2017年深圳市初中毕业生学业考试数学模拟试卷
- 格式:doc
- 大小:402.87 KB
- 文档页数:20
2017年深圳市初中毕业生学业考试数学模拟试题本试卷分选择题和非选择题两部分,共三大题23小题,满分100分,考试用时90分钟第一部分 选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个选项是正确的)1.20171-的相反数是( )A .2017B .﹣2017C .D .﹣ 2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )A .3.386×108B .0.3386×109C .33.86×107D .3.386×1093、下列运算正确的是( )A 、63222a a a =⋅B 、2226)3(b a ab =C 、22=÷ab abcD 、b a ba b a 22243=+4.下面四个手机应用图标中是中心对称图形的是( )A .B .C .D .5.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元 C.80元 D .60元 6.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( ) A .4,5 B .5,4C .4,4D .5,57.如图所示,向一个半径为R 、容积为V 的球形容器内注水,则能够反映容器内水的体积y 与容器内水深x 间的函数关系的图象可能是( )A .B .C .D .8.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD=8,则点P 到BC 的距离是( )A .8B .6C .4D .29.已知6是关于x 的方程x 2﹣7mx+24n=0的一个根,并且这个方程的两个根恰好是菱形ABCD 两条对角线的长,则菱形ABCD 的周长为( )A .20B .24C .32D .5610.对于实数x ,我们规定[x]表示不大于x 的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )A .1B .2C .3D .4 11.如图①是一个直角三角形纸片,∠A=30°,将其折叠,使点C 落在斜边上的点C 处,折痕为BD ,如图②,再将②沿DE 折叠,使点A 落在DC ′的延长线上的点A ′处,如图③,若折痕DE 的长是cm ,则BC 的长是( )A .3cmB .4cmC .5cmD .6cm12.如图,在圆心角为90°的扇形OAB 中,半径OA=4cm ,C 为弧AB 的中点,D 、E 分别是OA 、OB 的中点,则图中阴影部分的面积为( )cm 2.A .4π﹣2﹣2 B .4π﹣2 C .2π+2﹣2 D .2π+2第二部分 非选择题填空题(本题共4小题,每小题3分,共12分)13.分解因式:x x x 1512323--=__________________.14.小明把如图所示的平行四边形纸板挂在墙上,完飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是 .15.在三角形纸片ABC 中,∠C=90°,∠B=30°,点D (不与B ,C 重合)是BC 上任意一点,将此三角形纸片按下列方式折叠,若EF 的长度为a ,则△DEF 的周长为(用含a 的式子表示).16.如图,双曲线y=(x >0)经过△OAB 的顶点A 和OB 的中点C ,AB∥x 轴,点A 的坐标为(2,3),求△OAC 的面积是_________.解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.计算:20170﹣|﹣|+1)31(--+2sin45°.18.先化简,再求值:(﹣x+1)÷,其中x=﹣2.19.某中学在实施快乐大课间之前组织过“我最喜欢的球类”的调查活动,每个学生仅选择一项,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.(1)被调查的学生人数为 ;(2)把折线统计图补充完整;(3)小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.如果确定小亮打第一场,其余三人用“手心、手背”的方法确定谁获胜谁打第一场若三人中有一人出的与其余两人不同则获胜;若三人出的都相同则平局.已知大刚出手心,请用树状图分析大刚获胜的概率是多少?20、如图7,在楼房MN前有两棵树与楼房在同一直线上,且垂直于地面,为了测量树AB、CD的高度,小明爬到楼房顶部M处,光线恰好可以经过树CD的顶站C点到达树AB的底部B点,俯角为45°,此时小亮测得太阳光线恰好经过树CD的顶部C点到达楼房的底部N点,与地面的夹角为30°,树CD的影长DN为15米,请求出树AB、CD的高度。
2017届深圳市中考一模模拟拟测试数学一、选择题(本题共有12小题,每小题3分,共36分)1.﹣4的倒数是()A、-4 B、4 C、1/4 D、-1/42.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A、B、C、D、3. 下列计算正确的是() A、2a3+a2=3a5B、(3a)2=6a2C、(a+b)2=a2+b2D、2a2•a3=2a54. 下列图形中既是轴对称图形又是中心对称图形的是()A、B、C、D、5. 据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A、1.6×103吨B、1.6×104吨C、1.6×105吨D、1.6×106吨6. 如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A、40°B、30°C、20°D、10°7. 某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( ) A、赚16元B、赔16元C、不赚不赔D、无法确定8. 某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A、50元,20元B、50元,40元C、50元,50元D、55元,50元9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A 、①②B 、①④C 、②③D 、③④10. 如图,正六边形ABCDEF 内接于⊙O,半径为4,则这个正六边形的边心距OM 和的长分别为( )A 、2,3/2πB 、2,πC 、2,3πD 、2,4π11. 如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E .若BF=6,AB=5,则AE 的长为( )A 、4 B 、6 C 、8 D 、1012. 如图,G ,E 分别是正方形ABCD 的边AB ,BC 的点,且AG=CE ,AE⊥EF,AE=EF ,现有如下结论:①BE=GE ; ②△AGE≌△ECF; ③∠FCD=45°; ④△GBE∽△ECH,其中,正确的结论有( )A 、1个 B 、2个 C 、3个 D 、4个11题图 12题图二、填空题(本题共有4小题,每小题3分,共12分) 13. 因式分解:a 3﹣4a= ________.14. 从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是________15. 用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星________ 个.16. 如图,△ABC 的内心在x 轴上,点B 的坐标是(2,0),点C 的坐标是(0,﹣2),点A 的坐标是(﹣3,b ),反比例函数y=(x <0)的图象经过点A ,则k= ________.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分) 17. 计算:sin30°+(﹣1)2013﹣+(π﹣3)0﹣cos60° .18. 解不等式组并写出它的所有非负整数解.⎪⎩⎪⎨⎧-≤-〉+x x x x 996344932319. 丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查了人(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是度。
中考数学模拟测试卷一一、选择题(共10小题,每题3分,计30分.每题只有一个选项是符合题意的)1.32-的倒数为 【 】 A . 23- B .23 C .32 D . 32-2.下面四个几何体中,同一几何体的主视图和俯视图相同的共有 【 】A 、1个B 、2个C 、3个D 、4个3.我国第六次人口普查显示,全国人口为1370536875人,将那个总人口数(保留三个有效数字)用科学计数法表示为 【 】A 、 91037.1⨯B 、71037.1⨯ C 、81037.1⨯ D 、 101037.1⨯4、以下四个点,在正比例函数X Y 52-=的图像上的点是 【 】 A 、( 2, 5 ) B 、( 5, 2) C 、(2,-5) D 、 ( 5 , -2 )5.在△ABC 中,假设三边BC ,CA,AB 知足 BC :CA :AB=5:12:13,那么cosB= 【 】 A 、125B 、512 C 、135 D 、13126.某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,那么这组数据的中位数和众数别离是 【 】正方体 圆锥 球 圆柱 (第二题图)A 、181,181B 、182,181C 、180,182D 、181,1827.同一平面内的两个圆,他们的半径别离为2和3 ,圆心距为d,当51 d 时,两圆的位置关系是 【 】A 、外离B 、相交C 、内切或外切D 、内含 8.如图,过y 轴上任意一点p ,作x 轴的平行线,别离与反比例函数xy x y 24=-=和的图像交于A 点和B 点,假设C 为x 轴上任意一点,连接AC,BC 那么△ABC 的面积为 【 】九、 如图,在ABCD 中EF 别离是AD 、 CD 边上的点,连接BE 、AF,他们相交于G ,延长BE 交CD 的延长线于点H,那么图中的相似三角形有 【 】 A 、2对 B 、3对 C 、4对 D 、5对10、假设二次函数c x x y +-=62的图像过)321,23(),,2(),,1(Y C Y B Y A +-,那么321,,y y y 的大小关系是第Ⅱ卷(非选择题 共70分)二、填空题(共4小题,每题3分,计12分) 11.计算:23-= .(结果保留根号)12.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E ,假设0641=∠ 那么=∠1 .13、分解因式:=+-a ab ab 442.14、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,假设AD=3,BC=7,那么梯形ABCD 面积的最大值(第8题图) (第9题图)三、解答题(共8小题,计58分.解许诺写出进程) 15.(此题总分值5分)解分式方程:xx x -=--2312416.(此题总分值6分)某校有三个年级,各年级的人数别离为七年级600人,八年级540人,九年级565人,学校为了解学生生活适应是不是符合低碳观念,在全校进行了一次问卷调查,假设学生生活适应符合低碳观念,那么称其为“低碳族”;不然称其为“非低碳族”,通过统计,将全校的低碳族人数依照年级绘制成如下两幅统计图:(1)依照图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图;(2)小丽依据图①、图②提供的信息通过计算以为,与其他两个年级相较,九年级的“低碳族”人数在今年级全部学生中所占的比例较大,你以为小丽的判定正确吗?说明理由。
