抱轴箱体精加工工艺的改进
- 格式:pdf
- 大小:134.66 KB
- 文档页数:2
某型机车轴箱体加工工艺优化改进发布时间:2021-12-31T02:43:56.317Z 来源:《中国科技人才》2021年第25期作者:彭林福米贵[导读] 轴箱体是机车走行部的关键零部件,其结构复杂、加工精度要求高,导致加工难度大,且每月订单量大,加之该轴箱体毛坯铸造缺陷焊补处硬度高,加工难度大,按原加工工艺难以满足生产任务。
本文就结合实际生产,提出影响生产的瓶颈问题,分析并解决该问题,总结出一套轴箱体类零件高效加工方法。
中车戚墅堰机车有限公司摘要:轴箱体是机车走行部的关键零部件,其结构复杂、加工精度要求高,导致加工难度大,且每月订单量大,加之该轴箱体毛坯铸造缺陷焊补处硬度高,加工难度大,按原加工工艺难以满足生产任务。
本文阐述了如何在现有的状态下提高零件轴箱体加工效率和质量,同时降低操作者的劳动强度。
针对其结构特点和加工技术要求,介绍了加工工艺优化措施。
关键词:轴箱体,加工,钻模,夹具,工艺改进一、引言轴箱体是机车走行部的关键零部件,其结构复杂、加工精度要求高,导致加工难度大,且每月订单量大,加之该轴箱体毛坯铸造缺陷焊补处硬度高,加工难度大,按原加工工艺难以满足生产任务。
本文就结合实际生产,提出影响生产的瓶颈问题,分析并解决该问题,总结出一套轴箱体类零件高效加工方法。
二、产品特点及工艺现状轴箱体毛坯通常为铸钢,每月的加工订单量大,加工面的粗糙度要求高,有6个M20的深孔螺纹底孔(Ф17.5mm深60mm、孔口倒角C2)的加工。
加工后需要通过观察倒角是否明显不均匀,以判断螺纹孔内有无铸造缩孔缺陷,各孔无缺陷的正常流转加工,有缺陷的置于待处理区,等待焊补修复后再次加工。
轴箱体加工按既定的工艺流程是直接在加工中心加工,当加工过程中遇到轴箱体螺纹孔部位有缩孔时,就需要焊补修复。
焊补修复的具体流程为:先将有缺陷的螺纹孔部位的缺陷消除,然后焊补修复,焊完退火后再到加工螺纹孔。
从修复到加工成成品,通常需要钻孔加工两次,第一次加工是把有缩孔的螺纹孔扩大,第二次是缺陷处补焊后把螺纹孔加工至成品。
轴箱体加工工艺分析及质量改进250km动车组轴箱体是转向架的重要部件,其与轴承装置是联系构架和轮对的活动关节,使轮对的滚动转化为车体沿钢轨的平动,在承受列车重量的同时传递各方向的作用力。
200km动车组轴箱体开始阶段从日本川崎进口,为进一步使200km动车组国产化,2013年公司开始开发研制250km统型轴箱体。
轴箱体属于重要部件,其加工精度要求高,通过对加工试制过程的跟踪分析,合理利用柔性生产线加工轴箱体,解决加工过程中的质量问题,制定切实可行的加工工艺方案,既能保证轴箱体的加工精度符合设计要求,又能提高轴箱体的加工能力与质量,质量与效率得到很大提升,满足了生产需要。
1.加工设备:轴箱体柔性加工生产线由信息系统、加工系统和物料输送系统组成(见图1)。
图1信息系统是生产线的总控制台,主要进行加工程序编辑、作业管理、刀具管理等。
加工系统由5台NH63000DCGII主机设备组成。
5台设备分别按照1号机、2号机、3号机、4号机及5号机依次布置,在1号机带有U轴刀具。
每台设备的刀具容量为100把,具有在线检测、刀具破损检测等功能。
物料输送系统由上、下两层托盘架共48个托盘位、3个装卸工位及1条托盘自动运输线组成。
