九年级数学: 《公式法》练习(含答案)
- 格式:doc
- 大小:62.04 KB
- 文档页数:6
运用公式法因式分解一、选择题(本大题共7小题)1.若多项式x2+mx+4能用完全平方公式分解因式,则m的值可以是()A、4B、﹣4C、±2D、±42.若a+b=4,则a2+2ab+b2的值是()A、8B、16C、2D、43.已知(19x﹣31)(13x﹣17)﹣(13x﹣17)(11x﹣23)可因式分解成(ax+b)(8x+c),其中a,b,c均为整数,则a+b+c=()A、﹣12B、﹣32C、38D、724.将x m+3﹣x m+1分解因式,结果是()A、x m(x3﹣x)B、x m(x3﹣1)C、x m+1(x2﹣1)D、x m+1(x﹣1)(x+1)5.下列各式中,不能用平方差公式分解因式的是()A、﹣a2+b2B、﹣x2﹣y2C、49x2y2﹣z2D、16m4﹣25n2p26.若x2﹣y2=30,且x﹣y=﹣5,则x+y的值是()A、5B、6C、﹣6D、﹣57.直角三角形的三条边的长度是正整数,其中一条直角边的长度是13,那么它的周长为()A、182B、180C、32D、30二、填空题(本大题共17小题)8.分解因式:⑴222x y x y++-+-4()520(1)+-++;⑵2x x x x()4()49.x2﹣y2=48,x+y=6,则x= ,y= .10.如果x+y=﹣1,x﹣y=﹣2022,那么x2﹣y2= .11.记248n=(12)(12)(12)(12)(12)nx=++++⋅⋅⋅+,且128x+=,则______1212.分解因式x(x+4)+4的结果.13.如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a、b的恒等式___________.14.化简:(a+1)2﹣(a﹣1)2= .15.化简求值,其中12a =,2b =-,则22()()________a b a b +--=16.224488()()()()()________x y x y x y x y x y -++++=17.填空:⑴222_____4(2)x y x y ++=+;⑵2229_____121(3___)a b a -+=-;⑶2244____(2___)m mn m ++=+;⑷2_____6______(3)xy x y ++=+.18.若214x mx -+是一个完全平方式,则m 的值是19.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式 .20.已知y=2x ,则4x 2﹣y 2的值是 .21.已知248﹣1可以被60到70之间的某两个整数整除,则这两个数分别是 、 . 22.2111111111124162562n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭= 23.设a ,b 为有理数,且20a b +=,设22a b +的最小值为m ,ab 的最大值为n ,则m n += .24.分解因式:24()520(1)x y x y ++-+-=三 、解答题(本大题共10小题)25.计算:⑴7373()()2424x y x y -+⑵(35)(35)x y x y ---+26.分解因式:(1)44a b - (2)2249()16()m n m n +--(3)22()()a b c d a b c d +++--+- (4)34xy xy -;(5)22()()a x y b y x -+- 27.利用平方差公式简化计算:⑴59.860.2⨯⑵10298⨯⑶2123461234512347-⨯ ⑷11411515⨯28.计算:⑴2()a b c ++ ⑵2()a b c -- ⑶2(23)a b c -+29.⑴先化简后求值:2()()()2x y x y x y x ⎡⎤-++-÷⎣⎦,其中3x =, 1.5y =.⑵计算:(22)(22)x y y x -+-+.30.计算(1)2(23)x y -+ (2)(2)(2)a b b a --(3)2222()()a ab b a ab b ++-+ (4)(22)(22)x y y x -+-+31.计算:⑴2(811)a b -+⑵2(23)x y --32.计算:⑴2(3)(3)(9)x x x +-+;⑵(23)(45)(23)(54)a b a b a b b a ++--;33.已知实数a 、b 满足2()1a b +=,2()25a b -=,求22a b ab ++的值.34.分解因式:()()22114m n mn --+答案解析一 、选择题1.D ;∵x 2+mx+4=(x ±2)2,即x 2+mx+4=x 2±4x+2,∴m=±4.故选D .2.B3.A ;原式=(13x ﹣17)(19x ﹣31﹣11x+23)=(13x ﹣17)(8x ﹣8),∵可以分解成(ax+b )(8x+c )∴a=13,b=﹣17,c=﹣8∴a+b+c=﹣12.4.D ;x m+3﹣x m+1=x m+1•x 2﹣x m+1=x m+1(x 2﹣1)=x m+1(x+1)(x ﹣1).5.B6.C ;∵x 2﹣y 2=(x+y )(x ﹣y )=30,x ﹣y=﹣5∴x+y=﹣6.故选C .7.A ;设另一条直角边的长度为x ,斜边的长度z ,则z 2﹣x 2=132,且z >x ,∴(z+x )(z ﹣x )=169×1,∴{z +x =169z ﹣x =1,∴三角形的周长=z+x+13=169+13=182.故选A . 二 、填空题8.⑴2222222()4()4(2)(1)(2)x x x x x x x x +-++=+-=-+;⑵2224()520(1)4()20()25(225)x y x y x y x y x y ++-+-=+-++=+-9.∵x 2﹣y 2=(x+y )(x ﹣y )=48,x+y=6∴x ﹣y=8联立{x +y =6x ﹣y =8,解得{x =7y =﹣1. 10.2022;x 2﹣y 2=(x+y )(x ﹣y )∵x+y=﹣1,x ﹣y=﹣2022∴x 2﹣y 2=1×2022=2022.故填空2022.11.248(12)(12)(12)(12)(12)n x =++++⋅⋅⋅+248(21)(12)(12)(12)(12)(12)n =-++++⋅⋅⋅+2(21)(21)21n n n =-+=-∴2212112n n x +=-+=∴2128n =,∴64n =12.x (x+4)+4=x 2+4x+4=(x+2)213.22()()4a b a b ab -=+-或224()()ab a b a b =+--14.(a+1)2﹣(a ﹣1)2=(a+1+a ﹣1)(a+1﹣a+1)=4a .15.-4;原式=2222224a ab b a ab b ab ++-+-=;当12a =,2b =-时,原式14(2)42=⨯⨯-=- 16.1616x y -17.⑴4xy ;⑵66ab ,11b ;⑶2n ,n ;⑷29x ,2y .18.1±19.a 2+2ab+b 2=(a+b )2.20.