秘密★启用前2017年深圳市初中毕业生学业考试数学模拟试题考试时间:90分钟 满分100分一、选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上............) 1.下列四个数中,无理数是( ) A .32-B. 3-C. 0D. 2- 2.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( )A .312×104B .0.312×107C .3.12×106D .3.12×1074.下列运算结果为a 6的是( )A .a 2+a 3B .a 2•a 3C .(﹣a 2)3D .a 8÷a 25.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30°,则∠C 的度数为( ) A .50° B .40° C .30° D .20°6.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB 的示意图,要说明∠D′O′C′=∠DOC ,需要证明△D′O′C′≌△DOC ,则这两个三角形全等的依据是( ) A .边边边B .边角边C .角边角D .角角边7.对于双曲线y=,当x >0时,y 随x 的增大而减小,则m 的取值范围为( )A .m >0B .m >1C .m <0D .m <18.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( ) A .B .C .D .9.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA=50°,AB=4,则的长为( )A .π B .π C .πD .π10.下列命题正确是( )A. 点(1,3)关于x 轴的对称点是1(-,)3.B. 函数 32+-=x y 中,y 随x 的增大而增大.C. 若一组数据3,x ,4,5,6的众数是3,则中位数是3.D. 同圆中的两条平行弦所夹的弧相等.11.下列图形中都是由同样大小的小圆圈按一定规律组成的,其中第1个图形中一共有6个小圆圈,第2个图形中一共有9个小圆圈,第3个图形中一共有12个小圆圈,…,按此规律排列,则第7个图形中小圆圈的个数为( )A .21B .24C .27D .3012.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG ∥CD 交AF 于点G ,连接DG .给出以下结论: ①DG=DF ; ②四边形EFDG 是菱形; ③AF GF EG ⨯=212; ④当,6=AG 52=EG 时,BE 的长为5512,其中正确的结论个数是( ) A. 1 B. 2 C. 3 D. 4二、填空题(本题共4小题,每小题3分,共12分,请将正确的选项填.......在答题卡上.....) 13.分解因式:2x 2-8= . 14.小明用S 2=101[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)3]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10= .15.如图,测量河宽AB (假设河的两岸平行),在C 点测得∠ACB=30°,D 点测得∠ADB=60°,又CD=60m ,则河宽AB 为 m (结果保留根号).16.如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这10个正方形分成面积相等的两部分,则该直线l 的解析式为 .三、解答题(本大题共7题,其中17题5分,18题5分,19题7分,20题7分,21题8分,22题10分,23题10分,共52分)17.(5分)计算:()(032cos6032π-︒--+---.18.(5分)先化简,再求值:(1﹣)÷,其中a=﹣1.19.(本题8分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:20.(本题7分)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?21.(本题8分)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.22.(本题9分)已知,如图(1),PAB 为⊙O 的割线,直线PC 与⊙O 有公共点C , 且PB PA PC ⨯=2,(1)求证: ①PBCPCA ∠=∠; ②直线PC 是⊙O 的切线;(2)如图(2) , 作弦CD ,使,AB CD ⊥ 连接AD 、BC,若6,2==BC AD ,求⊙O 的半径;(3)如图(3),若⊙O 的半径为2,10=PO ,2=MO ,090=∠POM ,⊙O 上是否存在一点Q , 使得QM PQ 22+有最小值?若存在,请求出这个最小值;若不存在,说明23.已知抛物线y=a (x+3)(x ﹣1)(a ≠0),与x 轴从左至右依次相交于A 、B 两点,与y 轴相交于点C ,经过点A 的直线y=﹣x+b 与抛物线的另一个交点为D .(1)若点D 的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P ,使得以A 、B 、P 为顶点的三角形与△ABC 相似,求点P 的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B 出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?2017年深圳市初中毕业生学业考试数学模拟试题(参考答案)一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)二、填空题:(本题有4小题,每小题3分,共12分.把答案填在答题卡上).三、解答题(本大题有7题,其中17题5分,18题5分,19题7分,20题7分,21题8分,22题10分,23题10分,共52分)17.计算:()(032cos6032π-︒--+--.解: 原式=21)271(212-+--⨯…………………………………… 4分 =271…………………………………………………………… 5分18.先化简再求值:(1﹣)÷,其中a=﹣1.解:原式=÷…………………………………………2分=×……………………………………………… 3分=a +1.………………………………………………………… 4分 当a=﹣1时,原式=﹣1+1=.…………………………………5分19(7分) 解:(1)①由题意和表格,可得:a=50﹣6﹣8﹣14﹣10=12,即a 的值是12;……………………………………………………………………… 1分 ②补充完整的频数分布直方图如下图所示,…………………………………………2分(2)∵测试成绩不低于80分为优秀, ∴本次测试的优秀率是:;……………………………… 3分(3)设小明和小强分别为A 、B ,另外两名学生为:C 、D ,则所有的可能性为:(AB )、(AC )、(AD )、(BA )、(BC )、(BD ),………………… 5分 所以小明和小强分在一起的概率为:.……………………………… 7分20.解:(1)∵在矩形OABC 中,OA=3,OC=2,∴B(3,2),……………………………………………… 1分∵F为AB的中点,∴F(3,1),……………………………………………… 2分∵点F在反比例函数y=(k>0)的图象上,∴k=3,∴该函数的解析式为y=(x>0);…………………………………… 3分(2)由题意知E,F两点坐标分别为E(,2),F(3,),∴S△EFA=AF•BE=×k(3﹣k)…………………………………………… 4分=k﹣k2=﹣(k2﹣6k+9﹣9)=﹣(k﹣3)2+…………………… 6分=.……………………………………………… 7分当k=3时,S有最大值.S最大值21.解:(1)设每台空调的进价为x元,则每台电冰箱的进价为(x+400)元,根据题意得:,……………………………………………… 2分解得:x=1600,经检验,x=1600是原方程的解………………………………………3分∴x+400=1600+400=2000,答:每台空调的进价为1600元,则每台电冰箱的进价为2000元.………………………4分(2)设购进电冰箱x台,这100台家电的销售总利润为y元,则y=(2100﹣2000)x+(1750﹣1600,100﹣x)=﹣50x+15000,…………5分根据题意得:,解得:,…………………………………………… 6分∵x为正整数,∴x=34,35,36,37,38,39,40,∴合理的方案共有7种.…………………………………………… 7分∵y=﹣50x+15000,k=﹣50<0,∴y随x的增大而减小,∴当x=34时,y有最大值,最大值为:﹣50×34+15000=13300(元),答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元. (8)22.(1)① 证明:∵PB PA PC ⨯=2∴PCPBPA PC = ∵BPC CPA =∠………………………… 1分 ∴PCA ∆∽PBC ∆∴PBC PCA ∠=∠.………………………… 2分②证法一:作直径CF ,连接AF 则090=∠CAF∴090=∠+∠FCA F ∵B F ∠=∠由①的结论PBC PCA ∠=∠∴090=∠+∠FCA PCA ……………………… 3分 ∴CF PC ⊥∵PC 经过直径的一端点C∴直线PC 是⊙O 的切线;…………………… 4分(2)解法一:作直径BE ,连接CE 、AE.