轴箱体生产线根据生产需求,配备了32个安装工件工装的托盘。
物料输送系统根据总控制台的作业安排将托盘送至托盘位、装卸工位及5台设备待加工位。
2.加工特点:轴箱体加工特点为:①轴箱体通过一、二工位两次装夹,完成全部尺寸加工。
②根据生产要求,可进行多个产品并行生产加工。
③轴箱体生产线在各工序加工刀具满足使用要求的情况下,可实现连续工作、无人自动作业。
④在设定好加工计划后,针对临时加急生产计划,在总控制台进行计划优先调整,可方便应对生产突发状况。
3.产品情况:产品材质为ZG25MnNi,属于铸造件,轴箱体抗冲击性能、拉伸及延展性等力学性能高,但存在砂眼、硬点、夹砂及焊修硬点等铸造缺陷,此类缺陷易损坏刀具,降低刀片的耐用度,影响工件加工精度。
HXD3型电力机车滚动抱轴箱体组装工艺改进提升摘要:HXD3型电力机车是单轴功率1200kW、六轴、交流传动干线货运电力机车,该型机车持续功率7200kW,轴式C0-C0,轴重23t(或25t),最高运行速度120km/h,前后两个转向架结构相同,电机采用滚动抱轴式半悬挂方式。
本文主要是针对HXD3型电力机车驱动轴承组装工艺进行研究,旨在通过对现有组装工艺进行优化和提升,提高组装质量和组装效率。
关键词:滚动抱轴箱体平面度游隙周期专用套筒一、引言HXD3型电力机车的前后两个转向架结构相同,电机采用滚动抱轴式半悬挂方式。
滚动抱轴箱体在与牵引电机连接中起着至关重要的作用,其重要作用主要体现于连接轮对与牵引电机,支撑牵引电机。
机车在高速运行中牵引电机与滚动抱轴箱相对不变,滚动抱轴箱相对于轮对高速运转,主要是通过齿端和非齿端的驱动轴承来实现相对转动,而驱动轴承的游隙的大小在机车运行过程中起着至关重要的作用。
本文以笔者在实际工作中遇到的实际问题出发,通过对现有工艺进行优化调整,来保证轴承工作游隙以达到提升组装效率和减少使用起重机使用率。
二、现有技术现状HXD3型机车轮对主要由车轴、车轮装配、从动齿轮、抱轴箱体等部件组成。
现有HXD3型电力机车轮对和滚抱轴箱组装在组装台位采用立式组装方式进行组装。
在组装的过程中常常出现以下两种情况:一是轴承工作游隙较大,在高速运转时,会使振动较大,降低轴承的使用寿命;二是轴承工作游隙较小,在高速运转时,将增大轴承的摩擦力矩,从而产生大量的热,容易导致轴承发热损坏,这是因为轴承工作游隙较小时,将导致轴承的滚动体与轴承内外圈润滑不良,因干摩擦产生大量的热,产生磨损、胶结、轴承内外圈胀烈等现象,导致轴承损坏。
目前组装工艺简述如下:1.组装驱动轴承外圈,轴承外圈采用冷装法,先将轴承外圈置于工业冰箱中冷冻至规定的温度和时间,待轴承外圈冷冻合格后,将驱动轴承外圈组装至预先检修合格立式放置的滚抱轴箱体的轴承座中,翻转滚抱轴箱体后组装另外一端驱动轴承外圈,检查驱动轴承外圈与滚抱轴箱体轴承座的间隙合格后待组装,在整个作业过程中需注意防护,做好清洁度管控;2.组装齿端驱动轴承内圈,驱动轴承内圈采用热装法,齿端驱动轴承内圈加热至规定温度后热装至车轴,冷却后检查驱动轴承内圈与齿轮端面间隙,符合要求后进行下道工序;3.组装滚抱轴箱体,将滚抱轴箱体用起重机竖直吊起,套在车轴相应位置,组装时注意不得对车轴及驱动轴承造成磕碰伤;4.调整驱动轴承游隙,用两个顶尖顶在滚抱轴箱体下方,顶起滚抱轴箱体约0.5~2mm;5.组装非齿端驱动轴承内圈,驱动轴承内圈采用热装法,非齿端驱动轴承内圈加热至规定温度后热装至车轴;6.