∵y=2x ,∴2x ﹣y=0,∴4x 2﹣y 2=4x 2﹣y 2=(2x+y )(2x ﹣y )=(2x+y )×0,=0. 21.248﹣1=(224+1)(224﹣1),=(224+1)(212+1)(212﹣1),=(224+1)(212+1)(26+1)(26﹣1);∵26=64,∴26﹣1=63,26+1=65,∴这两个数是65、63.22.原式211111************n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4411121222n n -⎛⎫=-=- ⎪⎝⎭. 23.222222()()120()22a b a b a b a b ++-⎡⎤+==+-⎣⎦, 因为2()0a b -≥,所以22a b +最小值200m =;222()()1400()44a b a b ab a b +--⎡⎤==--⎣⎦,所以ab 的最大值100n =,故300m n +=. 24.2224()520(1)4()20()25(225)x y x y x y x y x y ++-+-=+-++=+- 三 、解答题25.⑴原式222273499()()24416x y x y =-=-;⑵原式2222(3)(5)925x y x y =--=-; 26.(1)44222222()()()()()a b a b a b a b a b a b -=-+=-++(2)原式[][]7()4()7()4()m n m n m n m n =++-+--(113)(311)m n m n =++(3)22()()(22)(22)4()()a b c d a b c d a c b d a c b d +++--+-=++=++(4)324(4)(2)(2)xy xy xy y xy y y -=-=-+(5)2222()()()()()()()a x y b x y x y a b x y a b a b ---=--=--+ 27.⑴2259.860.2(600.2)(600.2)600.23599.96⨯=-+=-=⑵2210298(1002)(1002)10029996⨯=+-=-=⑶2222212346123451234712346(123461)(123461)12346(123461)1-⨯=--+=--= ⑷1141111241(1)(1)115151515125125⨯=+-=-= 28.⑴原式222222a b c ab ac bc =+++++⑵原式222222a b c ab ac bc =++--+⑶原式232234618a b c ab ac bc =++-+-29.⑴222222()()()2(2)2(22)2x y x y x y x x xy y x y x x xy x x y ⎡⎤-++-÷=-++-÷=-÷=-⎣⎦又3x =, 1.5y =,故原式3 1.5 1.5x y =-=-=.法2:2()()()2()22 1.5x y x y x y x x y x x x y ⎡⎤-++-÷=-⋅÷=-=⎣⎦⑵原式222[2(2)][2(2)]4(2)444x y x y x y x xy y =+---=--=-+-30.(1)原式222(23)4129x y x xy y =-=-+(2)原式22222(2)(44)44a b a ab b a ab b =--=--+=-+-(3)原始22224224()()a b ab a b ab a a b b ⎡⎤⎡⎤=+++-=++⎣⎦⎣⎦(4)原式222[2(2)][2(2)]4(2)444x y x y x y x xy y =+---=--=-+-31.⑴原式222(118)12117664b a b ab a =-=-+;⑵原式222(23)4129x y x xy y =+=++.32.⑴2224(3)(3)(9)(9)(9)81x x x x x x +-+=-+=-;⑵原式2222(49)(2516)a b b a =--22442242241006422514464244225a b a b a b a a b b =--+=-+-; 33.2222()()132a b a b a b ++-+==,22()()64a b a b ab +--==-,227a b ab ++=. 34.()()22114m n mn --+ 222214m n m n mn =--++222221(2)m n mn m n mn =++-+-22(1)()mn m n =+--(1)(1)mn m n mn m n =+-+++-。
21.2.2公式法—2023-2024学年人教版数学九年级上册堂堂练1.一元二次方程的根的情况是( )A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根2.若是某个一元二次方程的根,则这个一元二次方程可以是( )A. B.C. D.3.一元二次方程的根是( )A. B. C. D.4.下列一元二次方程中,无实数根的是( )A. B.C. D.5.如图,在中,.以点B为圆心,的长为半径画弧,交线段于点D,以点A为圆心,的长为半径画弧,交线段于点E.下列哪条线段的长度是方程的一个根( )A.线段的长B.线段的长C.线段的长D.线段的长6.如图是一次函数的图象的大致位置,试判断关于x的一元二次方程的根的判别式∆_________0(填“>”“=”或“<”).7.已知代数式与代数式的值互为相反数,则__________.8.小明在解方程时出现了错误,解答过程如下:,(第一步),(第二步),(第三步).(第四步)(1)小明解答过程是从第_______步开始出错的,其错误原因是__________.(2)写出此题正确的解答过程.答案以及解析1.答案:C解析:,,,一元二次方程有两个不相等的实数根.故选C.2.答案:B解析:是某个一元二次方程的根,,,,()这个一元二次方程可以是,故选B.3.答案:D解析:方程有两个不相等的实数根,即.故选D.4.答案:D解析:在中,即该方程有两个不相等的实数根,故选项A不符合题意;在中,,即该方程有两个相等的实数根,故选项B不符合题意;在中,,即该方程有两个不相等的实数根,故选项C不符合题意;在中,,即该方程无实数根,故选项D符合题意.故选D.5.答案:B解析:由勾股定理得,,.解方程得线段的长是方程的一个根.故选B.6.答案:>解析:一次函数的图象经过第一、三、四象限,,.7.答案:或解析:根据题意得,整理得,则.,.8.答案:(1)一;原方程没有化成一般形式(2)原方程化成一般形式为.,,,.。