则=∠BCE ∵AB CD ⊥∴AE//CD ……………………………… 5分 ∴弧AD=弧CE∴AD=CE=2 …………………………… 6分 ∵BC=6,∴在Rt BCE ∆中由勾股定理得:406222222=+=+=BC CE BE∴10240==BE∴R=10……………………………… 7分(3):如图(3),取OM 中点G ,连接QG 、QO 、QM 、QP 、PG ∵2=MO ∴121==OM OG∵⊙O 的半径2==OQ r , ∴OM OG OQ ∙=2 ∵QOG MOQ ∠=∠ ∴MOQ ∆∽QOG ∆∴22==OM OQ QM QG ∴QM QG 22=∴QG PQ QM PQ +=+22…………………………… 8分 ∵PG QG PQ ≥+∴Q 落在线段PG 上时,PG OG PQ QM PQ =+=+22最小,……………………… 9分 ∴QM PQ 22+最小值为PG =()111102222=+=+OG PO ………………10分23.【考点】二次函数综合题.【分析】(1)根据二次函数的交点式确定点A 、B 的坐标,进而求出直线AD 的解析式,接着求出点D 的坐标,将D 点坐标代入抛物线解析式确定a 的值;(2)由于没有明确说明相似三角形的对应顶点,因此需要分情况讨论:①△ABC ∽△BAP ;②△ABC ∽△PAB ;(3)作DM ∥x 轴交抛物线于M ,作DN ⊥x 轴于N ,作EF ⊥DM 于F ,根据正切的定义求出Q 的运动时间t=BE +EF 时,t 最小即可.【解答】解:(1)∵y=a (x +3)(x ﹣1),∴点A 的坐标为(﹣3,0)、点B 两的坐标为(1,0), ∵直线y=﹣x +b 经过点A ,∴b=﹣3,∴y=﹣x ﹣3,当x=2时,y=﹣5,则点D 的坐标为(2,﹣5), ∵点D 在抛物线上,∴a (2+3)(2﹣1)=﹣5,解得,a=﹣, 则抛物线的解析式为y=﹣(x +3)(x ﹣1)=﹣x 2﹣2x +3;(2)如图1中,作PH⊥x轴于H,设点P坐标(m,n),当△BPA∽△ABC时,∠BAC=∠PBA,∴tan∠BAC=tan∠PBA,即=,∴=,即n=﹣a(m﹣1),∴解得m=﹣4或1(舍弃),当m=﹣4时,n=5a,∵△BPA∽△ABC,∴=,∴AB2=AC•PB,∴42=,解得a=﹣或(舍弃),则n=5a=﹣,∴点P坐标(﹣4,﹣).当△PBA∽△ABC时,∠CBA=∠PBA,∴tan∠CBA=tan∠PBA,即=,∴=,∴n=﹣3a(m﹣1),∴,解得m=﹣6或1(舍弃),当m=﹣6时,n=21a,∵△PBA∽△ABC,∴=,即AB2=BC•PB,∴42=•,解得a=﹣或(不合题意舍弃),则点P坐标(﹣6,﹣3),综上所述,符合条件的点P的坐标(﹣4,﹣)和(﹣6,﹣3).(3)如图2中,作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,∴∠EDF=60°,∴DE==EF,∴Q的运动时间t=+=BE+EF,∴当BE和EF共线时,t最小,则BE⊥DM,此时点E坐标(1,﹣4).11。
深圳市2017届初中毕业生学业考试数学试卷模拟试题(三)(解析版)一、选择题1、-8的相反数是()A、8B、C、D、-82、我们身处在自然环境中,一年接受的宇宙射线及其他天然辐射照射量约为3100微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为()A、3.1×106西弗B、3.1×103西弗C、3.1×10-3西弗D、3.1×10-6西弗3、如图所示,下列几何体中主视图、左视图、府视图都相同的是()A、半球B、圆柱C、球D、六棱柱4、下列运算中,正确的是()A、3a-a=3B、a2+a3=a5C、(-2a)3=-6a3D、ab2÷a=b25、函数y= 中,自变量x的取值范围是()A、x≤6B、x≥6C、x≤-6D、x≥-66、如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A、B、4C、D、47、已知直线y=kx+b经过点(k,3)和(1,k),则k的值为()A、B、±C、D、±8、在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放加搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是()A、B、C、D、9、如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A、(2a2+5a)cm2B、(3a+15)cm2C、(6a+9)cm2D、(6a+15)cm210、如图,在△ABC中,EF//BC,,S四边形BCFE=8,则S△ABC=()A、9B、10C、12D、1311、如图,直径为10的⨀A经过点C(0,5)和点O(0,0),B是y轴右侧⨀A优弧上一点,则∠OBC的余弦值为()A、B、C、D、12、已知二次函数y=ax2+bx+c的图象如图,其对称轴为直线x=1,给出下列结论:①b2-4ac>0;②2a+b=0;③abc>0;④3a+c>0.则正确的结论个数为()A、1B、2C、3D、4二、填空题13、因式分解x3-2x2y+xy2=________.14、已知a,b为两个连续的整数,且a<<b,则a+b=________.15、猜数字游戏中,小明写出如下一组数:、、、、…,小亮猜想出第六个数字是,根据此规律,第n个数是________.16、如图,平行四边形ABCD的顶点A、C在双曲线y1= 上,B、D在双曲线y2= 上,k1=2k2(k1>0),AB//y轴,S□ABCD=24,则k1=________.三、解答题17、计算:.18、求满足不等式组的整数解.19、2016年中考前,张老师为了解全市初三男生体育考试项目的选择情况(每人限选一项),在全市范围内随机调查了部分初三男生,将调查结果分成五类:A.推实心球(2kg);B.立定跳远;C.半场运球;D.跳绳;E.其他.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市初三毕业学生中有32000名男生,试估计全市初三男生中选半场运球的人数有多少人?(3)甲、乙两名初三男生在上述选择率较高的三个项目:B.立定跳远;C.半场运球;D.跳绳中各选一项,同时选半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.20、某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60度,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45度,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(保留根号)21、某工程,乙工程队单独先做10天后,再由甲,乙两个工程队合作20天就能完成全部工程,已知甲工程队单独完成此工程所需天数是乙工程队单独完成此工程所需天数的,(1)求:甲,乙工程队单独做完成此工程各需多少天?(2)甲工程队每天的费用为0.67万元,乙工程队每天的费用为0.33万元,该工程的预算费用为20万元,若甲,乙工程队一起合作完成该工程,请问工程费用是否够用,若不够用应追加多少万元?22、如图甲,直线PA交⨀O于A、E两点,PA的垂线CD切⨀O于点C,过点A作⨀O的直径AB.(1)求证:AC平分∠DAB;(2)将直线CD向下平行移动,在将直线CD向下平行移动的过程中,如图乙、丙,试指出与∠DAC相等的角(不要求证明).(3)在图甲中,若DC+DA=6,⨀O的直径为10,求AE的长度.23、平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线的解析式;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△OC′D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时;△AMA′的面积最大?最大面积是多少?并求出此时点M的坐标.答案解析部分一、选择题1、【答案】A【考点】相反数【解析】【解答】解:-8的相反数是8,故选:A.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得到答案.2、【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解: 3100微西弗=3.1毫西弗=3.1×10-3西弗.故选:C.【分析】用科学记数法表示数:把一个数字记为a×10n的形式(1≤|a|<10,n为整数).小数点向右移动几位,n就是负几.3、【答案】C【考点】简单几何体的三视图【解析】【解答】解:A.半球的主视图是个半圆,左视图是个半圆,府视图是圆,故不符合;B.圆柱的主视图是长方形,左视图是长方形,府视图是圆,故不符合;C.球的三视图都是圆,符合题意;D. 六棱柱的主视图是相连的三个长方形,左视图是相连的三个长方形,府视图是六边形,故不符合;故选:C.【分析】根据三视图的概念,观察简单几何体的三视图.4、【答案】D【考点】同类项、合并同类项【解析】【解答】解:A. 3a-a=2a,故A错误;B. a2与a3不能合并,故B错误;C. (-2a)3=(-2)3a3=-8a3,故C错误;D. ab2÷a=b2,故D正确;故选:D.【分析】根据合并同类项法则,同底数幂的乘除法则,积的乘方计算法则运算.5、【答案】A【考点】二次根式有意义的条件【解析】【解答】解:二次根式有意义,则根号内的代数式为非负数,则6-x≥0,解得x≤6.故选:A.【分析】二次根式有意义的条件是根号内为非负数.6、【答案】B【考点】全等三角形的判定与性质【解析】【解答】解:∵AD⊥BC,∴∠ADC=∠FDB=90°,∵∠ABC=45°,∴∠BAD=45°,∴AD=BD,∵BE⊥AC,∴∠AEF=90°,∴∠DAC+∠AFE=90°,∵∠FDB=90°,∴∠FBD+∠BFD=90°,又∵∠BFD=∠AFE,∴∠FBD=∠DAC,在△BDF和△ADC中,∴△BDF≌△ADC,∴DF=CD=4.故选:B.【分析】证明△BDF≌△ADC,可得DF=CD=4;易得∠ADC=∠FDB=90°,通过角的等量代换可得∠FBD=∠DAC;而BAD=∠ABC=45°,则BD=AD,由“ASA”可证得△BDF≌△ADC.7、【答案】B【考点】待定系数法求一次函数解析式【解析】【解答】解:把(k,3)和(1,k),代入直线y=kx+b,得由第二个方程得b=0,则第一个方程为k2=3,解得k=± .