试范围:第四单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为( )A. 15B. 16C. 18D. 192. 题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=√2,则正确的是( )A. 只有甲答的对B. 甲、丙答案合在一起才完整C. 甲、乙答案合在一起才完整D. 三人答案合在一起才完整3. 在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为( )A. 12B. 13C. 14D. 164. 如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为( )A. 30°B. 25°C. 35°D. 65°5. 如图,在长方形ABCD中AB=DC=4,AD=BC=5.延长BC到E,使CE=2,连接DE.动点P从点B出发,以每秒2个单位的速度沿BC−CD−DA向终点A运动,设点P运动的时间为t秒,存在这样的t,使△DCP和△DCE全等,则t的值为( )A. t=12B. t=32C. t=32或t=112D. t=12或t=326. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°7. 如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,如果BC=27,BD:CD=2:1,则DE的长是( )A. 2B. 9C. 18D. 278. 用直尺和圆规作一个角等于已知角,如图,能得出∠O=∠O′的依据是( )A. SASB. ASAC. SSSD. AAS9. 如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②连接AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是( )A. ①②③④B. ①④③②C. ①④②③D. ②①④③10. 尺规作图“作一个角等于已知角“的依据是( )A. ASAB. SASC. SSSD. AAS11. 为了测量池塘两侧A,B两点间的距离,在地面上找一点C,连接AC,BC,使∠ACB=90°,然后在BC的延长线上确定点D,使CD=BC,得到△ABC≌△ADC,通过测量AD的长,得AB的长.那么△ABC≌△ADC 的理由是( )A. SASB. AASC. ASAD. SSS12. 如图,要测量河两岸相对的A、B两点的距离,可以在与AB垂直的河岸BF上取C、D两点,且使BC=CD,从点D出发沿与河岸BF的垂直方向移动到点E,使点E与A,C在一条直线上,可得△ABC≌△EDC,这时测得DE的长就是AB的长.判定△ABC≌△EDC最直接的依据是( )A. ASAB. HLC. SASD. SSS第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70∘,∠ABC=48∘,那么∠3=.14. D,E分别是△ABC的边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为______.15. 如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.16. 如图,已知△ABC(AC>AB),DE=BC,以D,E为顶点作三角形,使所作的三角形△ABC 全等,这样的三角形最多可以作出______个.三、解答题(本大题共9小题,共72.0分。
全等三角形章节测试一、心一(每小 3 分,共36 分)1. 以下法正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A.周相等的两个三角形全等B. 面相等的两个三角形全等C. 三个角相等的两个三角形全等D.三条相等的两个三角形全等2. 以下各段能成三角形的是⋯⋯⋯⋯⋯⋯⋯⋯( )A.3cm , 3cm, 6cmB.7cm,4cm,5cmC.3cm,4cm,8cmD.4.2cm,2.8cm,7cm3. 以下形中,与已知形全等的是⋯⋯⋯⋯⋯⋯⋯⋯( )第3题图(A) (B) (C) (D)4. 如,已知△ ABC≌△ CDE,此中 AB=CD,那么以下中, A不正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯( )EA.AC=CEB. ∠ BAC=∠ CDEC. ∠ ACB=∠ ECDD. ∠B=∠ D BC D第 4 题5. 以下条件中,不可以判断三角形全等的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. 三条相等B. 两和一角相等C. 两角和此中一角的相等D. 两角和它的相等6. 如,把形沿BC折,点 A 和点 D 重合,那么中共有全等三角形⋯⋯⋯⋯⋯⋯⋯( )A.1B.2 AC.3D.4B EC7.在△ ABC 和△ A′ B′C′中,已知 AB= A′ B′,∠ B=∠ B′要保△ ABC≌△ A′B′ C′,可充的条D件是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. ∠ B+∠A=900B.AC= A ′ C′C.BC=B ′ C′D.∠ A+∠ A′ =9008.已知在△ ABC和△ A′ B′ C′中,AB= A′ B′,∠ B=∠ B′,充下边一个条件,不可以明△ ABC≌△ A′B′ C′的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. BC=B ′ C′B. AC= A ′ C′C.∠ C=∠ C′D. ∠A=∠ A′9. 如,已知 AE=CF,BE=DF要.△ ABE≌△ CDF,需增添的一个条件是⋯⋯⋯( )A. ∠ BAC=∠ ACDB. ∠ ABE=∠ CDFC. ∠ DAC=∠ BCAD. ∠ AEB=∠ CFDD C A ADEA OAFA B A B C第 9 题 A 第 11题第 10题10. 如图 AD是△ ABC的角均分线, DE是△ ABD的高, EF 是△ ACD的高,则 ( )A. ∠ B=∠CB. ∠ EDB=∠ FDCC. ∠ ADE=∠ ADFD. ∠ ADB=∠ADC11. 如图 AC与 BD订交于点 O,已知 AB=CD,AD=BC,则图中全等三角形有 ( )A.1 对B.2 对C.3 对D.4 对12. 如图 ,D 、 E 分别是 AB,AC 上一点,若∠ B=∠ C,则在以下条件中, B没法判断△ ABE≌△ ACD是( ) DA.AD=AEB.AB=ACC.BE=CDD. ∠ AEB=∠ ADC A E C第 12 题二、专心填一填:(每题 3 分,共 24 分)C F13.如图,△ ABC≌△ DEF,点 B 和点 E, 点 A 和点 D 是对应极点,则 AB=,CB=,∠C=,∠ CAB=.14.若已知两个三角形有两条边对应,则要视这两个三角形全等,还需增添的条件能够是或. A DB E15. 如图已知 AC与 BD订交于点 O, AO=CO,BO=DO,则 AB=CD请说明原因 .第 13题A B解:在△ AOB和△ COD中AO CO(已知)(对顶角相等OBO DO(已知)D C∴△ AOB≌△ COD()第 15题A ∴ AB=DC()16. 如图,已知 AO=OB,OC=OD,AD和 BC订交于点 E, C则图中全等三角形有对 .EO BD第 16题17. 在△ ABC和△ DEF中 ,AB=4, ∠ A=350, ∠ B=700,DE=4, ∠ D= , ∠ E=700, 依据判断△ ABC≌△ DEF. A DAB=DC(已知)18.如图,在△ ABC和△ DEF中BC=DA(已知)() B 第 18 题 C ∴△ ABC≌△ DEF( ) A D19. 如图∠ B=∠ DEF,AB=DE,要证明△ ABC≌△ DEF,(1) 若以“ ASA”为依照,需增添的条件是;B EC C第 19题(2) 若以“ SAS ”为依照,需增添的条件是 .A20. 如图,△ ABC 中, AB=AC=13cm , AB 的垂直均分线交 A B 于 D,交 AC 于 E, 若△ EBC 的周长为 21cm,则 BC= cm.DEBC6 小题,共 40第 20 题三、耐心答一答: (此题有 分)21.( 此题 4 分 ) 已知∠α、∠β和线段a, 如图,用直尺和圆规作△ABC ,使∠ A=∠α ,∠ B=∠β ,BC=a.22.( 此题 6 分 ) 已知 AD 均分∠ CAB,且 DC ⊥ AC, DB ⊥ AB ,那么 AB 和 AC 相等吗?请说明原因 .CDA23.( 此题 6 分 ) 如图,已知 BD=CD ,∠ 1=∠ 2.说出△ ABD ≌△ ACD 的原因 .AB1 2BD C24.( 此题 8 分) 如图,已知 AB=DC , AD=BC,说出以下判断建立的原因: (1)△ ABC ≌△ CDA (2)∠ B=∠DADBC25.( 此题 8 分 ) 如图,把大小为4× 4 的正方形方格图形分别切割成两个全等图形,比如图①,请在以下图中,沿着须先画出四种不一样的分法,把4× 4 的正方形切割成两个全等图形图①26.( 此题画法1画法28 分 ) 如图,△ ABC中, AD垂直均分 BC,H是画法AD上一点,3 画法 4连结 BH,CH.(1)AD 均分∠ BAC吗?为何?(2)你能找出几堆相等的角?请把他么写出来(不需写原因)AH一、仔细选一选:(每题 3 分,共 36 分)题号 1 2 3 4 5 6 7 8 9 10B11 12 CD答案 D B B C D C C B D C D D二、专心填一填(每题 3 分,共 24 分)13.DE,FE, ∠ F, ∠ FED. 14.3 第三边相等,这两边的夹角相等15. ∠ AOB=∠ COD,SAS,全等三角形的对应边相等16.4 17.35 0, AAS 18.AC,CA, 公共边, SSS19. ∠ A=∠ D 20.8三、耐心答一答(此题有六小题,共40 分)21. 图略 22.AB=AC 23. 略24. 略25.画法 1 画法 2 画法 3 画法 426.(1) 由△ ADB≌△ ADC(SAS)得∠ BAD=∠ CAD (4)4 对,∠ BHD=∠ CHD, ∠ ABD=∠ ACD,∠HBD=∠ HCD, ∠ BDA=∠CDA。
第七章 三角形班级: 姓名: 座号: 评分:一. 选择题。
(每题3分,共24分)1. 若三角形两边长分别是4、5,则周长c 的范围是( )A. 19cB. 914cC. 1018cD. 无法确定2. 一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°3. 从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( )A. n 个B. (n-1)个C. (n-2)个D. (n-3)个4. n 边形所有对角线的条数有( )A. ()12n n -条 B. ()22n n -条 C. ()32n n -条 D. ()42n n -条 5. 装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。
若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有( )A. 1种B. 2种C. 3种D. 4种6. 下列图形中有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形7. 如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°, ∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定 8. 若一个三角形的三边长是三个连续的自然数,其周 长m 满足1022m ,则这样的三角形有( ) A. 2个 B. 3个 C. 4个 D. 5个二. 填空题。
(每空2分,共38分)1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。
2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。
3. 要使六边形木架不变形,至少要再钉上 根木条。
4. 在△ABC 中,若∠A=∠C=13∠B ,则∠A= ,∠B= ,这个三角形是 。
北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)1.下列各组长度的三条线段能组成三角形的是()A.1,2,3B.1,1,2C.1,2,2D.1,5,72.在△ABC中作AB边上的高,下图中不正确的是()A.B.C.D.3.若AD是△ABC的中线,则下列结论正确的是()A.AD⊥BC B.BD=CD C.∠BAD=∠CAD D.AD=BC 4.下列说法正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形5.如图,用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的判别方法是()A.SAS B.ASA C.AAS D.SSS6.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS7.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于点E,与CD相交于点F,DH⊥BC于H,交BE于G,有下列结论:①BH=DH;②BD=CD;③AD+CF=BD;④CE=BF.其中正确的是()A.①②B.①③C.①②③D.①②③④8.如图,在△ABC中,E、F分别是AD、CE边的中点,且S△BEF=2cm2,则S△ABC为()A.4 cm2B.6 cm2C.8 cm2D.10 cm29.如图所示,BE=3EC,D是线段AC的中点,BD和AE交于点F,已知△ABC的面积是7,求四边形DCEF的面积()A.1B.C.D.210.如图将一副三角板拼成如图所示的图形(∠D=30°,∠ABC=90°,∠DCE=90°,∠A=45°),BC交DE于点F,则∠DFC的度数是()A.75°B.105°C.135°D.125°11.下列说法中正确的是()A.两个面积相等的图形,一定是全等图形B.两个等边三角形是全等图形C.两个全等图形的面积一定相等D.若两个图形周长相等,则它们一定是全等图形12.如图,已知:在△AFD和△CEB,点A、E、F、C在同一直线上,在给出的下列条件中,①AE=CF,②∠D=∠B,③AD=CB,④DF∥BE,选出三个条件可以证明△AFD ≌△CEB的有()组.A.4B.3C.2D.113.如图,△ABC的两条中线AD、CE交于点G,联结BG并延长,交边AC于点F,那么下列结论不正确的是()A.AF=FC B.GF=BG C.AG=2GD D.EG=CE 14.如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=30°,则∠2的度数为()A.140°B.130°C.120°D.110°15.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,添加下列条件,不能判定△EAB≌△BCD的是()A.EB=BD B.∠E+∠D=90°C.AC=AE+CD D.∠EBD=60°16.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF17.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=8,则四边形ABCD的面积为()A.32B.24C.40D.3618.