用起重机吊起压实胎具放置车轴端面,使压实胎具紧贴在非齿端轴承内圈处,用液压油泵加压使压实胎具及非齿端轴承内圈受轴向推力,用塞尺检查轴承内圈与压实胎具之间间隙,通过检查一圈的间隙后计算加垫量,计算后在对应位置处加垫,加垫后液压油泵加压使压实胎具压实;7.在滚动抱轴箱体上方沿180°方向放置两个百分表,人工推动滚动抱轴箱体,检查转动是否灵活,同时测量非齿端驱动轴承内圈端面的平面度,使平面度≤0.1mm;8.游隙测量,用起重机吊滚动抱轴箱体测量轴承游隙,在达到规定的吨位,游隙符合要求后则进行下一步工序,不合格则按上述第6)条重新进行调整,具体组装见图一。
我国轴承套圈超精研技术的改进要点我曾经在《怎么样提高高精度轴承的超精质量?》一文中写到:“超精加工主要要提高和改善被加工工件表面的微观质量,这些微观质量包括粗糙度、沟形、圆度和金属条纹的走向。
”轴承套圈沟道超精研工序主要是为了降低被加工沟道的粗糙度,这是最基本的要求,无论是最原始的棍棒超精机还是采用无心支撑结构的自动化超精机,原理大同小异,都是如此。
高水平的和低档的轴承套圈超精研设备的主要区别是轴承套圈沟道形状精度的改善程度和被加工工件表面应力状态的差异。
轴承套圈沟道形状精度的改善主要取决于三个方面:首先,要约束超精前的轴承沟道磨加工形状的基础精度,轴承沟道的基准精度和位置精度在磨削工序也要精确地控制,因为这些需要约束的被加工工件的磨削工序的精度及其对超精加工的结果的影响是不容忽视的;其次,超精研设备的制造精度也会对被超精工件沟道表面形状的变化起到很大的影响,品质较差的超精机非但不能够改善磨削工序形成的形状精度,反而会破坏磨削工序形成的形状精度;第三,超精余量的大小不仅与超精加工的节拍有关,而且也与轴承沟道超精后的表面质量有关系。
假如我们的轴承产品没有对轴承的噪音和轴承的寿命提出特殊的要求,假如我们的轴承产品仅仅满足于参与国内外市场的低价格竞争,假如我们的轴承产品不想走出国门或者不想替代进口产品,那么,使用低价位的超精研设备是可以的。
因为,在中低档产品的轴承市场上,中国的轴承企业打了很多顽强的战役,在空调类家电市场和电机市场,我们的微型和小型轴承取得了不俗的销售业绩,这些成绩的取得也部分得益于我国轴承加工设备的发展和进步。
而在我国高精尖产品领域,大量的高附加值高利润轴承还是依靠进口。
我国生产的最好的轴承设备,即使出口到国外,也只是应用在普通轴承生产线上;部分大陆境内的外资和合资的轴承加工企业采购国内的轴承设备,也主要用在中低档轴承的生产线上。
迄今为止,我国高水平的进口轴承设备所占的比率很小,部分原因是由于高水平的进口轴承设备的价格普遍高于国产的轴承设备,其主要原因还是国内大部分企业生产的轴承精度和效率要求偏低,在引进更好水平的进口轴承设备方面的要求还不是特别强烈。
箱体加工方案改进革新通过对箱体的结构、使用状态及工艺特点进行分析,结合生产实践,归纳总结出合适并可实施的箱体加工工艺路线,并针对不同规格的箱体重要部位采用不同的加工方案,确保箱体加工质量的稳定性,且根据不同规格、不同结构的箱体设计专用工装。
满足图纸对于导板座孔与轴承横孔的垂直度要求,导板座孔与前板孔的同轴度、与前板面的垂直度要求。
标签:工艺路线;稳定性;专用工装;同轴度;垂直度1 箱体的工作状态及作用箱体是隔膜泵、减速机、发电机、空压机等机械设备中动力系统的关键件,支撑由曲轴与曲柄(或连杆)、十字头、活塞等零部件组成的动力系统运行。