故选:B.【分析】运用待定系数法,将(k,3)和(1,k),代入直线的解析式,消去b,得到关于k的方程,解得k.8、【答案】C【考点】列表法与树状图法【解析】【解答】解:如下表:一共有16种等可能的情况,(黄球,黄球)的一共有4种,则两次都摸到黄球的概率P= .故选:C.【分析】用树状图或列表法,列出所有等可能的情况数量n,找出符合题意的情况数量m,则概率为P= .9、【答案】D【考点】矩形的性质【解析】【解答】解:矩形的面积=(a+4)2-(a+1)2=(a+4+a+1)(a+4-a-1)=3(2a+5)=(6a+15)cm2.故选:D【分析】用原来的面积减去剪去的正方形的面积即可得到答案.10、【答案】A【考点】相似三角形的性质【解析】【解答】解:∵,∴,∵EF//BC,∴△AEF~△ABC,∴,则,即S△ABC=9.故选:A.【分析】根据相似三角形的性质,面积的比是相似比的平方.11、【答案】C【考点】圆周角定理【解析】【解答】解:连接CD,∵∠COD=90°,∴CD为直径,∵直径为10,∴CD=10,∵点C(0,5)和点O(0,0),∴OC=5,∴sin∠ODC= = ,∴∠ODC=30°,∴∠OBC=∠ODC=30°,∴cos∠OBC=cos30°= .故选:C.【分析】连接CD,由直径所对的圆周角是直角,可得CD是直径;由同弧所对的圆周角相等可得∠OBC=∠ODC,在Rt△OCD中,由OC和CD的长可求出sin∠ODC.12、【答案】B【考点】二次函数的图象,二次函数的性质,二次函数的应用【解析】【解答】解:①令y=ax2+bx+c=0,由图可得抛物线与x轴有两个交点,则b2-4ac>0,故①正确;②∵对称轴为直线x=1,则,即2a+b=0,故②正确;③对称轴在y轴的右侧,则ab<0,抛物线与y轴的交点在y轴正半轴上,则c>0,则abc<0,故③错误;④由图可得当x=-1时,y<0,即a-b+c<0,∵b=-2a,∴3a+c<0,故④错误.综上所述,①②正确.故选:B.【分析】①b2-4ac为y=ax2+bx+c=0的判别式,该方程解的情况,表示抛物线与x轴的交点个数;②由对称轴直线公式可得x= ,化简即可得a,b的关系;③根据对称轴的位置,可得ab的正负性,由抛物线与y轴的交点在y轴的位置可得c的正负性,即可判断abc的正负性;④由图可得当x=-1时,y<0,代入抛物线的解析式,结合b=-2a,化简即可得到.二、填空题13、【答案】x(x-y)2【考点】因式分解-提公因式法,因式分解-运用公式法【解析】【解答】解:原式=x(x2-2xy+y2)=x(x-y)2,故答案为x(x-y)2.【分析】先提取公因式,再运用完全平方公式解答.14、【答案】11【考点】有理数大小比较【解析】【解答】解:∵<<,∴5<<6,则a=5,b=6,∴a+b=5+6=11.故答案为11.【分析】估计的大小,可得它等于5点几,则可得a,b的值.15、【答案】【考点】探索数与式的规律【解析】【解答】解:由= ,,,,……,则规律为.故答案为.【分析】可先观察分子,可得分子的规律是2n;分母与分子相差3,则分母为2n+3.16、【答案】8【考点】反比例函数的性质,平行四边形的性质【解析】【解答】解:在▱ABCD中,AB∥CD,AB=CD(平行四边形的对应边平行且相等),故设A(x,y1)、B(x、y2),则根据反比例函数的图象关于原点对称的性质知,C(﹣x,﹣y1)、D(﹣x、﹣y2).∵A在双曲线y1= 上,B在双曲线y2= 上,∴x= ,x= ,∴= ;又∵k1=2k2(k1>0),∴y1=﹣2y2;∵S▱ABCD=24,∴AB•|2x|=|y1-y2|•|2x|=6|y2x|=24,解得,y2x=±4,∵双曲线y2= 位于第一、三象限,∴k2=4,∴k1=2k2=8故答案为8.=24,可构造方程AB×|2×点A的横坐标|=24.可设点A(x,y1),点B(x,y2),由▱ABCD的【分析】由S▱ABCD性质和反比例函数的对称性可写出点C,点D的坐标,因为点A与点B分别在y1= 和y2= 上,则代入可得x与y1,y2的关系,则可解出y1与y2的关系.而AB=|y1-y2|代入方程可得y2x的值.从而解出k2和k1.三、解答题17、【答案】解:原式=-1+8+1+|4 -4 |=8【考点】特殊角的三角函数值【解析】【分析】根据整数次方的算法,负整数次方的算法,0次方的算法以及特殊锐角函数值可解答. 18、【答案】解:由①得3x>6,则x>2;由②得5x≤30,则x≤6,∴满足不等式组x的整数解为3、4、5、6.【考点】解一元一次不等式组【解析】【分析】分别求出两个不等式的解集,再写出符合解集的整数解.19、【答案】(1)解:被调查的学生总人数:150÷15%=1000(人),选择B的人数:1000×(1-15%-20%-40%-5%)=1000×20%=200(人);补全统计图如图所示.(2)解:32000×40%=12800(人).(3)解:根据题意画出如下树形图:所有等可能结果有9种:BB、BC、BD、CB、CC、CD、DB、DC、DD,同时选择B和D的有2种可能,即BD和DB,P(同时选择B和D)= .【考点】扇形统计图,条形统计图【解析】【分析】(1)根据选A的有150人,占调查人数的15%,则可求出调查总人数,先求出B所占的百分比,再由调查总人数×选B的百分比,求出选B的人数;(2)选半场运球的占40%,乘以总人数,即可求得;(3)列出所有等可能的结果数,再找出“同时选择B和D”的情况数量,则可求得.20、【答案】(1)解:Rt△ABH中,i=tan∠BAH= = ,∴∠BAH=30°,∴BH= AB=5(米).(2)解:过B作BG⊥DE于G,由(1)得:BH=5,AH=AB•cos∠BAH=10× =5 ,∴BG=AH+AE=5 +15,Rt△BGC中,∠CBG=45°,∴CG=BG=5 +15,∴Rt△ADE中,∠DAE=60°,AE=15,∴DE= AE=15 .∴CD=CG+GE-DE=5 +15+5-15 =20-10 (米).答案:宣传牌CD高约(20-10 )米.【考点】解直角三角形的应用-坡度坡角问题【解析】【分析】(1)坡比i= =tan∠BAH,又因为BH⊥AH,则可得∠BAH,由AB可解出BH;(2)由(1)得:BH=5,AH=AB•cos∠BAH求出AH,则BG=AH+AE;Rt△BGC中,∠CBG=45°,则CG=BG,Rt△ADE中,∠DAE=60°,DE= AE,则CD=CG+GE-DE.21、【答案】(1)解:乙工程队单独做完成此工程需x天,甲工程队单独做完成此工程需x天,由题意,得:+()×20=1.解之,得x=60.经检验,x=60是原方程的根.甲:×60=40(天).答案:乙工程队单独做完成此工程需60天,甲工程队单独做完成此工程需40天.(2)解:设甲、乙工程队一起合作完成该工程需a天,设费用为w万元,,解之,得a=24,w=24×0.67+24×0.33=24(万元),∵24-20=4(万元),∴工程费用不够用,应追加4万元.【考点】分式方程的应用【解析】【分析】(1)列分式方程解答,数量关系:乙工程队每天的工作量×10+(乙工程队每天的工作量+甲工程队每天的工作量)×20=1,可设乙工程队单独做完成此工程需x天;(2)先求出甲、乙工程队一起合作完成该工程的天数,则费用=天数×(甲工程队每天的费用+乙工程队每天的费用).22、【答案】(1)证明:如图1,连接OC,∵OA、OC是⨀O的半径,∴OA=OC.∴∠OAC=∠OCA,∵CD切于圆O于点C,∴CD⊥OC,又∵CD⊥PA,∴OC//PA,∴∠PAC=∠OCA,∴AC平分∠DAB.(2)∠DAC=∠BAF,理由如下:如图2,连接BC,∵AB是圆O的直径,∴∠ACB=90°,∴∠ACF+∠BCF=90°,又∵在Rt△ACD中,∠DAC+∠ACD=90°,∴∠DAC=∠FCB,又∵∠BAF =∠FCB,∴∠DAC=∠BAF.如图3,∵AB是圆O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,又∵∠DAF+∠AFD=90°,∠AFD =∠CBA,∴∠DAF=∠CAB,∴∠DAF-∠CAF=∠CAB-∠CAF.∴∠DAC=∠BAF.(3)解:如图4所示:连接OC,过点A作AF⊥CO,垂足为F,连接CB、CE.∵DC垂直AE,OC垂直DC,AF垂直CO,∴四边形AFCD为矩形.设AD的长为x,则AF=6-x,OF=5-x.在Rt△AFO中,OA2=AF2+OF2,即:25=(6-x)2+(5-x)2,解得:x1=2,x2=9(舍去).∴AD=2,DC=4.由(1)可知:∠DAC=∠BAC,又∵∠CAD+∠DCA=90°,∠CAB+∠ABC=90°,∴∠DCA=∠ABC,∵∠DEC=∠ABC,∴∠DEC=∠DCA,又∵∠EDC=∠ADC,∴△EDC~△CDA,∴,即:,∴DE=8,∴AE=DE-AD=8-2=6.【考点】圆的认识,切线的性质【解析】【分析】(1)需要证明∠OAC=∠PAC,连接OC,则OC=OA,则∠OAC=∠OCA,所以需要证明∠PAC=∠OCA,则需要证明AD//OC,而CD⊥PA,则CD⊥OC,由CD切于圆O于点C,可证得;(2)如图2,根据两角和为90°,等量代换得到∠DAC=∠FCB,由同弧所对的圆周角相等可得∠BAF =∠FCB,从而证得∠DAC=∠BAF;如图3,同理由两角和为90°,等量代换得到∠DAF=∠CAB,则∠DAC=∠BAF.(3)连接OC,过点A作AF⊥CO,垂足为F,连接CB、CE,则易得DC=AF,AD=CF,可设AD的长为x,则AF=6-x,OF=5-x,在Rt△AFO中,由勾股定理构造方程解出x,由(1)和(2)可证得∠DEC=∠DCA,又∠EDC=∠ADC,则△EDC~△CDA,由对应边成比例解出DE,则AE=DE-AD.23、【答案】(1)解:∵□A′B′OC′由□ABOC旋转得到,且点A的坐标为(0,3),点A′的坐标为(3,0).∴抛物线过点C(-1,0),A(0,3),A′(3,0),设抛物线的解析式为y=ax2+bx+c(a≠0),可得解得∴过点C,A,A′的抛物线的解析式为y=-x2+2x+3.(2)解:∵AB//CO,∴∠OAB=∠AOC=90°,∴OB= ,又∠OC′D=∠OCA=∠B,∠C′OD=∠BOA,∴△C′OD~△BOA,又OC′=OC=1,∴,又△ABO的周长为4+ ,∴△C′OD的周长为.(3)解:连接OM,设M点的坐标为(m,n),∵点M在抛物线上,∴n=-m2+2m+3,∴,= OA·m+ OA′·n- OA·OA′= (m+n)-= (m+n-3)= (m2-3m)= (m )2+ .∵0<m<3,∴当m= 时,n= ,△AMA′的面积有最大值,∴当点M的坐标为(,)时,△AMA′的面积有最大值,且最大值为.【考点】二次函数的图象,二次函数的性质,二次函数的应用【解析】【分析】(1)需要求A′的坐标,由A(0,3)绕点O顺时针旋转90°,则A′在x轴上且OA′=OA=3,则A′(3,0);运用待定系数法求抛物线的解析式;(2)根据勾股定理易求得OB的长;由角OC′D=角OCA=角B,角C′OD=角BOA,则△C′OD~△BOA,根据相似三角形的周长比等于相似比,可先求得相似比和△BOA 的周长,则可求出△OC′D的周长;(3)可设M(m,n)代入抛物线可得n与m的关系式,而,由面积= 底乘高,将上式进行化简,可得与m的关系式,由0<m<3,讨论m取何值时最大.。