如图,△ABC的中线BD、CE相交于点O,OF⊥BC,垂足为F,且AB=6,BC=5,AC=3,OF=2,则四边形ADOE的面积是()A.9B.6C.5D.319.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加根木条才能固定.20.(1)线段AD是△ABC的角平分线,那么∠BAD=∠=∠.(2)线段AE是△ABC的中线,那么BE==BC.21.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE ⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.22.如图,BE平分∠ABC,CE平分∠ACD,∠A=60°,则∠E=.23.如图,已知∠1=∠2、AD=AB,若再增加一个条件不一定能使结论△ADE≌△ABC成立,则这个条件是.24.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法是利用了全等三角形对应角相等,图中判断三角形全等的依据是.25.如图,要测量河两岸相对两点A、B间的距离,先在过点B的AB的垂线上取两点C、D,使CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC 的理由是.26.如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:(1)Rt△ABF≌Rt△DCE;(2)OE=OF.27.如图,点B、F、C、E在同一条直线上,∠B=∠E,∠A=∠D,BF=CE.求证:△ABC≌△DEF.28.如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.试说明:(1)△AEH≌△BEC.(2)AH=2BD.29.如图,△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,∠A=60°,∠BDC =100°.求∠BDE的度数.30.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,AB ∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.31.如图所示,已知△ABC中,∠B=∠C,AB=4厘米,BC=3厘米,点D为AB的中点.如果点P在线段BC上以每秒1厘米的速度由点B向点C运动,同时,点Q在线段CA上以每秒a厘米的速度由点C向点A运动,设运动时间为t(秒)(0≤t≤3).(1)用含t的式子表示PC的长度是;(2)若点P,Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P,Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?参考答案1.解:A.1+2=3,不能构成三角形,不合题意;B.1+1=2,不能构成三角形,不合题意;C..1+2>2,能构成三角形,符合题意;D.1+5<7,不能构成三角形,不合题意.故选:C.2.解:由题可得,过点C作AB的垂线段,垂足为H,则CH是BC边上的高,∴A、B、D选项正确,C选项错误.故选:C.3.解:∵AD是△ABC的中线,∴BD=DC,故选:B.4.解:A、一个钝角三角形不一定不是等腰三角形,一定不是等边三角形,故本选项错误;B、一个等腰三角形不一定是锐角三角形,或直角三角形,故本选项错误;C、一个直角三角形不一定不是等腰三角形,一定不是等边三角形,故本选项错误;D、一个等边三角形一定不是钝角三角形,也不是直角三角形,故本选项正确;故选:D.5.解:由画法得OC=OD,PC=PD,而OP=OP,所以△OCP≌△ODP(SSS),所以∠COP=∠DOP,即OP平分∠AOB.故选:D.6.解:如图,∠A、AB、∠B都可以测量,即他的依据是ASA.故选:B.7.解:∵DH⊥BC,∠ABC=45°,∴△BDH为等腰直角三角形,∴BH=DH,故①正确,∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故②正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC(ASA).∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故③正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=AC.又由(1)可知:BF=AC,∴CE=AC=BF;故④正确;故选:D.8.解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC,∴S△BCE=S△ABC,∵点F是CE的中点,∴S△BEF=S△BCE.∴S△ABC=8cm2故选:C.9.解:∵AD=DC,BE=3EC,∴可以假设S△ADF=S△DFC=x,S△EFC=y,则S△EFB=3y,则有,解得,∴四边形DCEF的面积=x+y=,故选:B.10.解:由题意得,∠ACB=45°,∠DEC=60°,∵∠DFC是△CFE的一个外角,∴∠DFC=∠ACB+∠DEC=105°,故选:B.11.解:全等的两个图形的面积、周长均相等,但是周长、面积相等的两个图形不一定全等.故选:C.12.解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵DF∥BE,∴∠DF A=∠BEC,∴若①②③为条件,不能证明△AFD≌△CEB,若①②④为条件,能证明△AFD≌△CEB(AAS),若①③④为条件,不能证明△AFD≌△CEB,若②③④为条件,能证明△AFD≌△CEB(AAS),故选:C.13.解:如图连接DE.∵△ABC的两条中线AD、CE交于点G,∴点G是△ABC的重心,∴DF也是△ABC的中线,∴AF=FC,故A不符合题意,∵BE=AE,BD=CD,∴DE∥AC,DE=AC,∴===,∴AG=2DG,EG=CE,故C,D不符合题意,故选:B.14.解:如图:∵m∥n,∠1=30°,∴∠3=∠1=30°.∵∠ACB=90°,∴∠4=∠ACB﹣∠3=90°﹣30°=60°,∴∠2=180°﹣∠4=180°﹣60°=120°.故选:C.15.解:∵∠A=∠C=90°,AB=CD,∴当添加EB=BD时,则可根据“HL”判定△EAB≌△BCD;当添加AE=BC,即AC=AE+CD,则可根据“SAS”判定△EAB≌△BCD;当添加∠ABE=∠D时,此时∠D+∠E=90°,∠EBD=90°,则可根据“SAS”判定△EAB≌△BCD,故选:D.16.解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.17.解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°,∵∠BAD=90°,∴∠BAM=∠DAN,在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN;∴△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;设AM=a,由勾股定理得:AC2=AM2+MC2,而AC=8;∴2a2=64,a2=32,故选:A.18.解:∵BD、CE均是△ABC的中线,∴S△BCD=S△ACE=S△ABC,∴S四边形ADOE+S△COD=S△BOC+S△COD,∴S四边形ADOE=S△BOC=5×2÷2=5.故选:C.19.解:如图,,要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加3根木条才能固定.故答案为:3.20.解:(1)线段AD是△ABC的角平分线,那么∠BAD=∠CAD=∠BAC.故答案为:CAD,BAC;(2)线段AE是△ABC的中线,那么BE=CE=BC.故答案为:CE,.21.解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.22.解:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A,∵∠A=60°,∴∠E=30°.故答案为30°.23.解:增加的条件为DE=BC,理由:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,∵AD=AB,DE=BC,∴△ADE≌△ABC不一定成立,故答案为:DE=BC.24.解:由图可知,CM=CN,又OM=ON,∵在△MCO和△NCO中,∴△COM≌△CON(SSS),∴∠AOC=∠BOC,即OC是∠AOB的平分线.故答案为:SSS.25.解:∵AB⊥BD,ED⊥BD,∴∠ABD=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA).故答案为:ASA.26.证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE(HL);(2)∵Rt△ABF≌Rt△DCE(已证),∴∠AFB=∠DEC,∴OE=OF.27.证明:∵BF=EC∴BF+CF=EC+CF,∴BC=EF,∵∠B=∠E,∠A=∠D,∴180°﹣∠B﹣∠A=180°﹣∠E﹣∠D,即∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).28.解:(1)∵AD⊥BC,∴∠DAC+∠C=90°,∵BE⊥AC,∴∠EBC+∠C=90°,∴∠DAC=∠EBC,在△AEH与△BEC中,,∴△AEH≌△BEC(ASA);(2)∵△AEH≌△BEC,∴AH=BC,∵AB=AC,AD⊥BC,∴BC=2BD,∴AH=2BD.29.解:如图,∵∠BDC=∠A+∠ABD,∴∠ABD=∠BDC﹣∠A=100°﹣60°=40°∵BD平分∠ABC,∴∠DBC=∠ABD=40°,又∵DE∥BC,∴∠BDE=∠DBC=40°.30.(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中,∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.31.解:(1)PC=3﹣t.(2)△CPQ≌△BDP,理由如下:∵P、Q的运动速度相等,∴1秒后,CQ=BP=1,CP=BC﹣BP=3﹣1=2,∵D为AB的中点,∴BD=,∴CP=BD,在△CPQ和△BDP中,,∴△CPQ≌△BDP(SAS).(3)解:由(1)知,PC=3﹣t,BP=t,CQ=at,BD=2,∵∠C=∠B∵△BPD与△CQP全等,①当△CPQ≌△BDP时,BP=CQ,t=at,∵t≠0,∴a=1与P、Q的运动速度不相等矛盾,故舍去.②当△CPQ≌△BPD时,BP=CP,CQ=BD,∴t=3﹣t,at=2,t=a=.即点P、Q的运动速度不相等时,点Q的运动速度a为时,能够使△BPD与△CQP 全等。
北师大版七年级下册第4章《三角形》单元测试题(满分120分)班级:________姓名:________座位:________成绩:________一.选择题(共10小题,满分30分)1.一个三角形的两边长分别是2和4,则第三边的长可能是()A.1B.2C.4D.72.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.3.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线B.高线C.中线D.无法确定4.如图,在△ABC中,点D在BC的延长线上,若∠A=60°,∠B=40°,则∠ACD的度数是()A.140°B.120°C.110°D.100°5.如图,在△ABC中,CD平分∠ACB,DE∥BC.已知∠A=74°,∠B=46°,则∠BDC 的度数为()A.104°B.106°C.134°D.136°6.如图,AB=AC,若要使△ABE≌△ACD.则添加的一个条件不能是()A.∠B=∠C B.∠ADC=∠AEB C.BD=CE D.BE=CD7.如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,如图所示的这种方法,是利用了三角形全等中的()A.SSS B.ASA C.AAS D.SAS8.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是()A.1B.2C.3D.49.如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD =42°,则∠BFD=()A.45°B.54°C.56°D.66°10.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.7二.填空题(共6小题,满分24分)11.下列4个图形中,属于全等的2个图形是.(填序号)12.如图,某人将一块三角形玻璃打碎成两块,带块(填序号)能到玻璃店配一块完全一样的玻璃,用到的数学道理是.13.如图,Rt△ABC中,∠C=90°,∠B=25°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD 的度数是.14.如图,在△ABC中,AC=BC,过点A,B分别作过点C的直线的垂线AE,BF.若AE =CF=3,BF=4.5,则EF=.15.边长为整数、周长为20的三角形的个数为.16.如图,Rt△ABC中,∠BAC=90°,AB=6,AC=3,G是△ABC重心,则S△AGC=.三.解答题(共8小题,满分66分)17.如图,在一个三角形的一条边上取四个点,把这些点与这条边所对的顶点连接起来.问图中共有多少个三角形.请你通过与数线段或数角的问题进行类比来思考.18.如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.19.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.20.如图,已知B,D在线段AC上,且AD=CB,BF=DE,∠AED=∠CFB=90°求证:(1)△AED≌△CFB;(2)BE∥DF.21.如图,已知锐角△ABC,AB>BC.(1)尺规作图:求作△ABC的角平分线BD;(保留作图痕迹,不写作法)(2)点E在AB边上,当BE满足什么条件时?∠BED=∠C.并说明理由.22.如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.23.如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO 和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG=°;若∠MON=90°,则∠ACG=°;(2)若∠MON=n°.请求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=n°,过C作直线与AB交F.若CF∥OA时,求∠BGO﹣∠ACF的度数.(用含n的代数式表示)24.如图1所示,在Rt△ABC中,∠C=90°,点D是线段CA延长线上一点,且AD=AB,点F是线段AB上一点,连接DF,以DF为斜边作等腰Rt△DFE,连接EA,EA满足条件EA⊥AB.(1)若∠AEF=20°,∠ADE=50°,BC=2,求AB的长度;(2)求证:AE=AF+BC;(3)如图2,点F是线段BA延长线上一点,探究AE、AF、BC之间的数量关系,并证明你的结论.参考答案一.选择题(共10小题)1.