箱体两侧的两个双列圆柱调心滚柱轴承支撑曲轴(或主轴),自行完成曲轴(或主轴)与曲柄(或连杆)垂直定位。
箱体前部导板座孔支撑耐磨导板,保证十字头在耐磨导板上运行自如。
在运转过程中,箱体横孔受周期性的冲击压力,导板座孔受十字头周期性的冲击压力,要求箱体横孔与导板座孔具有较高的垂直度要求。
箱体侧板设有侧窗以便时刻观察动力系统的运行情况,箱體两侧设有放油孔及润滑油加热孔。
箱体的加工精度直接决定机械设备的平稳运行及寿命。
文章以本公司内部两种不同规格的箱体为例,阐述箱体的加工过程及其注意事项。
2 箱体的工艺分析及采取措施2.1 箱体工艺结构特点分析2.1.1 动力端箱体采用焊接结构,主要由底板、前板、两侧板、中间轴承座、导板座及各类筋板焊接组成(见图1)。
为保证动力系统在箱体内部稳定运行,因此在加工过程中需前板面与箱体底面垂直、前板孔与导板座孔同轴、导板座孔与横孔垂直。
2.1.2 箱体加工技术要求:横孔尺寸公差在-0.14~0mm内,表面粗糙度Ra3.2μm以上,前板孔尺寸公差在-0.09~0mm内,表面粗糙度Ra3.2μm以上,导板座孔尺寸公差在-0.14~0mm内,表面粗糙度Ra3.2μm以上,前板孔与导板座孔有同轴度φ0.03mm要求,前板孔与横孔有垂直度0.05mm要求,前板面与底面及横孔有垂直度0.05mm。
1 序言重载型内燃机车走行部的牵引电动机组装为轴悬式:一端通过滚动抱轴箱与车轴相连,另一端通过吊杆和橡胶垫悬挂在构架的横梁和后端梁上,该类型组装结构被广泛应用于国内重载货运系列机车,因此,抱轴箱是重载型内燃机车走行部的重要零件。
抱轴箱为整体铸钢、外形呈半圆筒形结构(见图1),属薄壁异形件。
图1 机车抱轴箱抱轴箱正反安装面在工艺流程中均需作为安装基准面,正反安装面的平面度≤A、平行度≤B且表面粗糙度值Ra=3.2μm等要求较高,因此一直以来是由龙门式五面体加工中心承担抱轴箱这些部位的精加工(见图2)。
图2 龙门式五面体加工中心加工轴箱体抱轴箱在该设备上精加工工序集中,加工时间长,公司龙门式五面体加工中心已成为抱轴箱制造的加工瓶颈,需要对抱轴箱精加工工艺流程和工艺装备(以下简称工装)进行专题分析和研究,采取应对措施,缓解龙门式五面体加工中心的加工瓶颈,提升抱轴箱精加工效率和加工质量,满足制造需求。
2 精加工过程分析2.1 原精加工工艺流程分析原精加工的工艺流程为:精铣安装面(反)→精铣安装面(正)→划线→钻孔。
需多次将抱轴箱放置于水平位置,用龙门式五面体加工中心进行加工,需正、反两个工位装夹,同时针对抱轴箱背面两端轴承孔处有两只注油孔和传感器安装孔的加工,又需进行一次划线、装夹和加工(该部位若在摇臂钻床加工,质量难以保证;若在龙门式五面体加工中心加工,刀架角度需人工调整),因此,抱轴箱精加工工序加工效率低,有必要对其进行优化。
2.2 对原龙门式五面体加工中心上精加工工装分析对上述工艺流程进行分析可以得出,抱轴箱在龙门式五面体加工中心加工时,工装存在的问题为抱轴箱被反复定位夹紧次数多,作业使用的工装多达3个,费工费时,即工步一为抱轴箱卧放加工(反向),加工内容是加工抱轴箱的螺栓固定平面和悬臂的平面及孔;工步二为抱轴箱仰放加工(正向),应用抱轴箱仰放加工工装,加工内容是加工抱轴箱的主安装平面和两端的外圆及内孔;工步三为抱轴箱在龙门式五面体加工中心利用立式工装,加工抱轴箱的传感器安装孔等。