深圳市2017年初中毕业生学业考试数学试卷模拟试题(二)一、选择题1.9的平方根是()A. ±3B. 3C. -3D. 812.支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2016年“快的打车”账户流水总金额达到147.3亿用科学记数法表示为()A. 1.473×1010B. 14.73×1010C. 1.473×1011D. 1.473×10123.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A. B. C. D.4.下列运算正确的是()A. 3ab-2ab=1B. x4·x2=x6C. (x2)3=x5D. 3x2÷x=2x5.如图,已知a//b,∠1=50°,则∠2=()A. 40°B. 50°C. 120°D. 130°6.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A. 120元B. 100元C. 72元D. 50元7.由几个大小相同的正方形组成的几何图形如图,则它的左视图是()A. B. C. D.(a≠0)在同一直角坐标系中的图象可能是()8.若ab>0,则函数y=ax+b与y= bxA. B.C. D.9.已知不等式组 {x −a <−11−x 3≤1 的解集如图所示(原点没标出),则a 的值为( )A. -1B. 0C. 1D. 210.如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A 处时,发现它的北偏东30°方向有一灯塔B.轮船继续向北航行2小时后到达C 处,发现灯塔B 在它的北偏东60°方向.若轮船继续向北航行,那么当再过多长时间轮船离灯塔最近?( )A. 1小时B. √3 小时C. 2小时D. 2 √3 小时11.对于数对(a,b ),(c,d ),定义:当且仅当a=c 且b=d 时,(a ,b )=(c ,d );并定义其运算如下:(a ,b )※(c ,d )=(ac-bd ,ad+bc ),如(1,2)※(3,4)=(1×3-2×4,1×4+2×3)=(-3,10),若(x ,y )※(1,-1)=(1,3),则x y 的值是( )A. -1B. 0C. 1D. 2 12.如图,矩形ABCD 中,AE 平分∠BAD 交BC 于E ,∠CAE=15°,则下列结论:①△ODC是等边三角形②BC=2AB③∠AOE=135°④S△AOE=S△COEA. 1B. 2C. 3D. 4二、填空题13.因式分解ax2-9a=________.14.有A、B两只不透明口袋,每只口袋装有两颗相同的球,A袋中的两颗球上分别写了“细”“致”的字样,B 袋中的两颗上分别写了“信”“心”的字样,从每只口袋里各摸出一颗球,刚好能组成“细心”字样的概率是________.15.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打________折.16.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O圆心,OB2长为半径画弧交x轴于点A3;…;按照此做法进行下去,则OA n的长为________.三、解答题17.计算:(−12)−2+ √3tan60°+|-1|+(2cos60°+1)0.18.解方程:3+xx−4+1= 14−x.19.某课题小组为了解某品牌手机的销售情况,对某专卖店该品牌手机在今年1~4月的销售做了统计,并绘制成如图两幅统计图(如图).(1)该专卖店1~4月共销售这种品牌的手机________台;(2)请将条形统计图补充完整;(3)在扇形统计图中,“二月”所在的扇形的圆心角的度数是________;(4)在今年1~4月份中,该专卖店售出该品牌手机的数量的中位数是________台.20.2013年9月23日强台风“天兔”登录深圳,伴随着就是狂风暴雨梧桐山山坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=3m.(1)求∠DAC的度数;(2)求这棵大树折断前的高度?(结果保留根号).21.为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动,某工程队承担了一段长1500米的道路绿化工程,施工时有两种绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?22.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C⟶B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t秒,求当选t为何值时,四边形PRBC是矩形?(3)如图2,连接PB,请直线写出使△PRB是等腰三角形时t的值.23.如图,⨀C的内接△AOB中,AB=AO=4,tan∠AOB= 3,抛物线y=ax2+bx经过点A(4,0)与点(-2,6).4(1)求抛物线的函数解析式;(2)直线m与⨀C相切于点A,交y轴于点D,求证:AD//OB;(3)在(2)的条件下,点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D 出发向点A运动;点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值.答案解析部分一、选择题1.【答案】A【解析】【解答】解:9的平方根是±3.故选:A.【分析】一个正数的平方根有两个,且它们互为相反数.2.【答案】A【解析】【解答】解:147.3亿=147.3×108=1.473×102×108=1.473×1010,故选:A.【分析】用科学记数法表示数:把一个数字记为a×10n的形式(1≤|a|<10,n为整数).表示绝对值较大的数时,小数点向左移动几位,n就是几.3.【答案】B【解析】【解答】解:A、是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是中心对称图形,不是轴对称图形,故本选项错误.故选B.【分析】根据轴对称图形与中心对称图形的概念求解.4.【答案】B【解析】【解答】解:A.3ab-2ab=ab,故A错误;B. x4·x2=x6,故B正确;C. (x2)3=x6,故C错误;D. 3x2÷x=3x,故D错误;故选:B.【分析】根据合并同类项法则,同底数幂的乘除法,幂的乘方法则运算.5.【答案】D【解析】【解答】解:由对顶角相等可得∠3=∠1=50°,因为a//b,所以∠3+∠2=180°,则∠2=180°-∠3=180°-50°=130°.故选:D.【分析】由对顶角易得∠3=∠1,再由平行线的性质可得同旁内角互补,即可求出∠2.6.【答案】D【解析】【解答】设进货价为x元,由题意得:(1+100%)x•60%=60,解得:x=50,故选:D.【分析】根据题意假设出商品的进货价,从而可以表示出提高后的价格为(1+100%)x ,再根据以6折优惠售出,即可得出符合题意的方程,求出即可.7.【答案】B【解析】【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【分析】根据从左边看得到的图形是左视图,可得答案.8.【答案】C【解析】【解答】解:A. 函数y=ax+b的图象不经过第二象限可得a>0,b<0,则函数y= b的图象应在第x二象限和第四象限,故不符合;B. 函数y=ax+b的图象只经过第二、四象限可得a<0,b=0,则函数y= b的图象不存在,故不符合;xC.函数y=ax+b的图象不经过第四象限可得k>0,b>0,则函数y= b的图象应在第一象限和第二象限,故符x合;D. 函数y=ax+b的图象不经过第三象限可得k<0,b>0,则函数y= b的图象应在第一象限和第三象限,故x不符合;故选:C.的图象是否符合.【分析】通过函数y=ax+b的图象,判断a和b的取值范围,再根据b的范围,验证y= bx9.【答案】D【解析】【解答】解:由x-a<-1可得x<a-1,≤1可得-2≤x,由1−x3由不等式组的解集可得不等式组有解,其为-2≤x<a-1,-2在数轴上是实心点,与空心点相距3个单位长,则a-1=-2+3,a=2.故选:D.【分析】分别解出两个不等式的解,可得x<a-1,-2≤x,而不等式组有解,可得-2≤x<a-1,观察数轴上可得两个数字相差3个单位,则可解出a的值.10.【答案】A【解析】【解答】解:作BD⊥AC于D,如下图所示:易知:∠DAB=30°,∠DCB=60°,则∠CBD=∠CBA=30°.∴AC=BC,∵轮船以40海里/时的速度在海面上航行,∴AC=BC=2×40=80海里,∴CD= 12BC=40海里.故该船需要继续航行的时间为40÷40=1小时.故选:A.【分析】可作BD⊥AC于D,当轮船行驶到点D时,离灯塔最近;根据直角三角形含30度角对应的边是斜边的一半可解得.11.【答案】C【解析】【解答】解:∵(a,b)※(c,d)=(ac-bd,ad+bc),∴(x,y)※(1,-1)=(x+y,-x+y)=(1,3),∵当且仅当a=c且b=d时,(a,b)=(c,d);∴{x+y=1−x+y=3∴{x=−1y=2∴x y的值是(-1)2=1,故选:C.【分析】根据新定义易得(x,y)※(1,-1)=(x+y,-x+y)=(1,3),而当且仅当a=c且b=d时,(a,b)=(c,d),则{x+y=1−x+y=3解出x,y的值即可.12.【答案】C【解析】【解答】解:∵矩形ABCD中,AE平分∠BAD,∴∠BAE=45°,∵∠CAE=15°,∴∠BAO=∠BAE+∠CAE=45°+15°=60°,又∵矩形中OA=OB=OC=OD,∴△AOB是等边三角形,∴∠AOB=∠COD=60°,∴△ODC是等边三角形,故①正确;由等边三角形的性质,AB=OA,∴AC=2AB,由垂线段最短BC<AC,∴BC<2AB,故②错误;∵∠BAE=45°,∠ABE=90°,∴△ABE是等腰直角三角形,∴AB=BE,∴BO=BE,∵∠COB=180°-60°=120°,∴∠OBC=30°,∠BOE= 1(180°-30°)=75°,2∴∠AOE=∠AOB+∠BOE=60°+75°=135°,故③正确;∵△AOE和△COE的底边AO=CO,点E到AC的距离相等,∴S△AOE=S△COE,故④正确;综上所述,正确的结论是①③④.故选:C.【分析】根据角平分线的定义,和∠CAE=15°,证明△ODC中有一个角是60度的角可证得①正确;易得AC=2AB,因为∠ABC为直角,则BC<AC=2AB,故②错误;由∠BAE=45°,∠ABE=90°,可得△ABE是等腰直角三角形,BE=AB=OB,从而等边对等角可求出∠BOE,从而可解得∠AOE,故③正确;等底等高,则S△AOE=S△COE,故④正确.二、填空题13.【答案】a(x-3)(x+3)【解析】【解答】解:原式=a(x2-9)=a(x-3)(x+3).故答案为:a(x-3)(x+3).【分析】先提取公因式,再运用平方差公式法.14.【答案】14【解析】【解答】解:列出下列所有情况可得:细致信细信致信心细心致心一共有4种情况,组成“细心”的只有一种情况,则概率为P =14.故答案为:14.【分析】列出所有可能的情况,再找出能组成“细心”的情况数.15.【答案】7【解析】【解答】解:设最多可打x折,则1200·x-800≤800×5%,解得x<0.7.最多可打7折.故答案为:7.【分析】根据一元一次不等式的性质解答。