【解答】解:设第三边的长为x,由题意得:4﹣2<x<4+2,2<x<6,故选:C.2.【解答】解:BC边上的高应从点A向BC引垂线,只有选项D符合条件,故选:D.3.【解答】解:由于BD=CD,则点D是边BC的中点,所以AD一定是△ABC的一条中线.故选:C.4.【解答】解:∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=100°,故选:D.5.【解答】解:∵∠A=74°,∠B=46°,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=∠ACD=∠ACB=×60°=30°,∴∠BDC=180°﹣∠B﹣∠BCD=104°,故选:A.6.【解答】解:A、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;C、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;故选:D.7.【解答】解:观察图形发现:AC=DC,BC=BC,∠ACB=∠DCB,所以利用了三角形全等中的SAS,故选:D.8.【解答】解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C.9.【解答】解:∵AD是△ABC的高,∴∠ADB=90°,∵∠BAD=42°,∴∠ABD=180°﹣∠ADB﹣∠BAD=48°,∵BE是△ABC的角平分线,∴∠ABF=∠ABD=24°,∴∠BFD=∠BAD+∠ABF=42°+24°=66°,故选:D.10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22﹣BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=为整数,∴BC边长为偶数,∴BC=4,6,8,10,故选:A.二.填空题(共6小题)11.【解答】解:根据全等三角形的判定(SAS)可知属于全等的2个图形是①③,故答案为:①③.12.【解答】解:第①块只保留了原三角形的一个角和部分边,根据这两块中的任一块不能配一块与原来完全一样的;第②块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带②去.故答案为:②,ASA.13.【解答】解:∵Rt△ABC中,∠C=90°,∠B=25°,∴∠CAB=90°﹣∠B=90°﹣25°=65°,由作图过程可知:MN是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=25°,∴∠CAD=∠CAB﹣∠DAB=65°﹣25°=40°.答:∠CAD的度数是40°.故答案为:40°.14.【解答】解:∵过点A,B分别作过点C的直线的垂线AE,BF,∴∠AEC=∠CFB=90°,在Rt△AEC和Rt△CFB中,,∴Rt△AEC≌Rt△CFB(HL),∴EC=BF=4.5,∴EF=EC+CF=4.5+3=7.5,故答案为:7.5.15.【解答】解:边长为整数、周长为20的三角形分别是:(9,9,2)(8,8,4)(7,7,6)(6,6,8)(9,6,5)(9,7,4)(9,8,3)(8,7,5),共8个.故答案为:8.16.【解答】解:延长AG交BC于E.∵∠BAC=90°,AB=6,AC=3,∴S△ABC=•AB•AC=9,∵G是△ABC的重心,∴AG=2GE,BE=EC,∴S△AEC=×9=4.5,∴S△AGC=×S△AEC=3,故答案为3三.解答题(共8小题)17.【解答】解:如图所示,图中三角形的个数有△ABC,△ACD,△ADE,△AEF,△AFG,△ABD,△ABE,△ABF,△ABG,△ACE,△ACF,△ACG,△ADF,△ADG,△AEG.18.【解答】解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SSS).19.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.20.【解答】证明(1)∵∠AED=∠CFB=90°,在Rt△AED和Rt△CFB中,∴Rt△AED≌Rt△CFB(HL).(2)∵△AED≌△CFB,∴∠BDE=∠DBF,在△DBE和△BDF中,∴△DBE≌△BDF(SAS),∴∠DBE=∠BDF,∴BE∥DF.21.【解答】解:(1)如图,线段BD即为所求.(2)结论:BE=BC.理由:∵BD平分∠ABC,∵BE=BC,BD=BD,∴△BDE≌△BDC(SAS),∴∠BED=∠C.22.【解答】解:(1))∠1与∠B相等,理由:∵,△ABC中,∠ACB=90°,∴∠1+∠F=90°,∵FD⊥AB,∴∠B+∠F=90°,∴∠1=∠B;(2)若BC=BD,AB与FB相等,理由:∵△ABC中,∠ACB=90°,DF⊥AB,∴∠ACB=∠FDB=90°,在△ACB和△FDB中,,∴△ACB≌△FDB(AAS),∴AB=FB.23.【解答】解:(1)∵∠MON=60°,∴∠OBA+∠OAB=120°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×120°=60°,∴∠ACB=180°﹣60°=120°,∴∠ACG=60°;∵∠MON=90°,∴∠OBA+∠OAB=90°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×90°=45°,∴∠ACB=180°﹣45°=135°;故答案为:60,45;(2)在△AOB中,∠OBA+∠OAB=180°﹣∠AOB=180°﹣n°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=(∠OBA+∠OAB)=(180°﹣n°),即∠ABC+∠BAC=90°﹣n°,∴∠ACB=180°﹣(∠ABC+∠BAC)=180°﹣(90°﹣n°)=90°+n°,∴∠ACG=180°﹣(90°+n°)=90°﹣n°;(3)∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠ABC=ABO,∠BAC=∠OAC=,∵CF∥AO,∴∠ACF=∠CAG,∵∠BGO=∠BAG+∠ABG,∴∠BGO﹣∠ACF=∠BAG+∠ABG﹣∠ACF=2∠BAC+∠ABG﹣∠BAC=∠ABG+∠BAC=90°﹣n°.24.【解答】解:(1)在等腰直角三角形DEF中,∠DEF=90°,∵∠1=20°,∴∠2=∠DEF﹣∠1=70°,∵∠EDA+∠2+∠3=180°,∴∠3=60°,∵EA⊥AB,∴∠EAB=90°,∵∠3+∠EAB+∠A=180°,∴∠4=30°,∵∠C=90°,∴AB=2BC=4;(2)如图1,过D作DM⊥AE于M,在△DEM中,∠2+∠5=90°,∵∠2+∠1=90°,∵DE=FE,在△DEM与△EF A中,,∴△DEM≌△EF A,∴AF=EM,∵∠4+∠B=90°,∵∠3+∠EAB+∠4=180°,∴∠3+∠4=90°,∴∠3=∠B,在△DAM与△ABC中,,∴△DAM≌△ABC,∴BC=AM,∴AE=EM+AM=AF+BC;(3)如图2,过D作DM⊥AE交AE的延长线于M,∵∠C=90°,∴∠1+∠B=90°,∵∠2+∠MAB+∠1=180°,∠MAB=90°,∴∠2+∠1=90°,∠2=∠B,在△ADM与△BAC中,,∴△ADM≌△BAC,∵EF=DE,∠DEF=90°,∵∠3+∠DEF+∠4=180°,∴∠3+∠4=90°,∵∠3+∠5=90°,∴∠4=∠5,在△MED与△AFE中,,∴△MED≌△AFE,∴ME=AF,∴AE+AF=AE+ME=AM=BC,即AE+AF=BC.。
北师大版七年级数学下册第四章 三角形单元测试训练卷一、单选题(共10小题,每小题4分,共40分)1.下列各组数为边,能构成三角形的是( )A .1,2,3B .2,3,4C .4,4,8D .3,5,9 2.如图,65A ∠=︒,45B ∠=︒,则ACD ∠=( )A .65°B .60°C .45°D .110° 3.如图,12,AC AD ∠=∠=,要使ABC AED ≌△△,还需添加一个条件,那么在以下条件中不能选择的是( )A .AB AE = B .BC ED = C .C D ∠=∠ D .BE ∠=∠ 4.若△ABC 的一个外角等于其中一个内角,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90° 5.如果一个三角形的两边长分别为3和7,则第三边长可能是( ). A .3 B .4 C .7 D .10 6.如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带( )去最省事.A.△B.△C.△D.△△7.已知:如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,点P 以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒()秒时.△ABP和△DCE全等.A.1B.1或3C.1或7D.3或78.如图,△CAB=△DBA,再添加一个条件,不一定能判定△ABC△△BAD的是()A.AC=BD B.△1=△2C.△C=△D D.AD=BC 9.如图,在△ABC中,△BAC=90°,AB=AC,AD是经过A点的一条直线,且B、C在AD的两侧,BD△AD于D,CE△AD于E,交AB于点F,CE=10,BD=4,则DE的长为()A.6B.5C.4D.810.如图,在ABC中,△ACB=45°,AD△BC,BE△AC,AD与BE相交下点F,连接并延长CF交AB于点G,△AEB的平分线交CG的延长线于点H,连接AH.则下列结论:△△EBD=45°;△AH=HF;△ABD△CFD;△CH=AB+AH;△BD=CD﹣AF.其中正确的有()个.A .5B .4C .3D .2二、填空题(共6小题,每小题4分,共24分)11.用木棒钉成一个三角架,两根小棒长分别是7cm 和10cm,第三根小棒长为x cm,则x 的取值范围是___.12.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带________去玻璃店.13.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,添加一个条件能判断△ABE △△ACD 的是____.14.如图,A E ∠=∠,AC BE ⊥,AB EF =,25BE =,8=CF ,则AC =_______.15.在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,则S △ABE =_____.16.如图,ABC 和ADE 均为等边三角形,D ,E 分别在边AB ,AC 上,连接BE ,CD ,若15ACD =︒∠,则CBE =∠__________.三、解答题(共6小题, 56分)17.如图,在ABC ∆中,AD BC ⊥,垂足为D ,BE AC ⊥,垂足为E ,AE BE =,AD 与BE 相交于点F .(1)请说明AEF BEC ∆∆≌的理由.(2)如果2AF BD =,试说明AD 平分BAC ∠的理由.18.如图,△ABC中,D为BC上一点,△C=△BAD,△ABC的角平分线BE交AD于点F.(1)求证:△AEF=△AFE;(2)G为BC上一点且FE平分△AFG.求证:AB=GB19.如图,已知AE△AB,AF△AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC△BF.20.探索归纳:(1)如图1,已知ABC 为直角三角形,90A ∠=︒,若沿图中虚线剪去A ∠,则12∠+∠=________︒.(2)如图2,已知ABC 中,40A ∠=︒,剪去A ∠后成四边形,则12∠+∠=__________︒.(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想12∠+∠与A ∠的关系是___________.(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究12∠+∠与A ∠的关系并说明理由.21.在△BAC中,△BAC=90°,AB=AC,AE是过A的一条直线,BD△AE于点D,CE△AE于E.(1)如图(1)所示,若B,C在AE的异侧,易得BD与DE,CE的关系是DE=;(2)若直线AE绕点A旋转到图(2)位置时,(BD<CE),其余条件不变,问BD与DE,CE 的关系如何?请予以证明;(3)若直线AE绕点A旋转,(BD>CE),问BD与DE,CE的关系如何?请直接写出结果,不需证明.22.如图,AB=12cm,AC△AB,BD△AB,AC=BD=9cm,点P在线段AB上以3cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动;设点P的运动时间为t秒.(1) PB=________ cm.(用含t的代数式表示)(2)如图1,若点Q的运动速度与点P的运动速度相等,当运动时间t=1秒时,△ACP与△BPQ是否全等?并说明理由.(3)如图2,将“AC△AB,BD△AB”改为“△CAB=△DBA”,其余条件不变;设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.参考答案:1.B【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】解:A. 1+2=3 ,不能构成三角形,故该选项不符合题意;B. 2+3>4,能构成三角形,故该选项符合题意;C. 4+4=8,不能构成三角形,故该选项不符合题意;D. 3+5<9,不能构成三角形,故该选项不符合题意;故选B【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.2.D【解析】【分析】根据三角形外角的性质求解即可.【详解】解:△65A ∠=︒,45B ∠=︒,△110ACD A B ∠=∠+∠=︒,故选:D .【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.3.B【解析】【分析】由△1=△2,可得∠BAC=∠EAD ,又AC=AD ,可知在△ABC 和△AED 中,已知一角及其临边对应相等,要证两三角形全等,任意再找一对角对应相等,或者找已知角的另一边对应相等,由此可得答案.解:△△1=△2,△∠BAC=∠EAD ,当AB=AE 时,根据SAS 可得ABC AED ≌△△;当C D ∠=∠时,根据ASA 可得ABC AED ≌△△;当B E ∠=∠时,根据AAS 可得ABC AED ≌△△;当BC=ED 时,SSA 不能判定两个三角形全等,故答案为:B【点睛】本题考查三角形全等的判定,角的和差是常考的判定已知角相等的方法,熟知三角形全等的判定定理是解题的关键.4.D【解析】【分析】根据三角形的外角性质、邻补角的概念计算即可.【详解】解:△三角形的一个外角大于和它不相邻的任何一个内角,△△ABC 的一个外角等于其中一个内角时,这个外角等于它的邻补角,△这个三角形必有一个内角等于90°,故选:D .【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.5.C【解析】【分析】根据三角形三边之间的关系即可判定.【详解】解:设第三边长为x ,则4<x <10,所以选项中符合条件的整数只有7.故选:C .本题考查了三角形三边关系,三角形中,任意两边之差小于第三边,任意两边之和大于第三边.6.C【解析】【分析】根据全等三角形的判定方法“角边角”可以判定应当带△去.