21.2.2 公式法一、单选题1.若关于的一元二次方程没有实数根,则实数的取值范围是()A.B.C.D.2.一元二次方程的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.无实数根3.当时,下列一元二次方程中两个根是实数的是()A.B.C.D.4.一元二次方程x2﹣2x+m=0没有实数根,则m应满足的条件是()A.m>1B.m=1C.m<1D.m≤15.若关于x的方程的一个根是2,则a的值为()A.B.C.或D.或6.形如的方程,下列说法错误的是()A.时,原方程有两个不相等的实数根B.时,原方程有两个相等的实数根C.时,原方程无实数根D.原方程的根为7.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠58.定义:如果一元二次方程满足,那么我们称这个方程为“美丽”方程.已知是“美丽”方程,且有两个相等的实数根,则下列结论正确的是()A.B.C.D.9.一元二次方程的较大实数根在下列数轴中哪个范围之内()A.B.C.D.10.用求根公式法解得某方程的两个根互为相反数,则()A.B.C.D.二、填空题11.方程的解为________.12.关于的一元二次方程有两个相等的实数根,则的值是______.13.若关于x的一元二次方程x2+2x+a=0有两个不同的实数根,则a应满足的条件_________________ 14.已知关于的一元二次方程,若,则________.15.关于x的一元二次方程有两个不相等的实数根,则m的最小整数值是____.16.若k为实数,关于x的一元二次方程(k﹣1)x2﹣2(k+1)x+k+5=0有实数根,则实数k的取值范围为__.17.一元二次方程,当=________时,方程有两个相等的实根;当_______时,方程有两个不相等的实根;当=______时,方程有一个根为0.18.关于x的一元二次方程kx2﹣x+2=0有两个不相等的实数根,那么k的取值范围是_____.三、解答题19.已知关于的方程有两个不相等的实数根.求的取值范围;若,且方程的两个实数根都是整数,求的值.20.若关于的一元二次方程无实数根,求的取值范围.21.公式法解方程:(1);(2);(3).22.李老师在课上布置了一个如下的练习题:若,求的值.看到此题后,晓梅立马写出了如图所示的解题过程:解:,①,②.③晓梅上述的解题步骤哪一步出错了?请写出正确的解题步骤.23.已知:关于x的方程,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.参考答案1.C【分析】根据判别式的意义得到△=(-2)2-4m<0,然后解关于m的不等式即可.【详解】解:根据题意得△=(-2)2-4m<0,解得m>1.故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.2.D【分析】先计算判别式的值,然后根据判别式的意义进行判断.【详解】解:∵,∴方程没有实数根.故选:D.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.A【分析】根据公式法,判断选项中的一元二次方程的实数根是否是题目中给出的那个.【详解】一元二次方程,当,的时候,它有两个实数根.故选:A.【点睛】本题考查一元二次方程的解法——公式法,解题的关键是掌握求根公式.4.A【分析】根据一元二次方程根的判别式即可求解.【详解】解:∵一元二次方程x2﹣2x+m=0没有实数根,∴△=(﹣2)2﹣4×1×m<0,∴m>1.故选A.【点睛】此题主要考查一元二次方程根的判别式,解题的关键是熟知根的判别式. 5.D【分析】将2代入方程,得到关于a的方程,求解方程即可;【详解】把代入方程,得,即,所以,解得或,故选D.【点睛】本题主要考查了一元二次方程的根的知识点,准确理解是解题的关键.6.D【分析】根据应用直接开平方法求解的条件逐项判断即得答案.【详解】解:A、当时,原方程有两个不相等的实数根,故本选项说法正确,不符合题意;B、当时,原方程有两个相等的实数根,故本选项说法正确,不符合题意;C、当时,原方程无实数根,故本选项说法正确,不符合题意;D、当时,原方程的根为,故本选项说法错误,符合题意;故选:D.【点睛】本题考查了一元二次方程的解法,属于基本题目,熟练掌握应用直接开平方法求解的条件是关键.7.C【分析】由方程有实数根可知根的判别式b2﹣4ac≥0,结合二次项的系数非零,可得出关于a的一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:,解得:a≥1且a≠5,故选:C.【点睛】本题考查了根的判别式,解题的关键是得出关于a的一元一次不等式组,由根的判别式结合二次项系数非零得出不等式组是关键.8.D【分析】根据已知得出方程有x=-1,再判断即可.【详解】把x=−1代入方程得出a−b+c=0,∴b=a+c,∵方程有两个相等的实数根,∴△=,∴a=c,故选D.【点睛】此题考查根的判别式,解题关键在于利用有两个相等的实数根.9.B【分析】利用公式法解方程求得较大的实数根,根据无理数的估算得到这个实数根的范围,即可判断.【详解】解方程得.设是方程的较大的实数根,,,,则,只有B符合要求.故选:B.【点睛】本题考查了公式法解一元二次方程,无理数的估算以及在数轴上表示不等式的解集,熟练掌握公式法解一元二次方程和无理数大小的估算是解题的关键.10.A【分析】根据求根公式法求得一元二次方程的两个根,由题意得,可求出.【详解】方程有两根,且.求根公式得到方程的根为,两根互为相反数,所以,即,解得.故选:A.【点睛】本题考查了解一元二次方程-公式法,相反数的意义,熟练掌握用公式法解一元二次方程是解题的关键.11.或【分析】首先把方程转化为一般形式,再利用公式法求解.【详解】(x-1)(x+3)=12x2+3x-x-3-12=0x2+2x-15=0x=,∴x1=3,x2=-5故答案是:3或-5.【点睛】考查了学生解一元二次方程的能力,解决本题的关键是正确理解运用求根公式.12.9【分析】根据方程两个相等的实数根可得根的判别式,求出方程的解即可.【详解】解:一元二次方程有两个相等的实数根,△,解得:,故答案为:9.【点睛】本题考查了根的判别式.一元二次方程的根与△有如下关系:①当△时,方程有两个不相等的实数根;②当△时,方程有两个相等的实数根;③当△时,方程无实数根.上面的结论反过来也成立.13.a<1【分析】若一元二次方程x2+2x+a=0有两个不同的实数根,则根的判别式,建立关于a的不等式,求出a的取值范围.【详解】解:∵方程有两个不同的实数根,a=1,b=2,c=a,∴,解得:,故答案为:.【点睛】本题考查了一元二次方程的根的判别式:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.【解析】【分析】找出方程中二次项系数a,一次项系数b及常数项c,将a,b及c的值代入计算,即可求出m的值.【详解】∵a=1,b=m,c=6,∴∴m=.故答案为:.【点睛】本题考查一元二次方程的解法,掌握公式法是解题的关键.15.0【分析】根据一元二次方程根的存在性,利用判别式求解即可;【详解】一元二次方程有两个不相等的实数根,∴△=4,∴故答案为0【点睛】本题考查一元二次方程的根的存在性;熟练掌握利用判别式确定一元二次方程的根的存在性是解题的关键.16.且【分析】根据二次项系数非零及一元二次方程根的判别式,即可得出关于k的一元一次不等式组,解之即可得出结论.【详解】∵关于x的一元二次方程(k﹣1)x2﹣2(k+1)x+k+5=0有实数根,∴∴且故答案为:且.【点睛】本题考查了根的判别式以及一元二次方程的定义,利用二次项系数非零及根的判别式,找出关于k的一元一次不等式组是解题的关键.17.