2017深圳数学中考模拟试卷一、选择题(本题有12小题,每小题3分,共36分):1. 如果字母a 表示一个有理数,那么它的相反数是( )A . a - B.1a C. a D. 1a -2.如图的几何体是由五个同样大小的正方体搭成的,其主视图是A .B .C .D .3. 用科学记数法表示0.58亿为( )A. 61058⨯B. 71058⨯C. 6108.5⨯D. 7108.5⨯4.如图,只是中心对称图形不是轴对称图形的是A .B .C .D . 5.某品牌运动鞋销售商在进行市场占有率的调查时,他最关注的是A .运动鞋型号的平均数B .运动鞋型号的众数C .运动鞋型号的中位数D .运动鞋型号的极差6. 已知等腰三角形的两边长分别为a 、b ,且a 、b 2(235)0a b -+=,则此等腰三角形的周长是( )A .7或8B .7C .8D .无数种情况7. 如图,□ABCD 中,∠ABC =60o,E 、F 分别在CD 和BC 的延长线上,AE ∥BD ,EF ⊥BC ,EF =则AB 的长是( )A .1 B. 2 C. D.8.一次函数y =k x +b(k ≠0,k 与b 都是常数)图象如图1示, 当y <2时,变量x 的取值范围是A .x >0B .x <0C .x <2D .x >2 9.二元一次方程组⎩⎨⎧-=+=-.345,52y x y x 解是A .⎩⎨⎧-=-=31y xB .⎪⎩⎪⎨⎧=-=157y x C .⎩⎨⎧-==21y x D .⎪⎩⎪⎨⎧-==232y x10.下列命题中, ①有一组邻边互相垂直的菱形是正方形②若2x=3y ,则③若(﹣1,a )、(2,b )是双曲线y=上的两点,则a >b 正确的有( )个A .1B .2C .3D .011. 定义一种运算:dc ba =bc ad -,如果有0122>-+x x ,那么x 的解集为( ) A. 2x > B. 23x >- C. 23x > D. 0x >12、如图是二次函数c bx ax y ++=2图象的一部分,图象过点A (-3,0), 对称轴为x =-1.给出四个结论:①ac b 42>;②2a +b=0;③a -b +c=0; ④5a <b .其中正确结论是( )A 、②④B 、①④C 、②③D 、①③二、填空题:(本题有4小题,每小题3分,共12分).. 13、因式分解:a ax ax 442+- = .14.若x=﹣2是关于x 的一元二次方程x 2+3x+m+1=0的一个解,则m= . 15.如图,在平面直角坐标系中,直线l ∥x 轴,且直线l 分别与反比例函数y=(x >0)和y=﹣(x <0)的图象交于点P 、Q ,连结PO 、QO ,则△POQ 的面积为 .16.如图,已知正方形ABCD 的边长为4,点E 、F 分别在边AB ,BC 上, 且AE=BF=1,则OC= .甲组 乙组 三、解答题(本题有7小题,共52分.其中第17题5分;第18题6分;第19题7分;第20、21题各8分;第22、23题各9分) 17. ()0210060sin 3231++---︒-18.先化简,再求值:2211(112m m m m --÷++,其中3m =.19. 每年5月举行“全国中学生数学联赛”,各省一等奖中成绩优异的选手可参加“冬令营”,冬令营再选拔出60名优秀选手进入“国家集训队”.现将脱颖而出的60名选手分成甲乙两组进行竞赛,每组30人,成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题: (1(2)从本次统计数据来看, 组数据比较稳定. (3)乙组中,“60分”所占的百分比是 %. (4)如果将甲组..数据制作成扇形统计图,那么甲组..“90分”所占扇形对应的圆心角的度数是 .20、(6分)如图,阳光下,小亮的身高如图中线段AB 所示,他在地面上的影子如图中线段BC 所示,线段DE 表示旗杆的高,线段FG 表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高AB=1.6m ,他的影子BC=2.4m ,旗杆的高DE=15m ,旗杆与高墙的距离EG=16m ,请求出旗杆的影子落在墙上的长度.80分占 13 70分占 13 90分占215 60分21.(8分)A市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,请通过计算说明哪种方案更优惠?22、如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD 相交于点G,连接BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;(3)若EB=4,求△BAE的面积.23. 如图所示,在平面直角坐标系中,A (1,0),B (3,0) ,C . (1)求经过A 、B 、C 三点的抛物线解析式;(2)现有△DEF ∽△ABC ,且△DEF 与△ABC 面积比为1:4,点D 在线段AB 上运动(点D 不与A 、B 两点重合),DF 所在直线经过点C .此时,DE 所在直线与(1)中的抛物线交于点M .①、当△ODC ∽△OCB 时,求点F 的坐标; ②、在①的条件下:先直接回答....抛物线的对称轴上存在几个P 点使△PDM 为等腰三角形?再求出在这些等腰三角形中,以∠DMP 为顶角时的P 点坐标.yxyx2017中考数学模拟试卷答案2017.03.28一、选择题(本题有12小题,每题3分,共36分)二、填空题(本题有4小题,每题3分,共12分.)三、解答题(本大题有7题,其中17题5分,18题6分,19题7分,20题8分,21题8,22题9分,23题9分,共52分)17.(5分) 解:原式= 1-3+3+1=2 18.(6分) 解:原式= m m 1+,将,3=m 代入原式= 3419.(7分) 解:(1)(2)乙; (3)20; (4)6020.(8分) 解:解:(1)如图:线段MG 和GE 就表示旗杆在阳光下形成的影子.(2)过M 作MN ⊥DE 于N ,设旗杆的影子落在墙上的长度为x ,由题意得:△DMN ∽△ACB , ∴…………………4分又∵AB=1.6,BC=2.4, DN=DE ﹣NE=15﹣x MN=EG=16 ∴解得:x=,答:旗杆的影子落在墙上的长度为米.…………………6分21.(8分)解:(1)设平均每次下调的百分率为,则,………………2分解得:(舍去).∴平均每次下调的百分率为10%. …………………4分(2)方案①可优惠:(元),…………………6分方案②可优惠:(元),…………………7分∴方案①更优惠. …………………8分22.(9分)(1)证明:∵四边形ABCD是正方形,且B、C、F共线∴AE∥CF ……………………1分∵AE=CF∴四边形ACFE是平行四边形…………2分∴EF∥AC …………………………3分(2)连结BG,∵EF∥AC∴∠F=∠ACB=45o∴∠FGC=45o∴GC=CF=AE ………………………………4分∵AB=BC,∠BAE=∠BCG=90o∴△BAE≌△BCG ………………………………5分∴BE=BG∵BE=EG(已知)∴BE=EG=BG∴∠BEF=60o………………………………6分(3)∵∠EGD=∠CGF=45o∴△DEG是等腰直角三角形∵EB=4∴EG=4∴DE=DG=22…………………………7分假设AE=x ,则AB=x利用Rt △BAE 中勾股定理得x =8分∴11222BAE s AB AE ∆=⋅⋅==……9分23.解:(1)设解析式为(1)(3)y a x x =-+…………………………1分将C 代入得1)(3)3y x x =--+……………………3分(2)①、由A (1,0),B (3,0)-,C .易得AC=2,AB=4,BC= 从而得到△ACB 是直角三角形,且∠ABC=30o得到△OCB 是直角三角形,且∠OBC=30o∵△ODC ∽△OCB∴3OD OC OC OB ==得OD=1,且∠ODC=60o………………4分 ∵△DEF ∽△ABC ,且△DEF 与△ABC 面积比为1:4 ∴112DF AC ==……………………5分得出1(2F -……………………6分②、存在4个P 点………………………………7分由①得知D (-1,0),∠EDB=180o -∠CDO -∠EDF=60o,DE=2得E(-得出直线DE 的解析式为:y =联立(1)(3)3yy x x=-=--+得M(-……8分∵等腰△DMP是以∠DMP为顶角∴P(1,-……………………9分。