【详解】解:由图形可知,△有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形, 所以,最省事的做法是带△去.故选:C.【点睛】本题考查了全等三角形的判定方法,正确理解“角边角”的内容是解题的关键.7.C【解析】【分析】分P点在线段BC上和P点在线段AD上两种情况讨论,当P点在线段BC上时得到△ABP=△DCE=90°,BP=CE=2进而求解;当P点在线段AD上时得到△BAP=△DCE=90°,AP=CE=2进而求解.【详解】解:由题意可知:AB=CD,当P点在线段BC上时:△ABP=△DCE=90°,BP=CE=2,此时△ABP△△DCE(SAS),由题意得:BP=2t=2,△t=1;当P点在线段AD上时:△BAP=△DCE=90°,AP=CE=2,此时△BAP△△DCE(SAS),由题意得:AP=16-2t=2,△t=7.△当t的值为1或7秒时.△ABP和△DCE全等.故答案为:C.【点睛】本题考查了三角形全等的判定方法,注意要分类讨论,熟练掌握三角形全等判定方法是解题的关键.8.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.△AC=BD,△CAB=△DBA,AB=AB,△根据SAS能推出△ABC△△BAD,故本选项错误;B.△△CAB=△DBA,AB=AB,△1=△2,△根据ASA能推出△ABC△△BAD,故本选项错误;C.△△C=△D,△CAB=△DBA,AB=AB,△根据AAS能推出△ABC△△BAD,故本选项错误;D.根据AD=BC和已知不能推出△ABC△△BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.A【解析】【分析】根据△BAC=90°得到△BAD+△CAD=90°,由于CE△AD于E,于是得到△ACE+△CAE=90°,根据余角的性质得到△BAD=△ACE,推出△ABD△△CAE,根据全等三角形的性质即可得到结论.【详解】解:△△BAC=90°,△△BAD+△CAD=90°,△CE△AD于E,△△ACE+△CAE=90°,△△BAD=△ACE,在△ABD 与△CAE 中,90D AEC BAD ACE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△AE =BD =4,AD =CE =10,△DE =AD ﹣AE =6.故选:A .【点睛】本题考查全等三角形的判定与性质,解题的关键是利用余角的性质得到△BAD =△ACE . 10.A【解析】【分析】△利用三角形内角和定理即可说明其正确;△利用垂直平分线的性质即可说明其正确;△利用SAS 判定全等即可;△利用△中的结论结合等量代换和等式的性质即可得出结论;△利用△中的结论结合等量代换和等式的性质即可得出结论.【详解】如图所示,设EH 与AD 交于点M ,△△ACB =45°,BE △AC ,△△EBD =90°﹣△ACD =45°,故△正确;△AD △BC ,△EBD =45°,△△BFD =45°,△△AFE =△BFD =45°,△BE △AC ,△△F AE =△AFE =45°,△△AEF 为等腰直角三角形,△EM 是△AEF 的平分线,△EM △AF ,AM =MF ,即EH 为AF 的垂直平分线,△AH =HF ,△△正确;△AD △BC ,△ACD =45°,△△ADC 是等腰直角三角形,△AD =CD ,同理,BD =DF ,在△ABD 和△CFD 中,90AD CD ADB CDF BD FD =⎧⎪∠=∠=︒⎨⎪=⎩, △△ABD △△CFD (SAS ),△△正确;△△ABD △△CFD ,△CF =AB ,△CH =CF +HF ,由△知:HF =AH ,△CH =AB +AH ,△△正确;△BD =DF ,CD =AD ,又△DF =AD ﹣AF ,△BD =CD ﹣AF ,△△正确,综上,正确结论的个数为5个.故选:A .【点睛】本题考查了直角三角形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,垂直平分线的判定与性质等相关知识,综合性较强,难度较大,做题时要分清角的关系与边的关系.11.3<x<17【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,确定出第三边的取值范围即可得出答案.【详解】解:设第三根小棒的长为x cm,根据三角形的三边关系可得:10-7<x<10+7,即3<x<17,故答案为3<x<17.【点睛】本题考查了三角形的三边关系.三角形的三边关系:第三边大于两边之差而小于两边之和.12.△【解析】【分析】观察每块玻璃形状特征,利用ASA判定三角形全等可得出答案.【详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带△去.故答案为:△.【点睛】本题属于利用ASA判定三角形全等的实际应用,难度不大,但形式较颖,要善于将所学知识与实际问题相结合.13.AD=AE(答案不唯一)【解析】【分析】根据全等三角形的判定定理添加条件可以,添加AD =AE ,根据SAS 证明△ABE △△ACD 即可.【详解】解:添加的条件是AD =AE ,理由是:在△ABE 和△ACD 中,AE AD A A AB AC =⎧⎪∠=∠⎨⎪=⎩,△△ABE △△ACD (SAS ),故答案为:AD =AE (答案不唯一).【点睛】本题考查了全等三角形的判定定理,熟练掌握全等三角形的判定定理是解题的关键. 14.17【解析】【分析】由“AAS ”可证ABC EFC ∆≅∆,可得AC CE =,9BC CF ==,即可求解.【详解】解:AC BE ⊥,90ACB ECF ∴∠=∠=︒,在ABC ∆和EFC ∆中,A E ACB ECF AB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC EFC AAS ∴∆≅∆,AC CE ∴=,8BC CF ==,25817AC CE BE BC ∴==-=-=,故答案为:17.【点睛】本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.15.1cm 2【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.【详解】∵D 是BC 的中点,S △ABC =4cm 2∴S △ABD =12S △ABC =12×4=2cm 2∵E 是AD 的中点,∴S △ABE =12S △ABD =12×2=1cm 2故答案为:1cm 2.【点睛】本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解. 16.45︒##45度【解析】【分析】根据题意利用全等三角形的判定与性质得出()BD C S ED E SA ≅和15EBD ACD ︒∠=∠=,进而依据CBE =∠ABC EBD ∠-∠进行计算即可.【详解】解:△ABC 和ADE 均为等边三角形,△,,AB AC AE AD EC DB ===,△60,120,AED ADE ABC DEC EDB ︒︒∠=∠=∠=∠=∠=在CED 和BDE 中, EC DB DEC EDB ED ED =⎧⎪∠=∠⎨⎪=⎩, △()BD C S ED E SA ≅,△15EBD ACD ︒∠=∠=,△CBE =∠601545ABC EBD ︒︒︒∠-∠=-=.故答案为:45︒.【点睛】本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.17.(1)见解析(2)见解析【解析】【分析】(1)由余角的性质可证DAC EBC ∠=∠,根据“ASA”可证结论成立;(2)由AEF BEC ∆∆≌可得AF BC =,结合2AF BD =可知BD CD =,然后根据“SAS”证明△ABD △△ACD 可证结论成立.(1)证明:AD BC ⊥,BE AC ⊥,90ADC ∴∠=,△AEB =△CEB =90°,90DAC C +∠=∴∠,△EBC +△C =90°,DAC EBC =∠∴∠,在AEF ∆与BEC ∆中,EAF EBC AEF BEC AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ΔΔASA AEF BEC ∴≌.(2)解:由(1)知,AF BC =,2AF BD =,2BC BD ∴=,D ∴是BC 的中点,BD CD ∴=,在△ABD 和△ACD 中AD AD ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩, △△ABD △△ACD ,△BAD CAD ∠=∠,AD ∴平分BAC ∠.【点睛】本题考查了全等三角形的判定和性质,余角的性质,角平分线的定义,熟练掌握全等三角形的判定和性质是解题的关键.18.(1)证明见解析(2)证明见解析【解析】【分析】(1)先根据角平分线的定义得到△1=△2,再由三角形外角的性质得到△AEF=△2+△C,△AFE=△1+△BAD,由△C=△BAD,即可推出△AEF=△AFE;(2)根据角平分线的定义得到△AFE=△GFE,再由△AFB+△AFE=180°,△BFG+△GFE=180°,得到△AFB=△BFG,然后证明△ABF△△GBF即可得到AB=GB.(1)解:△BE是△ABC的角平分线,△△1=△2,△△AEF、△AFE分别是△BCE、△ABF的外角,△△AEF=△2+△C,△AFE=△1+△BAD,又△△C=△BAD,△△AEF=△AFE;(2)解:△FE平分△AFG,△△AFE=△GFE,△△AFB+△AFE=180°,△BFG+△GFE=180°,△△AFB=△BFG,在△ABF和△GBF中12AFB BFG BF BF∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ABF △△GBF (ASA )△AB =GB .【点睛】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形外角的性质,熟知相关知识是解题的关键.19.(1)见解析(2)见解析【解析】【分析】(1)先求出△EAC =△BAF ,然后利用“边角边”证明△ABF 和△AEC 全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得△AEC =△ABF ,设AB 、CE 相交于点D ,根据△AEC +△ADE =90°可得△ABF +△ADM =90°,再根据三角形内角和定理推出△BMD =90°,从而得证.(1)△AE △AB ,AF △AC ,△△BAE =△CAF =90°,△△BAE +△BAC =△CAF +△BAC ,即△EAC =△BAF ,在△ABF 和△AEC 中,AE AB EAC BAF AF AC =⎧⎪∠=∠⎨⎪=⎩, △△ABF △△AEC (SAS ),△EC =BF ;(2)如图,设AB 交CE 于D根据(1),△ABF△△AEC,△△AEC=△ABF,△AE△AB,△△BAE=90°,△△AEC+△ADE=90°,△△ADE=△BDM(对顶角相等),△△ABF+△BDM=90°,在△BDM中,△BMD=180°-△ABF-△BDM=180°-90°=90°,所以EC△BF.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用“8字型”证明角相等.20.(1)270(2)220∠+∠=︒+∠(3)12180A(4)122A∠+∠=∠,理由见解析【解析】【分析】(1)利用三角形的外角定理及直角三角形的性质求解;(2)利用三角形的外角等于与它不相邻的两个内角和求解;(3)根据(1)、(2)中思路即可求解;∠=︒-∠, (4)根据折叠对应角相等,得到AFE PFE∠=∠,AEF PEF∠=∠,进而求出11802AFE∠+∠=︒-∠即可求解.AFE AEF A∠=︒-∠,最后利用18021802AEF(1)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A=90°+△EF A,△2=△A+△AEF=90°+△AEF,△△1+△2=(90°+△EF A)+( 90°+△AEF)=180°+△EF A+△AEF,△△ABC为直角三角形,△△A=90°,△EF A+△AEF=180°-△A=90°,△△1+△2=180°+90°=270°.(2)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A,△2=△A+△AEF,△△1+△2=(△A+△EF A)+( △A+△AEF)=(△A +△EF A+△AEF)+∠A=180°+40°=220°.(3)解:由(1)、(2)中思路,由三角形外角性质可知:△1=△A +△EF A ,△2=△A +△AEF ,△△1+△2=(△A +△EF A )+( △A +△AEF )=(△A +△EF A +△AEF)+∠A =180°+∠A ,△12∠+∠与A ∠的关系是:△1+△2=180°+∠A .(4)解:12∠+∠与A ∠的关系为:122A ∠+∠=∠,理由如下:如图,△EFP △是由EFA △折叠得到的,△AFE PFE ∠=∠,AEF PEF ∠=∠,△11802AFE ∠=︒-∠,21802AEF ∠=︒-∠,△()12(1802)(1802)3602AFE AEF AFE AEF ∠+∠=︒-∠+︒-∠=︒-∠+∠,又△180AFE AEF A ∠+∠=︒-∠,△()1236021802A A ∠+∠=︒-︒-∠=∠,△12∠+∠与A ∠的关系122A ∠+∠=∠.【点睛】主要考查了折叠的性质及三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和、三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.21.(1)BD ﹣EC(2)BD =DE ﹣CE .见解析(3)当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【解析】【分析】(1)通过互余关系可得△ABD =△CAE ,进而证明△ABD △△ACE (AAS ),即可求得BD =AE ,AD =EC ,进而即可求得关系式;(2)方法同(1)证明△ABD △△CAE (AAS ),进而得出结论;(3)综合(1)(2)结论,分当B ,C 在AE 的同侧或异侧时,写出结论即可.(1)结论:DE =BD ﹣EC .理由:如图1中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△ACE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△BAD △△ACE (AAS ),△BD =AE ,AD =EC ,△BD =DE +CE ,即DE =BD ﹣EC .故答案为:BD ﹣EC ;(2)结论:BD =DE ﹣CE .理由:如图2中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△CAE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△BD =AE ,AD =EC ,△BD =DE ﹣CE ;(3)归纳:由(1)(2)可知:当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键. 22.(1)(12-3t )(2)△CAP △△PBQ ,理由见解析(3)满足条件的点Q 的速度为3或92cm /s . 【解析】【分析】(1)求出AP ,再根据题意写出PB 的值即可;(2)求出AP ,PB ,BQ 的值,根据SAS 证明△CAP △△PBQ (SAS )即可;(3)分两种情形分别求解:△由(1)可知,Q 的速度为3cm /s 时,△ACP △△BPQ ,这种情形符合题意.△当P A =PB ,AC =BQ 时,△APC △△BPQ (SAS ),首先确定运动时间,再求出点Q 的运动速度即可.(1)解:由题意:P A =3t (cm ),△AB =12cm ,△PB =AB -AP =12-3t (cm ),故答案为:(12-3t );(2)解:△CAP△△PBQ,理由如下:由题意:t=1(s)时,P A=BQ=3(cm),△AB=12cm,△PB=AB-AP=12-3=9(cm),△AC=9cm,△AC=BP,△△CAP=△PBQ=90°,P A=BQ,△△CAP△△PBQ(SAS);(3)解:△由(2)可知,Q的速度为3cm/s时,△ACP△△BPQ,这种情形符合题意.△当P A=PB,AC=BQ时,△APC△△BPQ(SAS),△t=63=2(s),△点Q的运动速度为92cm/s.△满足条件的点Q的速度为3或92cm/s.【点睛】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分类讨论思想的灵活运用是解题的关键.。