-1 >-1 0【分析】先计算,当4+4m=0,方程有两个相等的实根;当4+4m>0,方程有两个不等实根;把x=0代入方程,得-m=0;然后分别解方程或不等式即可得到对应得答案.【详解】∵,,,,当,即时,方程有两个相等的实根;当,即时,方程有两个不等实根;令,则有,即时,方程有一个根为0.故答案为:;;0.【点睛】本题考查了一元二次方程()的根的判别式.当>0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当<0时,方程没有实数根.18.且k≠0【详解】解:∵关于x的一元二次方程有两个不相等的实数根,∴解得:﹣≤k<且k≠0故答案为﹣≤k<且k≠0.点睛:本题考查了根的判别式、一元二次方程的定义以及二次根式有意义的条件,根据一元二次方程的定义、二次根式下非负以及根的判别式列出关于k的一元一次不等式组是解题的关键.19.;,或.【分析】(1)关于x的方程x2-2x-2n=0有两个不相等的实数根,即判别式△=b2-4ac>0,即可得到关于n的不等式,从而求得n的范围;(2)利用配方法解方程,然后根据n的取值范围和限制条件“方程的两个实数根都是整数”来求n的值即可.【详解】∵关于的方程的二次项系数、一次项系数、常数项,∴,解得;由原方程,得,解得,∵方程的两个实数根都是整数,且,不是负数,∴,且是完全平方形式,∴,或,解得,或.【点睛】本题考查了一元二次方程的根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.【分析】确定a、b、c,计算,根据方程没有实数根得关于m的不等式,继而根据一元二次方程的定义可得答案.【详解】∵,,,∴,∵方程无实数根,∴,解得,又根据一元二次方程的定义,解得,故答案为:.【点睛】本题考查了一元二次方程()的根的判别式:当△>0,方程有两个不相等的实数根;当△<0,方程有两个相等的实数根;当△=0,方程没有实数根;也考查了一元二次方程的定义.21.(1);(2);(3).【分析】(1)直接利用公式法求解即可;(2)方程整理成一般式后,直接利用公式法求解即可;(3)方程整理成一般式后,直接利用公式法求解即可.【详解】(1),,,即;(2),,,,,;(3),整理,得,,,,.【点睛】本题考查了解一元二次方程-公式法,熟练掌握求根公式是解本题的关键.22.晓梅的解题步骤在第③步出错了,正确解题步骤详见解析.【分析】根据的值非负即可判断出错的解题步骤,根据直接开平方法和的非负性解答即可.【详解】解:晓梅的解题步骤在第③步出错了.正确解题步骤如下:,,.不论为何值都不等于,.【点睛】本题考查了一元二次方程的解法和代数式求值,解决此类问题时,我们需要注意所求代数式的范围,本题容易忽略的值是非负的,所以要找出题干所隐含的条件再解题.23.(1)证明见解析;(2)△ABC的周长为5.【分析】(1)根据一元二次方程根与判别式的关系即可得答案;(2)分a为底边和a为腰两种情况,当a为底边时,b=c,可得方程的判别式△=0,可求出k值,解方程可求出b、c的值;当a为一腰时,则方程有一根为1,代入可求出k值,解方程可求出b、c的值,根据三角形的三边关系判断是否构成三角形,进而可求出周长.【详解】(1)∵判别式△=[-(k+2)]²-4×2k=k²-4k+4=(k-2)²≥0,∴无论k取任何实数值,方程总有实数根.(2)当a=1为底边时,则b=c,∴△=(k-2)²=0,解得:k=2,∴方程为x2-4x+4=0,解得:x1=x2=2,即b=c=2,∵1、2、2可以构成三角形,∴△ABC的周长为:1+2+2=5.当a=1为一腰时,则方程有一个根为1,∴1-(k+2)+2k=0,解得:k=1,∴方程为x2-3x+2=0,解得:x1=1,x2=2,∵1+1=2,∴1、1、2不能构成三角形,综上所述:△ABC的周长为5.【点睛】本题考查一元二次方程根的判别式及三角形的三边关系.一元二次方程根的情况与判别式△的关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根;三角形任意两边之和大于第三边,任意两边之差小于第三边;熟练掌握根与判别式的关系是解题关键。
公式法 1.方程x 2+x -1=0的一个根是( D )A .1-5 B.1-52C .-1+ 5 D.-1+52【解析】 用公式法解得 x =-1±52. 2.一元二次方程x 2+x -2=0的根的情况是( A )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根3.[2012·南昌]已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是( B )A .1B .-1C.14 D .-14【解析】 ∵关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,∴Δ=b 2-4ac =0,即22-4(-a )=0,解得a =-1.4.[2012·广安]已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( C )A .a >2B .a <2C .a <2且a ≠1D .a <-2【解析】 Δ=4-4(a -1)=8-4a >0,得a <2.又a -1≠0,∴a <2且a ≠1.5.方程4y 2=5-y 化成一般形式后,a =__4__,b =__1__,c =__-5__,则b 2-4ac =__81__,所以方程的根为__y 1=1,y 2=-54__. 6.[2013·滨州]一元二次方程2x 2-3x +1=0的解为__x 1=1,x 2=12__. 7.方程2x 2+5x -3=0的解是__x 1=-3,x 2=12__. 8.如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实数根,那么c 的取值范围是__c >9__.【解析】 ∵关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实数根,∴Δ=(-6)2-4c <0,即36-4c <0,c >9.9.不解方程,判断下列一元二次方程的根的情况:(1)3x 2-2x -1=0;(2)2x 2-x +1=0;(3)4x -x 2=x 2+2;(4)3x -1=2x 2.解:(1)Δ>0,方程有两个不相等的实数根; (2)Δ<0,方程没有实数根; (3)Δ=0,方程有两个相等的实数根; (4)Δ>0,方程有两个不相等的实数根. 10.用公式法解方程:(1)x 2-5x +2=0;(2)x 2=6x +1;(3)2x 2-3x =0;(4)3x 2+6x -5=0;(5)0.2x 2-0.1=0.4x;(6)2x -2=2x 2.解:(1)x 1=5+172,x 2=5-172; (2)x 1=3+10,x 2=3-10;(3)x 1=0,x 2=32; (4)x 1=-3+263,x 2=-3-263; (5)x 1=2+62,x 2=2-62; (6)无解.11.用两种不同的方法解一元二次方程x 2+4x -2=0.