秘密★启用前2017年深圳市初中毕业生学业考试数学模拟试题考试时间: 90分钟满分100分一、选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上............)1.﹣5的倒数是()A.B.C.﹣5 D.52.人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为()A.0.2×107 B.2×107 C.0.2×108 D.2×1083.方程x2﹣4x+4=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根4.如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A.B.C.D.5.下列等式成立的是()A.(a+4)(a﹣4)=a2﹣4 B.2a2﹣3a=﹣a C.a6÷a3=a2 D.(a2)3=a6 6.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.7.如图,l1∥l2,l3⊥l4,∠1=42°,那么∠2的度数为()A.48°B.42°C.38°D.21°8.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2 B.m≤2 C.m>2 D.m<29.如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A.0<x<2 B.0<x<3 C.2<x<3 D.x<0或x>310.如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1米,太阳光线与地面的夹角∠ACD=60°,则AB的长为()A.米B.米C.米D.米11.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE 上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°12.如图,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是()A.3 B.4 C.2D.二、填空题:本题共4小题,每小题分,共12分,把答案填在答题卡上13.某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg),则这组数据的中位数是.14.分解因式:2x2y﹣8y=.15.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是.16.已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tanB为.三、解答题(本大题有七题,其中第17题6分、第18题6分、第19题7分、第20题8分、第21题8分、第22题8分、第23题9分,共52分)解答应写出文字说明或演算步骤.17.计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°.18.解不等式组并求它的整数解.19.为贯彻政府报告中“大众创业、万众创新”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w <30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.20.如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.(1)求证:PA是⊙O的切线;(2)若,AB=6,求sin∠ABD的值.21.某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400元,购买B品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍,已知购买一个B品牌蓝球比购买一个A品牌蓝球多花50元.(1)求购买一个A品牌、一个B品牌的蓝球各需多少元?(2)该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的售价进行调整,A品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?22.【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC=.【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.(1)求证:ED=FC.(2)若∠ADE=20°,求∠DMC的度数.23.如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).(1)求以C为顶点,且经过点D的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.2017年深圳市初中毕业生学业考试数学模拟试题参考答案与试题解析一、选择题:本题有12小题,每题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.1.﹣5的倒数是()A.B.C.﹣5D.5【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣5)×(﹣)=1,∴﹣5的倒数是﹣.故选:A.2.人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为()A.0.2×107B.2×107C.0.2×108D.2×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将“两千万”用科学记数法表示为:2×107,故选:B3.方程x2﹣4x+4=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根【考点】根的判别式.【分析】先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.【解答】解:∵a=1,b=﹣4,c=4,∴△=b2﹣4ac=16﹣16=0,∴一元二次方程有两个相等的实数根.故选A.4.如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A .B .C .D .【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从上面看易得左边第一列有2个正方形,中间第二列最有2个正方形,最右边一列有1个正方形在右上角处.故选C .5.下列等式成立的是( )A .(a+4)(a ﹣4)=a 2﹣4B .2a 2﹣3a=﹣aC .a 6÷a 3=a 2D .(a 2)3=a 6【考点】平方差公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】A 、原式利用平方差公式化简得到结果,即可作出判断;B 、原式不能合并,错误;C 、原式利用同底数幂的除法法则计算得到结果,即可作出判断;D 、原式利用幂的乘方运算法则计算得到结果,即可作出判断.【解答】解:A 、原式=a 2﹣16,不成立;B 、原式不能合并,不成立;C 、原式=a 3,不成立;D 、原式=a 6,成立.故选D .6.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC=BC ,则下列选项正确的是( )A .B .C .D .【考点】作图—复杂作图.【分析】由PB+PC=BC 和PA+PC=BC 易得PA=PB ,根据线段垂直平分线定理的逆定理可得点P 在AB 的垂直平分线上,于是可判断D 选项正确.【解答】解:∵PB+PC=BC ,而PA+PC=BC ,∴PA=PB ,∴点P 在AB 的垂直平分线上,即点P 为AB 的垂直平分线与BC 的交点.故选D .7.如图,l 1∥l 2,l 3⊥l 4,∠1=42°,那么∠2的度数为( )A.48°B.42°C.38°D.21°【考点】直角三角形的性质;平行线的性质.【分析】先根据两直线平行,同位角相等求出∠3,再根据直角三角形两锐角互余即可求出∠2.【解答】解:如图,∵l1∥l2,∠1=42°,∴∠3=∠1=42°,∵l3⊥l4,∴∠2=90°﹣∠3=48°.故选A.8.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2B.m≤2C.m>2D.m<2【考点】解一元一次不等式;一元一次方程的解.【分析】根据题意可得x>0,将x化成关于m的一元一次方程,然后根据x的取值范围即可求出m的取值范围.【解答】解:由mx﹣1=2x,移项、合并,得(m﹣2)x=1,∴x=.∵方程mx﹣1=2x的解为正实数,∴>0,解得m>2.故选C.9.如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A.0<x<2B.0<x<3C.2<x<3D.x<0或x>3【考点】二次函数与不等式(组).【分析】直接利用已知函数图象得出y1在y2下方时,x的取值范围即可.【解答】解:如图所示:若y1<y2,则二次函数图象在一次函数图象的下面,此时x的取值范围是:0<x<3.故选:B.10.如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1米,太阳光线与地面的夹角∠ACD=60°,则AB的长为()A.米B.米C.米D.米【考点】解直角三角形的应用-坡度坡角问题.【分析】依据平行于三角形一边的直线截其他两边所得的线段对应成比例及60°的正切值联立求解.【解答】解:设直线AB与CD的交点为点O.∴.∴AB=.∵∠ACD=60°.∴∠BDO=60°.在Rt△BDO中,tan60°=.∵CD=1.∴AB=.故选B.11.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE 上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°【考点】旋转的性质.【分析】由旋转的性质得出△ADE≌△ABC,得出∠D=∠B=40°,AE=AC,证出△ACE是等边三角形,得出∠ACE=∠E=60°,由三角形内角和定理求出∠DAE的度数,即可得出结果.【解答】解:由旋转的性质得:△ADE≌△ABC,∴∠D=∠B=40°,AE=AC,∵∠CAE=60°,∴△ACE是等边三角形,∴∠ACE=∠E=60°,∴∠DAE=180°﹣∠E﹣∠D=80DU===80°,∴∠DAC=∠DAE﹣∠CAE=80°﹣60°=20°;故选:B.12.如图,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是()A.3B.4C.2D.【考点】相似三角形的判定与性质;角平分线的性质.【分析】过点D作DE⊥AB交AB于E,设CD=x,则BD=8﹣x,根据角平分线的性质得到,求得CD=3,求得S△ABD=AB•DE=3=15,由勾股定理得到AD==3,根据三角形的面积公式即可得到结论.【解答】解:过点D作DE⊥AB交AB于E,设CD=x,则BD=8﹣x,∵AD平分∠BAC,∴,即,∴x=3,∴CD=3,∴S△ABD=AB•DE=3=15,∵AD==3,设BD到AD的距离是h,∴S△ABD=AD•h,∴h=2.故选C.二、填空题:本题共4小题,每小题分,共12分,把答案填在答题卡上13.