北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)一.选择题1.下列各组中的两个图形属于全等图形的是()A.B.C.D.2.画△ABC的边BC上的高,正确的是()A.B.C.D.3.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是锐角三角形B.都是直角三角形C.都是钝角三角形D.是一个锐角三角形和一个钝角三角形4.如图,已知在△ABC中,∠A=90°,∠1+∠2的度数是()A.180°B.270°C.360°D.无法确定5.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①②去B.带②③去C.带③④去D.带②④去6.如图,点A,D在线段BC的同一侧,AC与BD相交于点E,连接AB,CD,已知∠1=∠2,现添加以下哪个条件仍不能判定△ABC≌△DCB的是()A.∠A=∠D B.AC=DB C.∠ABC=∠DCB D.AB=DC7.如图,在△ABC中,∠A=45°,△ABC的外角∠CBD=75°,则∠C的度数是()A.30°B.45°C.60°D.75°8.如图,已知AB=AC,AD是△ABC的高,下列结论不一定正确的是()A.∠B=60°B.∠B=∠C C.∠BAD=∠CAD D.BD=CD二.填空题9.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.10.如图,点A,F,C,D在同一条直线上,BC∥EF,AC=FD,请你添加一个条件,使得△ABC≌△DEF.11.如图所示,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.12.在△ABC中,∠A:∠B:∠C=4:5:9,若按角分类,△ABC是三角形.13.如图,∠1=115°,∠2=50°,那么∠3=.14.如图,在△ABC中,∠C=90°,DE⊥AB于D,交AC于点E,若BC=BD,AC=6cm,BC=8cm,AB=10cm,则△ADE的周长是.三.解答题15.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).16.如图,已知△EFG,利用尺规作FG边上的高EH.(不写作法,保留作图痕迹)17.某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B 的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC=BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.18.已知:如图,在△ABC中,∠DAE=10°,AD⊥BC于点D,AE平分∠BAC,∠B=60°,求∠C的度数.19.如图,在四边形ABCD中,∠B=∠D=90°,点B,F分别在AB,AD上,AE=AF,CE=CF,求证:CB=CD.20.如图,在△ABC中,CD是AB边上的高,AE平分∠BAC,AE、CD相交于点F,若∠BAC=∠DCB.求证:∠CFE=∠CEF.21.如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD =BE.(1)求证:△ABD≌△ECB.(2)若∠BDC=70°.求∠ADB的度数.22.直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).(1)如图1,MN⊥PQ,若∠BAO=30°,∠BAO与∠ABO的角平分线相交于点E,∠AEB的度数为,(2)如图2,MN⊥PQ,∠BAP与∠ABM的角平分线相交于点E,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,若∠MOQ<90°,∠BAO与∠BOQ的角平分线相交于点E,延长BA至点G,∠OAG的角平分线与射线EO相交于点F,点A、B在运动的过程中,试探索∠F与∠ABO之间的等量关系,并证明你的结论.参考答案一.选择题1.解:A、两个图形不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确;C、两个图形不能完全重合,故本选项错误;D、两个图形不能完全重合,故本选项错误;故选:B.2.解:A.此图形中AD是BC边上的高,符合题意;B.此图形中CD不是BC边上的高,不符合题意;C.此图形中CD是AB边上的高,不符合题意;D.此图形中AD是AB边上的高,不符合题意;故选:A.3.解:如图,沿三角形一边上的高剪开即可得到两个直角三角形.如图,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图,锐角三角形沿虚线剪开即可得到一个锐角三角形和一个钝角三角形.因为剪开的边上的两个角是邻补角,不可能都是锐角,故这两个三角形不可能都是锐角三角形.综上所述,将一个三角形剪成两三角形,这两个三角形不可能都是锐角三角形.故选:A.4.解:在△ABC中,∠A=90°,所以∠ACB+∠ABC=90°,又因为∠1+∠ACB=180°,∠2+∠ABC=180°,所以∠1+∠2=270°,故选:B.5.解:A、带①②去,符合ASA判定,选项符合题意;B、带②③去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;C、带③④去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;D、带②④去,仅保留了原三角形的两个角和部分边,不符合任何判定方法,选项不符合题意;故选:A.6.解:∵BC=CB,∠1=∠2,A、如添加∠A=∠D,利用AAS即可证明△ABC≌△DCB;B、如添加AC=BD,利用SAS即可证明△ABC≌△DCB.C、如添加∠ABC=∠DCB,利用ASA即可证明△ABC≌△DCB;D、如添加AB=DC,因为SSA,不能证明△ABC≌△DCB,所以此选项不能作为添加的条件;故选:D.7.解:∵∠A=45°,△ABC的外角∠CBD=75°,∴∠C=∠CBD﹣∠A=75°﹣45°=30°,故选:A.8.解:∵AB=AC,∴∠B=∠C,∵AD是△ABC的高,∴AD平分∠BAC,BC=2BD=2CD,∴∠BAD=∠CAD,BD=CD,∴B、C、D都是正确的,故选:A.二.填空题9.解:给凳子加了两根木条之后形成了三角形,所以“这样凳子就比较牢固了”的数学原理是:三角形的稳定性,故答案为:三角形的稳定性.10.解:∵BC∥EF,∴∠BCA=∠EFD,若添加BC=EF,且AC=FD,由“SAS”可证△ABC≌△DEF;若添加∠B=∠E,且AC=FD,由“AAS”可证△ABC≌△DEF;若添加∠A=∠D,且AC=FD,由“ASA”可证△ABC≌△DEF;故答案为:BC=EF或∠B=∠E或∠A=∠D(答案不唯一).11.解:在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=DE=20米.故答案为:20.12.解:∵∠A:∠B:∠C=4:5:9,且∠A+∠B+∠C=180°,∴∠C=180°×=90°,∴△ABC是直角三角形,故答案为:直角.13.解:∵∠1=115°,∠2=50°,∴∠3=∠1+∠2=165°,故答案为:165°.14.解:连接BE,∵∠C=90°,DE⊥AB于D,∴∠C=∠BDE=90°,在Rt△BCE与Rt△BDE中,,∴Rt△BCE≌Rt△BDE(HL),∴DE=CE,∵AB=10cm,BC=8cm,AC=6cm,∴△ADE的周长=DE+AE+AD=CE+AE+AB﹣BD=AC+AB﹣BC=6+10﹣8=8(cm),故答案为:8cm.三.解答题15.解:如图所示:.16.解:如图,EH为所作.17.解:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS);∴AB=CD.18.解:∵AD⊥BC,∠B=60°,∴在△ABD中,∠BAD=90°﹣60°=30°,又∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=30°+10°=40°,又∵AE平分∠BAC,∴∠BAC=2∠BAE=80°,∴在△ABC中,∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣60°=40°.答:∠C的度数是40°.19.证明:如图,连接AC,在△ACE和△ACF中,,∴△ACE≌△ACF(SSS),∴∠EAC=∠F AC,在△ACB和△ACD中,,∴△ACB≌△ACD(AAS),∴CB=CD.20.证明:在△ABC中,CD是高,∠BAC=∠DCB,∴∠CDA=90°,∠BAC+∠ACD=90°,∴∠DCB+∠ACD=90°,∴∠ACB=90°;∵AE是角平分线,∴∠CAE=∠BAE,∵∠FDA=90°,∠ACE=90°,∴∠DAF+∠AFD=90°,∠CAE+∠CEA=90°,∴∠AFD=∠CEA,∵∠AFD=∠CFE,∴∠CFE=∠CEA,即∠CFE=∠CEF.21.证明:(1)∵AD∥BC,∴∠ADB=∠CBE,在△ABD和△ECB中,,∴△ABD≌△ECB(AAS);(2)∵△ABD≌△ECB,∴BD=BC,∴∠BDC=∠BCD=70°,∴∠DBC=40°,∴∠ADB=∠CBD=40°.22.解:(1)∵MN⊥PQ,∴∠AOB=90°,∵∠BAO=30°,∴∠ABO=60°,∵AE、BE分别是∠BAO和∠ABO的角平分线,∴∠ABE=∠ABO=30°,∠BAE=∠BAO=15°,∴∠AEB=180°﹣∠ABE﹣∠BAE=135°.故答案为:135°.(2)不会发生变化.∵∠BAP与∠ABM的角平分线相交于点E,∴∠EAB=∠P AB,∠EBA=∠MBA,∵MN⊥PQ,∴∠AOB=90°,∵∠P AB=∠ABO+∠AOB=90°+∠ABO,∠MBA=∠BAO+∠AOB=90°+∠BAO,∴∠EAB+∠EBA=(90°+∠ABO+90°+∠BAO)=90°+(∠ABO+∠BAO),∵∠ABO+∠BAO=90°,∴∠EAB+∠EBA=90°+45°=135°,∴∠AEB=180°﹣135°=45°.(3)∠ABO+∠F=90°.如图:∵∠BAO与∠BOQ的角平分线相交于点E,∴∠1=∠BAO,∠2=∠BOQ,由外角的性质可得:∠ABO=∠BOQ﹣∠BAO,∠E=∠2﹣∠1,∴∠E=∠ABO.∵AE平分∠BAO,AF平分∠GAO,∴∠EAF=90°,∴∠E+∠F=90°,即∠ABO+∠F=90°。
北师大版数学七年级下册三角形单元试题及答案(4套)北师大版数学七年级下册三角形单元试题及答案(1)一、 选择题(每小题3分,共30分)1. 如图所示, 、 、 分别表示△ABC 的三边长,则下面与△ 一定全等的三角形是( )A BC D 2. 下列命题中真命题的个数为( )⑴形状相同的两个三角形是全等三角形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等. A.3 B.2 C.1 D.03.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列不正确的等式是( ) A .AB =AC B.∠BAE =∠CAD C.BE =DC D.AD =DE4. 已知两个直角三角形全等,其中一个直角三角形的面积为3,斜边为4,则另一个直角三角形斜边上的高为( )A. B. C. D.65. 小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( )第3题第2题图A. B.C. D. 6. 要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角7.已知:如图所示,AC =CD ,∠B =∠E =90°,AC ⊥CD ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A =∠2C .△ABC ≌△CED D .∠1=∠28.如图所示,两条笔直的公路、相交于点O ,村庄C 的村民在公路的旁边建三个加工厂A 、B 、D ,已知AB =BC =CD =DA =5 km ,村庄C 到公路的距离为4 km ,则村庄C 到公路的距离 是( )A.3 kmB.4 kmC.5 kmD.6 km9.如图所示,在△ABC 中,AB =AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ;②△BAD≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( )第8题图第7题第6题图A.①②③B.②③④C.①③⑤D.①③④10. 如图所示,在△中,>,∥=,点在边上,连接,则添加下列哪一个条件后,仍无法判定△与△全等( )A.∥B.C.∠=∠D.∠=∠二、填空题(每小题3分,共24分)11. 若一个三角形的三个内角之比为4∶3∶2,则这个三角形的最大内角为 . 12. 如图所示,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F .则下面结论中①DA 平分∠EDF ;②AE =AF ,DE =DF ;③AD 上的点到B 、C 两点的距离相等;④图中共有3对全等三角形,正确的有: .13. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .14. 如图所示,在△ABC 中,∠ABC = ∠ACB ,∠A = 40°,P 是△ABC 内一点,且∠1 = ∠2.则∠BPC =________.第9题图第10题第13题图第15题图第12题图21P CBA第14题图15.如图所示,AB =AC ,AD =AE ,∠BAC =∠DAE ,∠1=25°,∠2=30°,则∠3= . 16.如图所示,在△ABC 中,∠C =90°,AD 平分∠CAB ,BC =8 cm ,BD =5 cm ,那么D 点到直线AB的距离是 cm.17.如图所示,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,则△ABC 的面积是 .18. 如图所示,已知在△ABC 中,∠A =90°,AB =AC ,CD 平分∠ACB ,DE ⊥BC 于E ,若BC = 15 cm ,则△DEB 的周长为 cm .三、解答题(共46分)19.(6分) 如图所示,四边形ABCD 的对角线AC 、BD 相交于点O ,△ABC ≌△BAD . 