解:方法一:由原方程得x 2+4x +4=2+4,即(x +2)2=6,∴x +2=±6,∴x =-2±6,∴x 1=-2+6,x 2=-2- 6.方法二:∵a =1,b =4,c =-2,Δ=b 2-4ac =42-4×1×(-2)=24>0,∴x =-4±242=-2±6, ∴x 1=-2+6,x 2=-2- 6.12.用适当的方法解一元二次方程:(1)(3x +1)2-9=0; (2)x 2+4x -1=0;(3)3x 2-2=4x; (4)(y +2)2=1+2y .解:(1)x 1=23,x 2=-43; (2)x 1=-2-5,x 2=-2+5;(3)x 1=2+103,x 2=2-103; (4)无解.13.先化简,再求值:⎝⎛⎭⎫x +1-3x -1÷x 2-4x +4x -1,其中x 满足方程x 2+x -6=0. 解:⎝⎛⎭⎫x +1-3x -1÷x 2-4x +4x -1 =⎝ ⎛⎭⎪⎫x 2-1x -1-3x -1÷(x -2)2x -1 =(x +2)(x -2)x -1·x -1(x -2)2=x +2x -2. 由x 2+x -6=0可解得x 1=2(不合题意,舍去),x 2=-3,∴x =-3.∴原式=x +2x -2=-3+2-3-2=15. 14.[2012·珠海]已知关于x 的一元二次方程x 2+2x +m =0.(1)当m =3时,判断方程的根的情况;(2)当m =-3时,求方程的根.解:(1)当m =3时,b 2-4ac =22-4×1×3=-8<0,∴原方程没有实数根;(2)当m =-3时,x 2+2x -3=0,∵a =1,b =2,c =-3,Δ=b 2-4ac =4-4×1×(-3)=16,∴x =-2±162=-2±42, ∴x 1=-3,x 2=1.15.已知关于x 的一元二次方程(m -1)x 2-2mx +m =0有两个实数根,求m 的取值范围.【解析】 由方程根的情况得到关于m 的不等式,若二次项中存在字母系数,则系数不为零,从以上两个方面确定字母的取值范围.解:因为一元二次方程有两个实数根,所以Δ≥0,即(-2m )2-4(m -1)·m ≥0,所以4m 2-4m 2+4m ≥0,m ≥0.又因为m -1≠0,所以m ≠1,所以m 的取值范围是m ≥0且m ≠1.16.已知关于x 的一元二次方程x 2+2x +2k -4=0有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.解:(1)Δ=b 2-4ac =4-4(2k -4)=20-8k .∵方程有两个不等的实根∴20-8k >0∴k <52. (2)∵k 为整数,∴0<k <52(且k 为整数),即k 为1或2, ∴x 1=-1+5-2k ,x 2=-1-5-2k .∵方程的根为整数,∴5-2k 为完全平方数.当k =1时,5-2k =3;当k =2时,5-2k =1.∴k =2.数学选择题解题技巧1、排除法。
初中数学:《公式法解一元二次方程》练习(含答案)一、选择题:1.一元二次方程x(x﹣2)=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根2.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根3.已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣ B.m≥0 C.m≥1 D.m≥24.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠0二、填空题5.一元二次方程x2+x=3中,a=______,b=______,c=______,则方程的根是______.6.若x1,x2分别是x2﹣3x+2=0的两根,则x1+x2=______.7.已知三角形两边长是方程x2﹣5x+6=0的两个根,则三角形的第三边c的取值范围是______.8.已知关于x的一元二次方程(k+1)x2﹣2x﹣1=0有两个不相同的实数根,则k的取值范围是______.9.写出一个一元二次方程,使它有两个不相等的实数根______.10.一次二元方程x2+x+=0根的情况是______.11.若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是______.12.已知代数式7x(x+5)与代数式﹣6x2﹣37x﹣9的值互为相反数,则x=______.13.已知一次函数y=﹣x+4与反比例函数在同一直角坐标系内的图象没有交点,则k的取值范围是______.14.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=______.三、解答题(共4小题,满分0分)15.用公式法解方程:①4x2﹣4x+1=0②x2﹣x﹣3=0.16.不解方程,判断下列方程的根的情况:①2x2+3x﹣4=0②3x2+2=2x③x2=x﹣1.17.已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0,求证:无论m取任何实数时,方程恒有实数根.18.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.《公式法》参考答案与试题解析一、选择题:1.一元二次方程x(x﹣2)=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【解答】解:原方程变形为:x2﹣2x=0,∵△=(﹣2)2﹣4×1×0=4>0,∴原方程有两个不相等的实数根.故选A.2.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根【解答】解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.3.已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣ B.m≥0 C.m≥1 D.m≥2【解答】解;(x+1)2﹣m=0,(x+1)2=m,∵一元二次方程(x+1)2﹣m=0有两个实数根,∴m≥0,故选:B.4.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠0 【解答】解:根据题意得k≠0且△=(﹣1)2﹣4k>0,解得k<且k≠0.故选C.二、填空题5.一元二次方程x2+x=3中,a= ,b= 1 ,c= ﹣3 ,则方程的根是x1=﹣1+,x2=﹣1﹣.【解答】解:移项得, x+x﹣3=0∴a=,b=1,c=﹣3∴b2﹣4ac=7∴x1=﹣1+,x2=﹣1﹣.6.若x1,x2分别是x2﹣3x+2=0的两根,则x1+x2= 3 .【解答】解:根据题意得x1+x2=3.故答案为3.7.已知三角形两边长是方程x2﹣5x+6=0的两个根,则三角形的第三边c的取值范围是1<c <5 .【解答】解:∵三角形两边长是方程x2﹣5x+6=0的两个根,∴x1+x2=5,x1x2=6∵(x1﹣x2)2=(x1+x2)2﹣4x1x2=25﹣24=1∴x1﹣x2=1,又∵x1﹣x2<c<x1+x2,∴1<c<5.