某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg),则这组数据的中位数是6.【考点】中位数.【分析】求中位数可将一组数据从小到大依次排列,中间数据(或中间两数据的平均数)即为所求.【解答】解:数据按从小到大排列后为3,5,5,6,8,9,10,故这组数据的中位数是6.故答案为:6.14.分解因式:2x2y﹣8y=2y(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2y,再对余下的多项式利用平方差公式继续分解.【解答】解:2x2y﹣8y,=2y(x2﹣4),=2y(x+2)(x﹣2).故答案为:2y(x+2)(x﹣2).15.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是5.【考点】频数与频率.【分析】一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数.【解答】解:∵一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第五组的频数是0.2×50=10,∴第六组的频数是50﹣6﹣8﹣9﹣10﹣12=5.故答案为:5.16.已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tanB为\frac{1}{2}.【考点】反比例函数综合题.【分析】过A作AC垂直于y轴,过B作BD垂直于y轴,利用垂直的定义可得出一对直角相等,再由OA与OB垂直,利用平角的定义得到一对角互余,在直角三角形AOC中,两锐角互余,利用同角的余角相等得到一对角相等,利用两对对应角相等的三角形相似得到三角形AOC与三角形OBD相似,利用反比例函数k的几何意义求出两三角形的面积,得出面积比,利用面积比等于相似比的平方求出相似比,即为OA与OB的比值,在直角三角形AOB中,利用锐角三角函数定义即可求出tan∠ABO的值.【解答】解:过A作AC⊥y轴,过B作BD⊥y轴,可得∠ACO=∠BDO=90°,∴∠AOC+∠OAC=90°,∵OA⊥OB,∴∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△AOC∽△OBD,∵点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,∴S△AOC=1,S△OBD=4,∴S△AOC:S△OBD=1:4,即OA:OB=1:2,则在Rt△AOB中,tan∠ABO=.故答案为:三、解答题(本大题有七题,其中第17题6分、第18题6分、第19题7分、第20题8分、第21题8分、第22题8分、第23题9分,共52分)解答应写出文字说明或演算步骤.17.计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别根据0指数幂及负整数指数幂的计算法则、绝对值的性质及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=﹣+1﹣(2﹣)﹣2×=﹣+1﹣2+﹣=﹣.18.解不等式组并求它的整数解.【考点】一元一次不等式组的整数解;解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,确定出整数解即可.【解答】解:,由①得:x<8,由②得:x≥6,∴不等式组的解集为6≤x<8,则不等式组的整数解为6,7.19.为贯彻政府报告中“大众创业、万众创新”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w <30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是25个,扇形统计图中B类所对应扇形圆心角的度数为72度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)用D类小企业的数量除以它所占的百分比即可得到调查的总数,再用B类所占的百分比乘以360度得到B类所对应扇形圆心角的度数,然后计算A类小企业的数量,再补全条形统计图;(2)2个来自高新区的企业用A、B表示,2个来自开发区的企业用a、b表示,利用树状图展示所有12种等可能的结果数,再找出所抽取的2个发言代表都来自高新区的结果数,然后根据概率公式求解.【解答】解:(1)该镇本次统计的小微企业总个数为4÷16%=25(个);扇形统计图中B类所对应扇形圆心角的度数=×360°=72°A类小微企业个数为25﹣5﹣14﹣=2(个),补全条形统计图为:故答案为25个,72;(2)2个来自高新区的企业用A、B表示,2个来自开发区的企业用a、b表示,画树状图为:共有12种等可能的结果数,其中所抽取的2个发言代表都来自高新区的结果数为2,所以所抽取的2个发言代表都来自高新区的概率==.20.【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC=90°.【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.(1)求证:ED=FC.(2)若∠ADE=20°,求∠DMC的度数.【考点】正方形的性质;全等三角形的判定与性质;矩形的性质.【分析】阅读发现:只要证明∠DFC=∠DCF=∠ADE=∠AED=15°,即可证明.拓展应用:(1)欲证明ED=FC,只要证明△ADE≌△DFC即可.(2)根据∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC即可计算.【解答】解:如图①中,∵四边形ABCD是正方形,∴AD=AB=CD,∠ADC=90°,∵△ADE≌△DFC,∴DF=CD=AE=AD,∵∠FDC=60°+90°=150°,∴∠DFC=∠DCF=∠ADE=∠AED=15°,∴∠FDE=60°+15°=75°,∴∠MFD+∠FDM=90°,∴∠FMD=90°,故答案为90°(1)∵△ABE为等边三角形,∴∠EAB=60°,EA=AB.∵△ADF为等边三角形,∴∠FDA=60°,AD=FD.∵四边形ABCD为矩形,∴∠BAD=∠ADC=90°,DC=AB.∴EA=DC.∵∠EAD=∠EAB+∠BAD=150°,∠CDF=∠FDA+∠ADC=150°,∴∠EAD=∠CDF.在△EAD和△CDF中,,∴△EAD≌△CDF.∴ED=FC;(2)∵△EAD≌△CDF,∴∠ADE=∠DFC=20°,∴∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC=60°+20°+20°=100°.21.某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400元,购买B品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍,已知购买一个B品牌蓝球比购买一个A品牌蓝球多花50元.(1)求购买一个A品牌、一个B品牌的蓝球各需多少元?(2)该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的售价进行调整,A品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设购买一个A品牌的篮球需x元,则购买一个B品牌的篮球需(x+50)元,根据购买A品牌足球数量是购买B品牌足球数量的2倍列出方程解答即可;(2)设此次可购买a个B品牌篮球,则购进A品牌篮球(30﹣a)个,根据购买A、B两种品牌篮球的总费用不超过3200元,列出不等式解决问题.【解答】解:(1)设购买一个A品牌的篮球需x元,则购买一个B品牌的篮球需(x+50)元,由题意得=×2,解得:x=80,经检验x=80是原方程的解,x+50=130.答:购买一个A品牌的篮球需80元,购买一个B品牌的篮球需130元.(2)设此次可购买a个B品牌篮球,则购进A品牌篮球(30﹣a)个,由题意得80×(1+10%)(30﹣a)+130×0.9a≤3200,解得a≤19,∵a是整数,∴a最大等于19,答:该学校此次最多可购买19个B品牌蓝球.22.如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.(1)求证:PA是⊙O的切线;(2)若,AB=6,求sin∠ABD的值.【考点】切线的判定.【分析】(1)根据垂径定理得出AO⊥BC,进而根据平行线的性质得出AP⊥AO,即可证得结论;(2)根据垂径定理得出BE=2,在RT△ABE中,利用锐角三角函数关系得出sin∠BAO=,再根据等腰三角形的性质得出∠ABD=∠BAO,即可求得求sin∠ABD=sin∠BAO=.【解答】(1)证明:连结AO,交BC于点E.∵点A是的中点∴AO⊥BC,又∵AP∥BC,∴AP⊥AO,∴AP是⊙O的切线;(2)解:∵AO⊥BC,,∴,又∵AB=6∴,∵OA=OB∴∠ABD=∠BAO,∴.23.如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).(1)求以C为顶点,且经过点D的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.【考点】二次函数综合题.【分析】(1)用待定系数法求,即可;(2)由对称的特点得出∠N1BN2=2∠DBC结合菱形的性质即可;(3)先判定出,当BN⊥CD时,BN最短,再利用△ABC∽△N1BN2得到比例式,求解,即可;(4)先建立PE=m2﹣m+2函数解析式,根据抛物线的特点确定出最小值.【解答】解:(1)由已知,设抛物线解析式为y=a(x﹣2)2把D(0,﹣1)代入,得a=﹣∴y=﹣(x﹣2)2(2)如图1,连结BN.∵N1,N2是N的对称点∴BN1=BN2=BN,∠N1BD=∠NBD,∠NBC=∠N2BC∴∠N1BN2=2∠DBC∵四边形ABCD是菱形∴AB=BC,∠ABC=2∠DBC∴∠ABC=∠N1BN2,∴△ABC∽△N1BN2(3)∵点N是CD上的动点,∴点到直线的距离,垂线段最短,∴当BN⊥CD时,BN最短.∵C(2,0),D(0,﹣1)∴CD=,∴BNmin==,∴BN1min=BN min=,∵△ABC∽△N1BN2∴,N1N2min=,(4)如图2,过点P作PE⊥x轴,交AB于点E.∵∠PQA=∠BAC∴PQ1∥AC∵菱形ABCD中,C(2,0),D(0,﹣1)∴A(﹣2,0),B(0,1)∴l AB:Y=x+1不妨设P(m,﹣(m﹣2)2),则E(m,m+1)∴PE=m2﹣m+2∴当m=1时,此时,PQ1最小,最小值为=,∴PQ1=PQ2=.2016年7月13日。