求证:(1)OA =OB ;(2)AB ∥CD .20. (8分)如图所示,△ABC ≌△ADE ,且∠CAD =10°,∠B =∠D =25°,∠EAB =120°,求∠DFB 和∠DGB 的度数.21. (6分)如图所示,P 是∠BAC 内的一点,PE ⊥AB ,PF ⊥AC ,垂足分别为点E ,F ,AE =AF .求证:(1)PE =PF ;2)点P 在∠BAC 的平分线上.22. (8分)认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.第16题图第17题图第21题图第18题图第20题图第19题图探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=.探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:.第22题23. (6分)如图所示,武汉有三个车站A 、B 、C 成三角形,一辆公共汽车从B 站前往到C 站.(1)当汽车运动到点D 时,刚好BD =CD ,连接线段AD ,AD 这条线段是什么线段?这样的线段在△ABC 中有几条呢?此时有面积相等的三角形吗?(2)汽车继续向前运动,当运动到点E 时,发现∠BAE =∠CAE ,那么AE 这条线段是什么线段呢?在△ABC 中,这样的线段又有几条呢?(3)汽车继续向前运动,当运动到点F 时,发现∠AFB =∠AFC =90°,则AF 是什么线段?这样的线段在△ABC 中有几条?24. (6分) 已知:在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 的中点,点E 是AB 边上一点.(1)直线BF 垂直于直线CE 于点F ,交CD 于点G (如图①),求证:AE =CG ; (2)直线AH 垂直于直线CE ,垂足为点H ,交CD 的延长线于点M (如图②),找出图中与BE 相等的线段,并证明.25. (6分)已知一直角边和这条直角边的对角,求作直角三角形(用尺规作图,不写作法,但要保留作图痕迹).第24题图第23题图参考答案1. B 解析:A.与三角形有两边相等,而夹角不一定相等,二者不一定全等;B.与三角形有两边及其夹角相等,二者全等;C.与三角形有两边相等,但夹角不相等,二者不全等;D.与三角形有两角相等,但夹边不对应相等,二者不全等.故选B.2. C 解析:(1)形状相同但大小不一样的两个三角形也不是全等三角形,所以(1)是假命题;(2)全等三角形中互相重合的边叫做对应边,互相重合的角叫做对应角,如果两个三角形是任意三角形,就不一定有对应角或对应边了,所以(2)是假命题;(3)是真命题,故选C.3. D 解析:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.4. C 解析:设面积为3的直角三角形斜边上的高为h,则×4h=3,∴h=.∵两个直角三角形全等,∴另一个直角三角形斜边上的高也为.故选C.5. C 解析:∵42+92=97<122,∴三角形为钝角三角形,∴最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.故选C.点评:本题考查了三角形高的画法.当三角形为锐角三角形时,三条高在三角形内部,当三角形是直角三角形时,两条高是三角形的直角边,一条高在三角形内部,当三角形为钝角三角形时,两条高在三角形外部,一条高在内部.6. B 解析:∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选B.7. D 解析:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2.在△ABC和△CED 中,∴△ABC≌△CED,故B、C选项正确.∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确.∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.8. B 解析:如图所示,连接AC,作CF⊥,CE⊥.∵AB=BC=CD=DA=5 km,∴△ABC≌△ADC,∴∠CAE=∠CAF,∴CE=CF=4 km.故选B.第8题答图9. D 解析:∵AB=AC,∴∠ABC=∠ACB.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE(ASA);由①可得CE=BD, BE=CD,∴③△BDA≌△CEA(SAS);又∠EOB=∠DOC,所以④△BOE≌△COD(AAS).故选D.10. C 解析:A.∵∥,∴ ∠=∠.∵∥∴ ∠=∠.∵ ,∴ △≌△,故本选项可以证出全等; B.∵=,∠=∠,∴ △≌△,故本选项可以证出全等; C.由∠=∠证不出△≌△,故本选项不可以证出全等;D.∵ ∠=∠,∠=∠,,∴ △≌△,故本选项可以证出全等.故选C .11.80° 解析:这个三角形的最大内角为180°×=80°. 12. ①②③④ 解析:∵ 在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,已知DE ⊥AB ,DF ⊥AC ,可证△ADE ≌△ADF (AAS ). 故有∠EDA =∠FDA ,AE =AF ,DE =DF ,①②正确;AD 是△ABC 的角平分线,在AD 上可任意设一点M ,可证△BDM≌△CDM ,∴ BM =CM ,∴ AD 上的点到B 、C 两点距离相等,③正确;根据图形的对称性可知,图中共有3对全等三角形,④正确.故填①②③④. 13. 135° 解析:观察图形可知:△ABC ≌△BDE , ∴ ∠1=∠DBE .又∵ ∠DBE +∠3=90°,∴ ∠1+∠3=90°.∵ ∠2=45°,∴ ∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°. 14. 110° 解析:因为∠A =40°,∠ABC = ∠ACB ,第13题答图所以∠ABC = ∠ACB =(180°-40°)=70°.又因为∠1=∠2,∠1+∠PCB =70°,所以∠2+∠PCB =70°, 所以∠BPC =180°-70°=110°.15. 55° 解析:在△ABD 与△ACE 中, ∵ ∠1+∠CAD =∠CAE +∠CAD ,∴ ∠1=∠CAE . 又∵ AB =AC ,AD =AE ,∴ △ABD ≌△ACE (SAS ).∴ ∠2=∠ABD . ∵ ∠3=∠1+∠ABD =∠1+∠2,∠1=25°,∠2=30°, ∴ ∠3=55°.16. 3 解析:由∠C =90°,AD 平分∠CAB ,作DE ⊥AB 于E , 所以D 点到直线AB 的距离是DE 的长. 由角平分线的性质可知DE =DC .又BC =8 cm ,BD =5 cm ,所以DE =DC =3 cm . 所以D 点到直线AB 的距离是3 cm .17. 31.5 解析:作OE ⊥AC ,OF ⊥AB ,垂足分别为E 、F ,连接OA , ∵ OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC , ∴ OD =OE =OF . ∴第16题答图第17题答图=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.18. 15 解析:因为CD平分∠ACB,∠A=90°,DE⊥BC,所以∠ACD=∠ECD,CD=CD,∠DAC=∠DEC,所以△ADC≌△EDC,所以AD=DE, AC=EC,所以△DEB的周长=BD+DE+BE=BD+AD+BE.又因为AB=AC,所以△DEB的周长=AB+BE=AC+BE=EC+BE=15(cm).19.分析:(1)要证OA=OB,由等角对等边需证∠CAB=∠DBA,由已知△ABC≌△BAD即可证.(2)要证AB∥CD,根据平行线的性质需证∠CAB=∠ACD,由已知和(1)可证∠OCD=∠ODC,又因为∠AOB=∠COD,所以可证∠CAB=∠ACD,即AB∥CD获证.证明:(1)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB.(2)∵△ABC≌△BAD,∴AC=BD.又∵OA=OB,∴AC-OA=BD-OB,即:OC=OD,∴∠OCD=∠ODC.∵∠AOB=∠COD,∠CAB=,∠ACD=,∴∠CAB=∠ACD,∴AB∥CD.20.分析:由△ABC≌△ADE,可得∠DAE=∠BAC=(∠EAB-∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B.因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形外角性质可得∠DGB=∠DFB -∠D,即可得∠DGB的度数.解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB-∠CAD)=.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°,∠DGB=∠DFB-∠D=90°-25°=65°.21.证明:(1)连接AP,因为AE=AF,AP=AP,PE⊥AB,PF⊥AC,所以Rt△APE≌Rt△APF,所以PE=PF.(2)因为Rt△APE≌Rt△APF,所以∠FAP=∠EAP,所以点P在∠BAC的平分线上.22.分析:(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC 与∠O的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.23. 分析:(1)由于BD=CD,则点D是BC的中点,AD是中线,三角形的中线把三角形分成两个面积相等的三角形;(2)由于∠BAE=∠CAE,所以AE是三角形的角平分线;(3)由于∠AFB=∠AFC=90°,则AF是三角形的高线.解:(1)AD是△ABC中BC边上的中线,三角形中有三条中线.此时△ABD与△ADC的面积相等.(2)AE是△ABC中∠BAC的角平分线,三角形中角平分线有三条.(3)AF是△ABC中BC边上的高线,高线有时在三角形外部,三角形中有三条高线.24. 解:⑴因为直线BF垂直于CE于点F,所以∠CFB=90°,所以∠ECB+∠CBF=90°.又因为∠ACE +∠ECB=90°,所以∠ACE =∠CBF.因为AC=BC, ∠ACB=90°,所以∠A=∠CBA=45°.又因为点D是AB的中点,所以∠DCB=45°.因为∠ACE =∠CBF,∠DCB=∠A,AC=BC,所以△CAE≌△BCG,所以AE=CG.(2)BE =CM ,证明:∵ ∠ACB =90°,∴ ∠ACH +∠BCF =90°.∵ CH ⊥AM ,即∠CHA =90°,∴ ∠ACH +∠CAH =90°,∴∠BCF =∠CAH .∵ CD 为等腰直角三角形斜边上的中线,∴ CD =AD .∴ ∠ACD =45°.△CAM 与△BCE 中,BC =CA ,∠BCF =∠CAH ,∠CBE =∠ACM ,∴ △CAM ≌△BCE ,∴ BE =CM .25. 已知:线段a 和∠α如图(1)所示.求作Rt △ABC 使α∠=∠︒=∠=A C a BC ,90,.作法:(1)作∠α的余角∠β.(2)作∠MBN =∠β.(3)在射线BM 上截取BC =a .(4)过点C 作CA ⊥BM ,交BN 于点A ,如图(2).∴ △ABC 就是所求的直角三角形.(1) (2)第25题答图北师大版数学七年级下册三角形单元试题及答案(2)一、选择题1.以下列各组长度的线段为边,能构成三角形的是().A.6 cm,8 cm,15 cm B.7 cm,5 cm,12 cmC.4 cm,6 cm,5 cm D.8 cm,4 cm,3 cm2.如图,△AOB≌△COD,A和C,B和D是对应顶点,若BO=6,AO=3,AB=5,则CD的长为().A.10 B.8C.5 D.不能确定3.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是().A.∠ADB=∠ADC B.∠B=∠CC.DB=DC D.AB=AC4.要使五边形木架不变形,则至少要钉上()根木条.A.1 B.2 C.3D.45.下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有().A.4个B.3个C.2个D.1个6.如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是().A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形7.图中全等的三角形是().A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ8.如图,△ABC中,∠ACB=90°,把△ABC沿AC翻折180°,使点B落在B′的位置,则关于线段AC的性质中,正确的说法是().A.是边BB′上的中线B.是边BB′上的高C.是∠BAB′的平分线D.以上三种性质都有二、填空题9.在△ABC中,若∠A∶∠B∶∠C=1∶3∶5,这个三角形为__________三角形.(按角的分类)10.一木工师傅有两根长分别为5 cm,8 cm的木条,他要找第三根木条,将它们钉成一个三角形框架,现有长分别为 3 cm,10 cm,20 cm的三根木条,他可以选择长为__________cm的木条.11.如图,如果AD=BC,∠1=∠2,那么△ABC≌△CDA,根据是__________.12.如图,已知∠ABC=∠DCB,现要说明△ABC≌△DCB,则还要补加一个条件是______.13.如图,△ABC中,AB=AC,AD是∠BAC的平分线,则∠ABD__________∠ACD(填“>”“<”或“=”).14.如图,长方形ABCD中(AD>AB),M为CD上一点,若沿着AM折叠,点N恰落在BC上,则∠ANB+∠MNC=__________度.三、解答题15.如图,在△ABC中,∠BAC是钝角,完成下列画图,并用适当的符号在图中表示AC边上的高.16.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠AEC的度数.17.如图,已知AB=AC,BD=CE,请说明△ABE≌△ACD.18.请你找一张长方形的纸片,按以下步骤进行动手操作:步骤一:在CD上取一点P,将角D和角C向上翻折,这样将形成折痕PM和PN,如图①所示;步骤二:翻折后,使点D,C落在原长方形所在的平面内,即点D′和C′,细心调整折痕PN,PM的位置,使PD′,PC′重合,如图②,设折角∠MPD′=∠α,∠NPC′=∠β.(1)猜想∠MPN的度数;(2)若重复上面的操作过程,并改变∠α的大小,猜想:随着∠α的大小变化,∠MPN 的度数怎样变化?参考答案1.C点拨:此题考查了三角形的三边关系.A.6+8<15,不能组成三角形;B.7+5=12,不能组成三角形;C.4+5>6,能够组成三角形;D.4+3<8,不能组成三角形.2.C点拨:因为△AOB≌△COD,A和C,B和D是对应顶点,所以AB=CD.因为AB=5,所以CD=5.3.C点拨:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS,ASA,SAS,SSS,而“SSA”无法证明三角形全等.4.B5.B点拨:错误的说法有①②④,共3个.6.C点拨:通过三角形的形状可以判断三角形高线的位置,反之,通过三条高线交点的位置可以判断三角形的形状.7.D点拨:A选项中条件不满足“SAS”,不能判定两三角形全等;B选项中条件对应边不相等,不能判定两三角形全等;C选项中条件不满足“SAS”,不能判定两三角形全等;D选项中条件满足“SAS”,能判定两三角形全等.8.D点拨:本题考查的是图形的翻折变换及全等三角形的性质,熟知图形翻折变换的性质是解答此题的关键.9.