故答案为:1<c<5.8.已知关于x的一元二次方程(k+1)x2﹣2x﹣1=0有两个不相同的实数根,则k的取值范围是k>﹣2且k≠﹣1 .【解答】解:根据题意得k+1≠0且△=(﹣2)2﹣4(k+1)•(﹣1)>0,解得k>﹣2且k≠﹣1.故答案为k>﹣2且k≠﹣1.9.写出一个一元二次方程,使它有两个不相等的实数根x2+x﹣1=0 .【解答】解:比如a=1,b=1,c=﹣1,∴△=b2﹣4ac=1+4=5>0,∴方程为x2+x﹣1=0.10.一次二元方程x2+x+=0根的情况是方程有两个相等的实数根.【解答】解:∵△=12﹣4×=0,∴方程有两个相等的实数根故答案为方程有两个相等的实数根.11.若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是a≥﹣1 .【解答】解:当a=0时,方程是一元一次方程,有实数根,当a≠0时,方程是一元二次方程,若关于x的方程ax2+2(a+2)x+a=0有实数解,则△=[2(a+2)]2﹣4a•a≥0,解得:a≥﹣1.故答案为:a≥﹣1.12.已知代数式7x(x+5)与代数式﹣6x2﹣37x﹣9的值互为相反数,则x= 1±.【解答】解:根据题意得:7x(x+5)﹣6x2﹣37x﹣9=0,这里的:x2﹣2x﹣9=0,这里a=1,b=﹣2,c=﹣9,∵△=4+36=40,故答案为:1±13.已知一次函数y=﹣x+4与反比例函数在同一直角坐标系内的图象没有交点,则k的取值范围是k>4 .【解答】解:依题意可得x2﹣4x+k=0无解,也就是这个一元二次方程无实数根,那么根据根的判别式△=b2﹣4ac=16﹣4k,没有实数根,那么16﹣4k<0,解此不等式可得k>4.故答案为:k>4.14.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2= 3或﹣3 .【解答】解:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴(x﹣3)(x﹣2)=0, 解得:x=3或2,①当x1=3,x2=2时,x1﹡x2=32﹣3×2=3;②当x1=2,x2=3时,x1﹡x2=3×2﹣32=﹣3.故答案为:3或﹣3.三、解答题(共4小题,满分0分)15.用公式法解方程:①4x2﹣4x+1=0②x2﹣x﹣3=0.【解答】解:(1)这里a=4,b=﹣4,c=1, ∵△=32﹣16=16,(2)这里a=1,b=﹣,c=﹣3,∵△=2+12=14,∴x=.16.不解方程,判断下列方程的根的情况:①2x2+3x﹣4=0②3x2+2=2x③x2=x﹣1.【解答】解:①△=32﹣4×2×(﹣4)=41>0,所以方程两个不相等的实数根;②方程化为一般式为3x2﹣2x+2=0,△=(﹣2)2﹣4×3×2=0,所以方程有两个相等的实数根;③方程化为一般式为x2﹣x+1=0,△=(﹣)2﹣4××1<0,所以方程无实数根.17.已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0,求证:无论m取任何实数时,方程恒有实数根.【解答】证明:当m=0时,原方程为x﹣2=0,解得x=2;当m≠0时,△=(3m﹣1)2﹣4m(2m﹣2)=(m+1)2≥0,所以方程有两个实数根,所以无论m为何值原方程有实数根.18.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.【解答】(1)证明:△=(2k+1)2﹣4×1×4(k﹣)=4k2﹣12k+9=(2k﹣3)2,∵无论k取什么实数值,(2k﹣3)2≥0, ∴△≥0,∴无论k取什么实数值,方程总有实数根;(2)解:∵x=,∴x1=2k﹣1,x2=2,∵b,c恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a、b为腰,则a=b=4,即2k﹣1=4,解得k=,此时三角形的周长=4+4+2=10;当b、c为腰时,b=c=2,此时b+c=a,故此种情况不存在.综上所述,△ABC的周长为10.。
九年级数学上册《第二十一章公式法》练习题及答案-人教版一、选择题1.用公式法解方程x2+x=2时,求根公式中a,b,c的值分别是( ).A.a=1,b=1,c=2B.a=1,b=﹣1,c=﹣2C.a=1,b=1,c=﹣2D.a=1,b=﹣1,c=22.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为( )A.﹣1,3,﹣1B.1,﹣3,﹣1C.﹣1,﹣3,﹣1D.1,3,13.以x=为根的一元二次方程可能是( )A.x2+bx+c=0B.x2+bx﹣c=0C.x2﹣bx+c=0D.x2﹣bx﹣c=04.小明在解方程x2﹣4x=2时出现了错误,解答过程如下:∵a=1,b=﹣4,c=﹣2(第一步)∴b2﹣4ac=(﹣4)2﹣4×1×(﹣2)=24(第二步)∴(第三步)∴(第四步)小明解答过程开始出错的步骤是( )A.第一步B.第二步C.第三步D.第四步5.方程x2+x-1=0的一个根是( )A.1- 5B.1-52C.-1+ 5D.-1+526.用公式法解方程5x2﹣6=7x,下列代入公式正确的是( )A.x=7±62+4×5×72×5B.x=-(-7)±(-7)2-4×5×(-6)2×5C.x=7±72+4×5×(-6)2×5D.x=-(-7)±(-7)2+4×5×(-6)2×57.方程2x2+43x+62=0的根是( )A.x1=2,x2= 3 B.x1=6,x2= 2 C.x1=22,x2= 2 D.x1=x2=- 68.一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是( )A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3D.有两个正根,且有一根大于39.已知a是一元二次方程x2﹣3x﹣5=0的较小的根,则下面对a的估计正确的是( )A.﹣2<a<﹣1B.2<a<3C.﹣3<a<﹣4D.4<a<510.现规定:min(a:b)=,例如min (1:2)=1,min(8:6)=6.按照上面的规定方程min(x:﹣x)=的根是( )A.1﹣ 2B.﹣1C.1± 2D.1±2或﹣1二、填空题11.用公式法解一元二次方程﹣x2+3x=1时,应求出a,b,c的值,则:a= ;b= ;c= .12.用公式法解方程(x+1)(x﹣2)=1,化为一般形式为,其中b2﹣4ac =,方程的解为.13.已知一元二次方程x2-6x+5-k=0的根的判别式△=4,则k=_____.14.方程x2+3x+1=0的解是.15.已知关于x的方程ax2-bx+c=0的一个根是x1=12,且b2-4ac=0,则此方程的另一个根x2= .16.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1. 因此,min{-2,-3}=________;若min{(x-1)2,x2}=1,则x=________.三、解答题17.