钝角点拨:因为∠A∶∠B∶∠C=1∶3∶5,∠A+∠B+∠C=180°,所以∠A=20°,∠B=60°,∠C=100°.因为∠C>90°,所以这个三角形是钝角三角形.10.10点拨:已知三角形的两边长分别是5 cm和8 cm,则第三边长一定大于3 cm 且小于13 cm.故他可以选择其中长为10 cm的木条.11.SAS点拨:因为AD=BC,∠1=∠2,AC=CA,所以△ABC≌△CDA(SAS).12.∠A=∠D或AB=CD或∠ACB=∠DBC13.=点拨:因为△ABC中,AB=AC,AD是∠BAC的平分线,所以∠BAD=∠CAD.又因为AD=AD,所以△ABD≌△ACD(SAS).所以∠ABD=∠ACD.14.90点拨:根据折叠的性质,有∠ANM=∠ADM=90°,故∠ANB+∠MNC=180°-∠ANM=90°.15.解:如图,BE即为AC边上的高.16.解:因为AD⊥BC,∠B=60°,∠BAC=80°,所以∠BAD=30°,∠DAC=50°,∠C=40°.因为AE平分∠DAC,所以∠DAE=∠EAC=25°,所以∠AEC=180°-∠C-∠EAC=180°-25°-40°=115°.17.解:因为AB=AC,BD=CE,所以AD=AE.又因为∠A=∠A,所以△ABE≌△ACD(SAS).18.解:(1)因为∠α=∠MPD,∠β=∠NPC,又因为∠α+∠β+∠MPD+∠NPC=180°,所以∠α+∠β=90°,即∠MPN=90°.(2)∠MPN的度数不变,仍为90°.北师大版数学七年级下册三角形单元试题及答案(3)一、选择题1.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6㎝,则△DEB的周长是()A.6㎝ B.4㎝ C.10㎝ D.以上都不对2.一个多边形的内角和是720 ,则这个多边形的边数为()A.4 B.5 C.6 D.73.等腰三角形中的一个内角为50°,则另两个内角的度数分别是()A、65°,65°B、50°,80°C、50°,50° D.65°,65°或50°,80°4.以下各组数为边长的三角形中,能组成直角三角形的是()A.1,2,3B.2,3,4C.4,5,6D.5,12,135.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②一个底角为60°的等腰三角形是等边三角形;③顶角为60°的等腰三角形是等边三角形;④有两个角都是60°的三角形是等边三角形.上述结论中正确的有()A.1个B.2个C.3个D.4个6.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确的结论的个数是()A .1B .2C .3D .47.如图,△ABC 中,AB=AC ,∠A=040,则B=( )A 、060B 、070C 、075D 、0808.满足下列条件的ABC ∆,不是直角三角形的是( )A .︒=∠25A , ︒=∠65BB .5:4:3::=∠∠∠C B AC .222c a b -=D .12=AC ,20=AB ,16=BC9.下列几组数,能作为直角三角形的三边的是A .5,12,23B .0.6,0.8,1C .20,30,50D .4, 5,610.如图,将Rt △ABC (∠ACB=90°,∠ABC=30°)沿直线AD 折叠,使点B 落在E 处,E 在AC 的延长线上,则∠AEB 的度数为( )A .30°B .40°C .60°D .55°二、填空题11.如图,E 点为ΔABC 的边AC 中点,CN ∥AB ,过E 点作直线交AB 与M 点,交CN 于N 点,若MB=6cm ,CN=4cm ,则AB=________。
一、选择题1.下列长度的三条线段,能组成三角形的是( )A .5,6,11B .3,4,8C .5,6,10D .6,6,13 2.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 3.下面四个图形中,线段AD 是ABC ∆的高的是( )A .B .C .D .4.已知三角形的一边长为8,则它的另两边长分别可以是( )A .4,4B .17,29C .3,12D .2,9 5.如图△ABC ≌△ADE ,若∠B=80°,∠C=30°,∠DAC=25°,则∠EAC 的度数为( )A .45°B .40°C .35°D .25° 6.如图,AB DE =,A D ∠=∠,要说明ABC DEF △≌△,需添加的条件不能是( )A .//AB DE B .//AC DF C .AC DE ⊥D .AC DF = 7.根据下列条件能唯一画出ABC 的是( )A .AB =5,BC =6,AC =11B .AB =5,BC =6,∠C =45° C .AB =5,AC =4,∠C =90°D .AB =5,AC =4,∠C =45°8.下列四个图形中,线段BE 表示△ABC 的高的是( )A .B .C .D .9.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45°10.如图,给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ;②AB=DE ,∠B=∠E ,BC=EF ;③∠B=∠E ,BC=EF ,∠C=∠F ;④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组11.下列四个图形中,有两个全等的图形,它们是( )A .①和②B .①和③C .②和④D .③和④ 12.下列条件不能判定两个直角三角形全等的是( )A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个锐角对应相等二、填空题13.如图,ACE DBF ≌,//AE DF ,8AD =,2BC =,则AB =______.14.如图,已知AD 、AE 分别为ABC 的角平分线、高线,若40B ∠=︒,60C ∠=°,则DAE ∠的度数为__________.15.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B 两处,用仪器探测生命迹象C ,已知探测线与地面的夹角分别是30︒和60︒(如图),则C ∠的度数是_________.16.三角形有两条边的长度分别是5和7,则第三边a 的取值范围是_____.17.如图,点B 、F 、C 、E 在一条直线上(点F ,C 之间不能直接测量),点A ,D 在BE 的异侧,如果测得AB =DE ,AB ∥DE ,AC ∥DF .若BE =14m ,BF =5m ,则FC 的长度为_____m .18.如图,OA ⊥OB ,∠BOC =30°,OD 平分∠AOC ,则∠BOD =_____度.19.用12根等长的火柴棒拼成一个等腰三角形,火柴棒不允许剩余、重叠、折断,则能摆出不同的等腰三角形的个数为________个.20.如图,在长方形网格中,每个小长方形的长为2,宽为1,A ,B 两点在网格格点上,若点C 也在网格格点上,以A ,B ,C 为顶点的三角形的面积为2,则满足条件的点C 有______个.三、解答题21.如图,已知:AD =AB ,AE =AC ,AD ⊥AB ,AE ⊥AC .猜想线段CD 与BE 之间的数量关系与位置关系,并证明你的猜想.22.在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线.(1)如图1,AD 是ABC ∆的中线,7,5,AB AC ==求AD 的取值范围.我们可以延长AD 到点M ,使DM AD =,连接BM ,易证ADC MDB ∆≅∆,所以BM AC =.接下来,在ABM ∆中利用三角形的三边关系可求得AM 的取值范围,从而得到中线AD 的取值范围是 ;(2)如图2,AD 是ABC 的中线,点E 在边AC 上,BE 交AD 于点,F 且AE EF =,求证:AC BF =;(3)如图3,在四边形ABCD 中,//AD BC ,点E 是AB 的中点,连接CE ,ED 且CE DE ⊥,试猜想线段,,BC CD AD 之间满足的数量关系,并予以证明.23.已知,ABC 的三边长为4,9,x .(1)求ABC 的周长的取值范围;(2)当ABC 的周长为偶数时,求x .24.如图1,ABC 是等边三角形,,D E 为AC 上两点,且AD CE =,延长BC 至点F ,使CF CD =,连结BD EF ,.(1)如图2,当,D E 两点重合时,求证:BD DF =.(2)如图3,延长FE 交线段BD 于点G .①求证:BD EF =.②求DGE ∠的度数.25.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.(1)过点A画线段BC的垂线,垂足为E;(2)过点A画线段AB的垂线,交线段CB的延长线于点F;(3)线段BE的长度是点到直线的距离;(4)线段AE、BF、AF的大小关系是.(用“<”连接)26.如图,BC⊥AD于C,EF⊥AD于F,AB∥DE,分别交BC于B,交EF于E,且BC=EF.求证:AF=CD.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的两边和大于第三边解答.【详解】A、5+6=11,故不能构成三角形;B、3+4<8,故不能构成三角形;C、5+6>10,故能构成三角形;D、6+6<13,故不能构成三角形;故选:C.【点睛】此题考查三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.2.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】+=,不满足三边关系,不能画出三角形,故选项错误;解:A,AB BC CAB,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D,可以利用直角三角形全等判定定理HL证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.3.D解析:D【分析】根据三角形高的定义进行判断.【详解】解:线段AD是△ABC的高,则过点A作对边BC的垂线,则垂线段AD为△ABC的高.选项A、B、C错误,故选:D.【点睛】本题考查了三角形的高:三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.4.D解析:D【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”进行判断即可.【详解】A、∵4+4=8,∴构不成三角形;B、29−17=12>8,∴构不成三角形;C、∵12−3=9>8,∴构不成三角形;D、9−2=7<8,9+2=11>8,∴能够构成三角形,故选:D.【点睛】此题考查了三角形的三边关系,熟练掌握三角形三边关系“任意两边之和大于第三边,任意两边之差小于三边”是解题的关键.5.A解析:A【解析】∵△ABC≌△ADE,∴∠D=∠B=80°,∠E=∠C=30°,∴∠DAE=180°−∠D−∠E=70°,∴∠EAC=∠EAD−∠DAC=45°,故选A.点睛:本题主要考查全等三角形的性质,掌握全等三角形的对应角相等、对应边相等是解题的关键.6.C解析:C【分析】直接根据三角形证明全等的条件进行判断即可;【详解】A、∵AB∥DE,∴∠ABC=∠DEC,∴根据ASA即可判定三角形全等,故此选项不符合题意;B、∵AC∥DF,∴∠DFE=∠ACB,∴根据AAS即可判定三角形全等,故此选项不符合题意;C、AC⊥DE,不符合三角形全等的证明条件,故此选项符合题意;D、∵AC=DF,∴根据SAS即可判定三角形全等,故此选项不符合题意;故选:C.【点睛】本题考查了三角形证明全等所需添加的条件,正确掌握知识点是解题的关键;7.C解析:C【分析】判断其是否为三角形,即两边之和大于第三边,两边之差小于第三边,两边夹一角,或两角夹一边可确定三角形的形状,否则三角形并不是唯一存在,可能有多种情况存在.【详解】解:A:AC 与 BC两边之和不大于第三边,所以不能作出三角形;B:∠C 不是 AB,BC 的夹角,故不能唯一画出△ABC ;C:AB=5,AC=4,∠C=90°,所以BC=3,故能唯一画出△ABC ;D:∠C 并不是 AB,AC 的夹角,故可画出多个三角形;故选: C .【点睛】本题考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.8.C解析:C【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【详解】解:线段BE是△ABC的高的图是选项C.故选:C.【点睛】本题考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.9.A解析:A【分析】根据已知ACB≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:A.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.10.C解析:C【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【详解】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.11.B解析:B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B.【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.12.D解析:D【分析】根据三角形全等的判定对各选项分析判断后利用排除法求解.【详解】解:A、可以利用边角边判定两三角形全等,故本选项不合题意;B、可以利用角角边判定两三角形全等,故本选项不合题意;C、根据斜边直角边定理判定两三角形全等,故本选项不合题意;D、三个角对应相等不能证明两三角形全等,故本选项符合题意;故选:D.【点睛】本题考查了直角三角形全等的判定方法;本题主要利用三角形全等的判定,运用好有一对相等的直角这一隐含条件是解题的关键.二、填空题13.3【分析】根据全等三角形对应边相等可得AC=BD再求出AB=CD然后代入数据进行计算即可得解【详解】解:∵△ACE≌△DBF∴AC=DB∴AC-BC=BD-BC 即AB=CD∵AD=8BC=2∴AB=解析:3【分析】根据全等三角形对应边相等可得AC=BD,再求出AB=CD,然后代入数据进行计算即可得解.【详解】解:∵△ACE≌△DBF,∴AC=DB,∴AC-BC=BD-BC,即AB=CD,∵AD=8,BC=2,∴AB=12(AD-BC)=12×(8-2)=3.故答案为:3.【点睛】本题考查了全等三角形的性质,根据全等三角形对应顶点的字母写在对应位置上确定出对应边,然后求出AB=CD是解题的关键.14.【分析】先求出∠BAC的度数再根据角平分线和高求出∠BAE和∠BAD即可【详解】解:∵∴∠BAC=180°-40°-60°=80°∵AD 平分∠BAC ∴∠BAD=∠BAC=40°∵AE ⊥BC ∴∠AEB解析:10︒【分析】先求出∠BAC 的度数,再根据角平分线和高求出∠BAE 和∠BAD 即可.【详解】解:∵40B ∠=︒,60C ∠=°,∴∠BAC=180°-40°-60°=80°,∵AD 平分∠BAC ,∴∠BAD=12∠BAC=40°, ∵AE ⊥BC ,∴∠AEB=90°,∴∠BAE=90°-∠B=50°,∠DAE=∠BAE-∠BAD=10°,故答案为:10°.