用公式法解方程:x2﹣6x﹣6=0;18.用公式法解方程:y(4y+6)=1.19.用公式法解方程:2x2+5x﹣3=0.20.用适当的方法解方程:2x2﹣4x=4 2.21.用公式法解方程:2x2+7x=4.解:∵a=2,b=7,c=4∴b2-4ac=72-4×2×4=17.∴x=-7±174即x1=-7+174,x2=-7-174.上述解法是否正确?若不正确,请指出错误并改正.22.先化简,再求值:a2+aa2-2a+1÷(121--aa),其中a是方程2x2+x﹣3=0的解.23.如图,有一块长方形空地ABCD,要在中央修建一个长方形花圃EFGH,使其面积为这块空地面积的一半,且花圃四周道路的宽相等.现无测量工具,只有一条无刻度且足够长的绳子,则该如何确定道路的宽?参考答案1.C.2.A.3.D.4.C.5.D6.B7.D8.D.9.A.10.A11.答案为:﹣1,3,﹣1.12.答案为:x 2-x-3=0,13,12+1213,12-1213. 13.答案为:-3.14.答案为:x 1=﹣32+52,x 2=﹣32﹣52.15.答案为:12. 16.答案为:-3,2或-1.17.解:x 2﹣6x ﹣6=0∵a =1,b =﹣6,c =﹣6∴b 2﹣4ac =(﹣6)2﹣4×1×(﹣6)=60.∴x =6±602=3±15 ∴x 1=3+15,x 2=3﹣15.18.解:原方程可化为4y 2+6y +1=0.∵a =4,b =6,c =1,∴b 2﹣4ac =20∴y=-6±202×4=-6±258∴y1=-3+54,y2=-3-54.19.解:x1=12,x2=﹣3.20.解:2x2﹣4x﹣42=0x2﹣22x﹣4=0b2﹣4ac=(﹣22)2﹣4×1×(﹣4)=24∴x=-b±b2-4ac2a=22±242=2± 6∴x1=2+6,x2=2﹣ 6.21.解:不正确.错误原因:没有将方程化成一般形式,造成常数项c的符号错误. 正解:移项,得2x2+7x-4=0∵a=2,b=7,c=-4∴b2-4ac=72-4×2×(-4)=81.∴x=-7±812×2=-7±94.即x1=-4,x2=12.22.解:a2+aa2-2a+1÷(121--aa)=a(a+1)(a-1)2÷a-1-2aa(a-1)=a(a+1)(a-1)2·a(a-1)-(a+1)=﹣a2a-1.∵a是方程2x2+x﹣3=0的解∴2a2+a﹣3=0解得a1=﹣1.5,a2=1.∵原分式中a≠0且a﹣1≠0且a+1≠0∴a≠0且a≠1且a≠﹣1 ∴a=﹣1.5.当a=﹣1.5时,原式=﹣(-1.5)2-1.5-1=910.23.解:设道路的宽为x, AD=a, AB=b不妨设a<b,则x<a 2 .由题意,得(a﹣2x)(b﹣2x)=12ab解方程,得x=a+b±a2+b24.当x=a+b+a2+b24时,4x=a+b+a2+b2>a+b>2a,∴x>a2∴x=a+b+a2+b24不合题意,舍去∴x=a+b-a2+b24.又∵BD=a2+b2∴x=14(AB+AD﹣BD).具体做法:先用绳子量出AB和AD的长度之和,并减去BD的长,再将AB+AD﹣BD对折两次,即得道路的宽x=14(AB+AD﹣BD).。
2.3.1 公式法一、选择题1.用公式法解一元二次方程3x2-2x+3=0时,首先要确定a,b,c的值,下列叙述正确的是()A.a=3,b=2,c=3B.a=-3,b=2,c=3C.a=3,b=2,c=-3D.a=3,b=-2,c=32.用公式法解方程x2-4x=2,其中b2-4ac的值是()A.16B.24C.8D.43.一元二次方程2x2-x-1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断4.[2020·黔西南州] 已知关于x的一元二次方程(m-1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2B.m≤2C.m<2且m≠1D.m≤2且m≠15.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1.他核对时发现所抄的c比原方程的c值小2,则原方程的根的情况是()A.没有实数根B.有两个不相等的实数根C.有一个根是x=-1D.有两个相等的实数根二、填空题6.已知一元二次方程x2-3x-a=0,当a=-6时,方程的根的情况为;若方程有两个相等的实数根,则a=.7.一元二次方程3x2=4-2x的解是.,且b2-4ac=0,则此方程的另一个根8.已知关于x的一元二次方程ax2+bx+c=0的一个根是12是.9.(1)关于x的一元二次方程x2-2x-m=0有两个不相等的实数根,则m的最小整数值是;(2)若关于x的一元二次方程x2+2x-k=0无实数根,则k的取值范围是.10.在实数范围内定义一种运算“*”,使a*b=(a+1)2-ab,则方程(x+2)*5=0的解为.三、解答题11.不解方程,判断下列方程的根的情况:=0; (2)16x2-24x+9=0;(1)2x2-3x-32(3)x2-4√2x+9=0; (4)3x2+10=2x2+8x.12.用公式法解下列方程:(1)x2-5x+4=0;(2)x2+3x=0;(3)2x2-3x+9=0;8(4)2x2-3√3x+3=0;(5)0.3y2+y=0.8;(6)6x2-11x+4=2x-2;(7)(3x+2)(x+3)=x+14.13.已知关于x的一元二次方程mx2-(m-2)x-2=0(m≠0).(1)求证:方程一定有实数根;(2)若此方程有两个不相等的整数根,求整数m的值.14.已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC的三边长.(1)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.15.[分类讨论题] 已知关于x的一元二次方程x2-(k+2)x+2k=0.(1)试说明无论k取何值,这个方程一定有实数根;(2)已知等腰三角形ABC的一边a为1,若另两边b,c恰好是这个方程的两个根,求△ABC 的周长.详解详析1.D2.B [解析] 方程x 2-4x=2可化为x 2-4x-2=0.∵a=1,b=-4,c=-2,∴b 2-4ac=(-4)2-4×1×(-2)=16+8=24.故选B .3.A [解析] ∵b 2-4ac=(-1)2-4×2×(-1)=1+8=9>0,∴该一元二次方程有两个不相等的实数根.故选A .4.D [解析] ∵关于x 的一元二次方程(m-1)x 2+2x+1=0有实数根,∴{m -1≠0,Δ=22-4×1×(m -1)≥0,解得m ≤2且m ≠1.故选D .5.A [解析] ∵小刚在解关于x 的方程ax 2+bx+c=0(a ≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1,∴(-1)2-4+c=0,解得c=3,故原方程中c=5,则b 2-4ac=16-4×1×5=-4<0,所以原方程的根的情况是没有实数根.故选A .6.