【点睛】本题考查了三角形内角和,三角形的高和角平分线,解题关键是熟练运用角平分线和高的意义求出角的度数.15.【分析】先由题意得CAB=30°∠ABD=60°再由三角形的外角性质即可得出答案【详解】解:∵探测线与地面的夹角为30°和60°∴∠CAB=30°∠ABD=60°∵∠ABD=∠CAB+∠C ∴∠C=6解析:30︒【分析】先由题意得CAB=30°,∠ABD=60°,再由三角形的外角性质即可得出答案.【详解】解:∵探测线与地面的夹角为30°和60°,∴∠CAB=30°,∠ABD=60°,∵∠ABD=∠CAB+∠C ,∴∠C=60°-30°=30°,故答案为:30°.【点睛】本题考查了三角形的外角的性质,对顶角,解题的关键是熟练掌握三角形的外角性质,比较简单.16.2<a<12【分析】已知三角形两边的长根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和【详解】解:根据三角形三边关系定理知:第三边a的取值范围是:(7-5)<a<(解析:2<a<12.【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【详解】解:根据三角形三边关系定理知:第三边a的取值范围是:(7-5)<a<(7+5),即2<a <12.【点睛】本题考查了三角形三边关系,两边之和大于第三边,两边之差小于第三边.17.4【分析】证明△ABC≌△DEF(AAS)得到BC=EF即可得到答案【详解】解:∵AB∥DEAC∥DF∴∠B=∠E∠ACB=∠DFE在△ABC和△DEF中∴△ABC≌△DEF(AAS)∴BC=EF∴解析:4【分析】证明△ABC≌△DEF(AAS),得到BC=EF,即可得到答案.【详解】解:∵AB∥DE,AC∥DF,∴∠B=∠E,∠ACB=∠DFE,在△ABC和△DEF中,B EACB DFE AB DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=CE=5m,∴FC=BE﹣BF﹣CE=14m﹣5m﹣5m=4m;故答案为:4.【点睛】此题考查全等三角形的判定及性质;平行线的性质:两直线平行,内错角相等;正确掌握三角形全等的判定定理是解题的关键.18.30【分析】本题首先利用垂直性质以及角分线性质求证2∠BOD与∠BOC 的关系继而将已知代入求解∠BOD【详解】∵OA⊥OB∴∠AOB=90°即∠AOD+BOD=90°;∵OD平分∠AOC∴∠AOD=解析:30本题首先利用垂直性质以及角分线性质求证2∠BOD 与∠BOC 的关系,继而将已知代入求解∠BOD .【详解】∵OA ⊥OB ,∴∠AOB =90°,即∠AOD+BOD =90°;∵OD 平分∠AOC ,∴∠AOD =∠DOC ,即∠BOD+∠BOC+BOD =90°,即2∠BOD+∠BOC =90°∵∠BOC =30°,∴∠BOD =30°.故答案为:30.【点睛】本题考查垂直以及角分线的性质,解题关键在于角的互换,其次注意计算仔细即可. 19.2【分析】本题根据三角形的三边关系定理得到不等式组从而求出三边满足的条件再根据三边长是整数进而求解【详解】设摆出的三角形中相等的两边是x 根则第三边是()根根据三角形的三边关系定理得到:则又因为是整数 解析:2【分析】本题根据三角形的三边关系定理,得到不等式组,从而求出三边满足的条件,再根据三边长是整数,进而求解.【详解】设摆出的三角形中相等的两边是x 根,则第三边是(122x -)根,根据三角形的三边关系定理得到:122122x x x x x x +>-⎧⎨-+>⎩, 则3x >, 6x <,又因为x 是整数,∴x 可以取4或5,因而三边的值可能是:4,4,4或5,5,2;共二种情况,则能摆出不同的等腰三角形的个数为2.故答案为:2.【点睛】本题考查了三角形的三边关系:在组合三角形的时候,注意较小的两边之和应大于最大的边,三角形三边之和等于12. 20.4【分析】尝试在网格中寻找符合条件的点总共有16个点可以依次尝试一遍【详解】根据题意遍历网络中的所有点发现符合条件的点C 点如下图:故答案为:4【点睛】本题考查在格点中找寻符合要求的点此类题型我们需要【分析】尝试在网格中寻找符合条件的点,总共有16个点,可以依次尝试一遍.【详解】根据题意,遍历网络中的所有点,发现符合条件的点C 点如下图:故答案为:4.【点睛】本题考查在格点中找寻符合要求的点,此类题型,我们需要大胆尝试.三、解答题21.CD =BE ,CD ⊥BE ,证明见解析【分析】证明△ACD ≌△AEB ,根据全等三角形的性质得到CD =BE ,∠ADC =∠ABE ,根据三角形内角和定理得出∠BFD =∠BAD =90°,证明结论.【详解】解:猜想:CD =BE ,CD ⊥BE ,理由如下:∵AD ⊥AB ,AE ⊥AC ,∴∠DAB =∠EAC =90°.∴∠DAB +∠BAC =∠EAC +∠BAC ,即∠CAD =∠EAB ,在△ACD 和△AEB 中,AD AB CAD EAB AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△AEB (SAS ),∴CD =BE ,∠ADC =∠ABE ,∵∠AGD =∠FGB ,∴∠BFD =∠BAD =90°,即CD ⊥BE .【点睛】本题考查的是三角形全等的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.22.(1)16AD <<;(2)见解析;(3)CD BC AD =+,证明见解析【分析】(1)延长AD 到点M ,使DM AD =,连接BM ,即可证明ADC MDB ∆≅∆,则可得BM AC =,在ABM ∆中,根据三角形三边关系即可得到AM 的取值范围,进而得到中线AD 的取值范围;(2)延长AD 到点,M 使DM AD =,连接BM ,由(1)知ADC MDB ≅,则可得M CAD BM AC ∠=∠=,,由AE EF =可知,CAD AFE ∠=∠,由角度关系即可推出BMF BFM ∠=∠,故BM BF =,即可得到AC BF =;(3)延长CE 到F ,使EF EC =,连接AF ,即可证明AEF BEC ∆≅∆,则可得EAF B AF BC ∠=∠=,,由//AD BC ,以及角度关系即可证明点,,F A D 在一条直线上,通过证明Rt DEF △≌DEC Rt △,即可得到FD CD =,进而通过线段的和差关系得到CD BC AD =+.【详解】(1)延长AD 到点M ,使DM AD =,连接BM ,∵AD 是ABC ∆的中线,∴DC DB =,在ADC ∆和MDB ∆中,AD MD =,ADC MDB =∠∠,DC DB =,∴ADC MDB ∆≅∆,∴BM AC =,在ABM ∆中,AB BM AM AB BM -+<<,∴7575AM -+<<,即212AM <<,∴16AD <<;(2)证明:延长AD 到点,M 使DM AD =,连接BM ,由(1)知ADC MDB ≅,∴M CAD BM AC ∠=∠=,,AE EF =,CAD AFE ∴∠=∠,MFB AFE ∠=∠,MFB CAD ∴∠=∠,BMF BFM ∴∠=∠,BM BF ∴=,AC BF ∴=,(3)CD BC AD =+,延长CE 到F ,使EF EC =,连接AF ,AE BE AEF BEC =∠=∠,,AEF BEC ∴∆≅∆,EAF B AF BC ∴∠=∠=,,//AD BC ,180BAD B ∴∠+∠=︒,180EAF BAD ∴∠+∠=︒,∴点,,F A D 在一条直线上,CE ED ⊥,∴90DEF DEC ==︒∠∠,∴在Rt DEF △和DEC Rt △中,EF EC =,DEF DEC ∠=∠,DE DE =,∴Rt DEF △≌DEC Rt △,FD CD ∴=,∵FD AD AF AD BC =+=+,CD BC AD ∴=+.【点睛】本题考查了三角形中线、全等三角形的证明和性质、三角形的三边关系、等腰三角形的性质、平行线的性质、平角的概念、线段的和差关系等,正确的作出辅助线以及综合运用以上知识是解答本题的关键.23.(1)18△<ABC 的周长26<;(2)7,9或11.【分析】(1)直接根据三角形的三边关系即可得出结论;(2)根据轴线为偶数,结合(1)确定周长的值,从而确定x 的值.【详解】解:(1)ABC 的三边长分别为4,9,x ,9494∴-<<+x ,即513x <<,945△∴++<ABC 的周长9413<++,即:18△<ABC 的周长26<;(2)ABC 的周长是偶数,由(1)结果得ABC 的周长可以是20,22或24, x 的值为7,9或11.【点睛】本题考查了三角形的三边关系,掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.24.(1)见解析;(2)①见解析;②60︒.【分析】(1)由等边三角形的性质可得60ABC ACB BA BC ∠=∠=︒=,,再由AD CE =,CF CD =,当,D E 两点重合时,可知点D 为等边三角形ABC 边AC 的中点,由三线合一性质,得1302DBC ABC F CDF ∠=∠=︒∠=∠,,由此解得30F ∠=︒,最后根据等角对等边解题即可;(2)①作//DH BC 交AB 于H ,连接BE ,由平行线性质解得6060AHD ABC ADH ACB ∠=∠=︒∠=∠=︒,,继而证明AHD 是等边三角形,从而得到AD DH AH CE ===,接着证明(SAS)BDH FEC ≌,最后由全等三角形对应边相等的性质解题即可;②由①中全等三角形对应角相等可得HBD F ∠=∠,结合角的和差解题即可.【详解】证明:(1)ABC 是等边三角形,60ABC ACB BA BC ∴∠=∠=︒=,,AD DC CF ==,1302DBC ABC F CDF ∴∠=∠=︒∠=∠,, 60ACB F CDF ∠=∠+∠=︒,30F ∴∠=︒,DBC F ∴∠=∠,BD DF ∴=;(2)①如图,作//DH BC 交AB 于H ,连接BE ,//DH BC , 6060AHD ABC ADH ACB ∴∠=∠=︒∠=∠=︒,,60A ∠=︒,AHD ∴是等边三角形,AD DH AH CE ∴===,AB AC =,BH CD ∴=,CD CF =,BH CF ∴=,120BHD ECF ∠=∠=︒,(SAS)BDH FEC ∴≌,BD EF ∴= ;②BDH FEC ≌HBD F∴∠=∠∴∠=∠+∠=∠+∠=∠=︒DGE GBF F GBF HBD ABC60【点睛】本题考查等边三角形的判定与性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.25.(1)见解析;(2)见解析;(3)B,AE;(4)AE<AF<BF【分析】(1)根据垂线的做法画出图象;(2)根据垂线的做法画出图象;(3)根据点到直线距离的定义填空;(4)利用直角三角形的斜边和直角边的大小关系,得出结果.【详解】(1)如图所示;(2)如图所示;(3) ∵BE AE⊥,∴线段BE的长度是点B到直线AE的距离,故答案是:B,AE;(4)∵AE是直角三角形AEF的直角边,AF是直角三角形AEF的斜边,<,∴AE AF∵BF是直角三角形ABF的斜边,AF是直角三角形ABF的直角边,∴AF BF<,∴AE AF BF<<,<<.故答案是:AE AF BF【点睛】本题考查作垂线和直角三角形的性质,解题的关键是掌握作垂线的方法和直角三角形的直角边和斜边的大小关系.26.证明见解析.【分析】由BC⊥AD,EF⊥AD得∠EFD=∠BCA=90°,由AB∥DE,得∠D=∠A,又BC=EF,从而△ABC≌△DEF,则AC=FD, AF=CD.【详解】证明:∵BC⊥AD,EF⊥AD,∴∠EFD=∠BCA=90°∵AB∥DE,∴∠D=∠A∵BC=EF,∴△ABC≌△DEF,∴AC=FD,∴AF=CD.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.。
A.
B.
C.
D.
2010-2011七年级数学单元试题(三角形)
一、精心选一选
1.如图所示,其中三角形的个数是( )
A.2个
B.3个
C.4个
D.5个
2. 下列各组长度的线段能构成三角形的是( )
A .1.5cm ,3.9cm ,2.3cm
B .3.5cm ,7.1cm ,3.6cm
C .6cm ,1cm ,6cm
D .4cm ,10cm ,4cm 3.三条高相交于三角形的外部,则这个三角形是( ) A .直角三角形
B .钝角三角形
C .锐角三角形
D .等腰三角形
4.一个三角形中直角的个数最多有( )
A.3 B.1 C.2 D.0 5.以下命题正确的是 ( )
A.三角形的一个外角等于两个内角的和
B. 三角形的外角大于任何一个内角
C.一个三角形至少有一个内角大于或等于60°
D.直角三角形的外角可以是锐角. 6. 一个多边形的内角和等于外角和的3倍,这个多边形是( )
A.十边形
B.五边形
C.八边形
D.七边形.
7.下列图形不具有稳定性的是( )
8.某中学新科技馆铺设地面,已有正三角形形状地砖.现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处平面镶嵌,则该学校不应该购买的地砖形状是( )
A. 正方形
B.正六边形
C.正八边形
D.正十二边形
9.在△ABC 中,D 为BC 中点,则△ABD 和△ACD 面积的大小关系为( )
A.S △ABD >S △ACD
B. S △ABD <S △ACD
C. S △ABD =S △ACD
D.无法确定
10.如图,△ABC 纸片DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有
一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是 ( ) A. ∠A=∠1+∠2
B. 2∠A=∠1+∠2
C. 3∠A=2∠1+∠2
D .3∠A=2(∠1+∠2)
二、填空题(每小题3分,共24分)
11.等腰三角形的两边长分别为4和9,则周长为 ; 12. △ABC 中,若∠A = 1200
,∠B = ∠C ,则∠C = 度; 13.一个多边形的内角和比外角和的3倍多1800,则它的边数是___________.
第10题
第1题
14.n边形的内角和为,外角和为。
15.如果一个多边形的每一个外角都是36º,则这个多边形的内角和是。
16.一个三角形的两边分别是3和5,若第三边的长是偶数,则此三角形的周长为.
17.如图,B处在A处的南偏西60︒方向, C处在A处的南偏东20︒方向, C处在B处的北
偏东100︒方向,则ACB
∠的度数是
18如图所示,∠1+∠2+∠3+∠4+∠5+∠6=______.
三、解答题(共46分)
19. (6分)如图,按下列要求作图:
(1)作出⊿ABC的角平分线CD;
(2)作出⊿ABC的中线BE;
(3)作出⊿ABC的高AF;(6分)
(要求有明显的作图痕迹,不写作法)
20.(8分)在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24㎝和30㎝的两个
部分,求三角形的三边长.
21.(12分)(1)如图①,BD、CD是∠ABC和∠ACB的角平分线且相交于点D,请猜想
∠A与∠BDC之间的数量关系,并说明理由。
(2)如图②,BC、CD是∠ABC和∠ACB外角的平分线且相交于点D,请猜想A
∠与D
∠
之间的数量关系,并说明理由.
(3)如图③,BD为∠ABC的角平分线,CD为∠ABC的外角ACE
∠的角平分线,它们相
交于点D,请直接写出A
∠与D
∠之间的数量关系。
22.
(10
分)
已知:
如图,
△ABC中,∠ABC=∠C,BD是∠ABC的平分线,且∠BDE=∠BED,•∠A=100°,求∠DEC的度数.
E
D
C
B
A
A
B
C
第19题
③
C
第17题。