无实数根 -947.x 1=-1+√133,x 2=-1-√133[解析] 3x 2=4-2x ,3x 2+2x-4=0,则b 2-4ac=4-4×3×(-4)=52>0,故x=-2±√526,则x 1=-1+√133,x 2=-1-√133.故答案为x 1=-1+√133,x 2=-1-√133. 8.12 [解析] ∵b 2-4ac=0,∴一元二次方程有两个相等的实数根,∴此方程的另一个根为12.9.(1)0 (2)k<-1[解析] (1)一元二次方程x 2-2x-m=0有两个不相等的实数根, ∴Δ=4+4m>0,∴m>-1.故答案为0.(2)由题意可知Δ=4+4k<0,∴k<-1.故答案为k<-1.10.x 1=-1+√52,x 2=-1-√5211.解:(1)2x 2-3x-32=0,∵Δ=b 2-4ac=(-3)2-4×2×-32=21>0,∴方程有两个不相等的实数根.(2)16x 2-24x+9=0,∵Δ=b 2-4ac=(-24)2-4×16×9=0,∴方程有两个相等的实数根.(3)x 2-4√2x+9=0,∵Δ=b 2-4ac=(-4√2)2-4×1×9=-4<0,∴方程没有实数根.(4)3x 2+10=2x 2+8x ,即x 2-8x+10=0,∵Δ=b 2-4ac=(-8)2-4×1×10=24>0,∴方程有两个不相等的实数根.12.解:(1)∵a=1,b=-5,c=4,∴Δ=b 2-4ac=(-5)2-4×1×4=9>0,∴x=5±√92=5±32,∴x 1=1,x 2=4. (2)∵a=1,b=3,c=0,∴Δ=b 2-4ac=32-4×1×0=9>0,∴x=-3±√92×1,∴x 1=0,x 2=-3.(3)∵a=2,b=-3,c=98,∴Δ=b 2-4ac=(-3)2-4×2×98=9-9=0, ∴x=-(-3)±√02×2,∴x 1=x 2=34. (4)∵a=2,b=-3√3,c=3,∴Δ=b 2-4ac=(-3√3)2-4×2×3=3>0,∴x=3√3±√32×2=3√3±√34, ∴x 1=√3,x 2=√32.(5)移项,得0.3y 2+y-0.8=0.∵a=0.3,b=1,c=-0.8,∴Δ=b 2-4ac=12-4×0.3×(-0.8)=1.96>0,∴y=-1±√1.962×0.3=-1±1.40.6, ∴y 1=23,y 2=-4.(6)原方程可化为6x 2-13x+6=0.∵a=6,b=-13,c=6,∴Δ=b 2-4ac=(-13)2-4×6×6=25>0,∴x=13±√252×6=13±512, ∴x 1=32,x 2=23.(7)原方程可化为3x 2+10x-8=0,∵a=3,b=10,c=-8,∴Δ=b 2-4ac=102-4×3×(-8)=196>0,∴x=-10±√1966, 即x=-5±73,∴x 1=23,x 2=-4.13.解:(1)证明:∵m ≠0,Δ=[-(m-2)]2-4m ×(-2)=m 2-4m+4+8m=m 2+4m+4=(m+2)2≥0, ∴方程一定有实数根.(2)由(1)易得x=m -2±(m+2)2m ,∴x 1=1,x 2=-2m , 当整数m 取±1,±2时,x 2为整数.∵方程有两个不相等的整数根,∴-2m ≠1,∴m ≠-2,∴整数m 的值为-1,1,2.14.解:(1)△ABC 是直角三角形.理由:∵原方程有两个相等的实数根,∴(2b)2-4(a+c)(a-c)=0,∴4b2-4a2+4c2=0,∴a2=b2+c2,故△ABC是直角三角形.(2)∵△ABC是等边三角形,∴a=b=c.∵(a+c)x2+2bx+(a-c)=0,∴2ax2+2ax=0,而a≠0,∴x2+x=0,解得x1=0,x2=-1.15.[解析] (1)整理根的判别式,得到它是非负数即可.(2)分b=c,b=a两种情况.解:(1)∵Δ=[-(k+2)]2-8k=(k-2)2≥0,∴无论k取何值,这个方程一定有实数根.(2)①若b=c,则Δ=0,即(k-2)2=0,∴k=2,∴方程可化为x2-4x+4=0,∴x1=x2=2,则b=c=2,∴△ABC的周长为5;②若b=a=1(或c=a=1),则1是方程x2-(k+2)x+2k=0的一个根.把x=1代入方程x2-(k+2)x+2k=0,得1-(k+2)+2k=0,解得k=1,∴原方程可化为x2-3x+2=0,解得x1=1,x2=2,∴a=b=1,c=2(或a=c=1,b=2),此时不满足三角形的三边关系,舍去.综上所述,△ABC的周长为5.。
最新人教版初中数学九年级上册精品习题:《公式法》练习积累●整合1、用公式法解方程4x2-12x=3得()A.x=263±-B.x=263±C.x=232 3±-D.x=2323±2、不解方程,判别方程5x2-7x+5=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根3、关于x的方程x2-mx+m-3=0()A.一定有两个不相等的实数根B.没有实数根C.一定有两个相等的实数根D .以上说法都不正确4、已知x2+3x+5=9,则代数式3x2+9x-2的值为( ) A .4 B .6 C .8 D .105、在下列方程中,有实数根的是( ) A .m2+2m-3=0B .= -65+mC .m2-2m+3=0D .=1-m m 11-m6、已知方程3x2+4x=0,下列说法正确的是( ) A .只有一个根 B .只有一个根x=0C .有两个根,x1=0,x2= -34D .有两个根,x1=0,x2= 347、已知a 、b 、c 是△ABC 的三条边,则方程cx2+(a+b )x+=0的根的情况是( )4cA.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.无法确定8、三角形两边长分别是8和6,第三边的长是一元二次方程x2-16x+60=0的一个实数根,则该三角形的面积是()A.248B.24或5C. 488D.5拓展●应用9、在一元二次方程ax2+bx+c=0中,若a与c异号,则方程的根的情况是10、若关于x的方程x2-(m+2)x+m=0的根的判别式b2-4ac=5,则m=11、关于x的一元二次方程kx2-6x+1=0有两个不相等的实数根,则k 的取值范围是12、已知一元二次方程x2-(4k-2)x+4k2=0有两个不相等的实数根,则k的最大整数值为13、民歌不仅脍炙人口,而且还有许多教育意义,有一首《牧童王小良》的民歌还包含着一个数学问题:牧童王小良,放牧一群羊,问他羊几只,请你仔细想。
人教版九年级数学上册21.2.3公式法一.选择题(共6小题)1.用公式法解一元二次方程2x2+3x=1时,化方程为一般式当中的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,12.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,1B.1,3,1C.﹣1,3,﹣1D.1,﹣3,﹣1 3.一元二次方程ax2+bx+c=0(a≠0)的求根公式是()A.B.C.D.4.方程x2+x﹣1=0的一个根是()A.1﹣B.C.﹣1+D.5.用公式法解方程4y2=12y+3,得到()A.y=B.y=C.y=D.y=6.x=是下列哪个一元二次方程的根()A.2x2+4x+1=0B.2x2﹣4x+1=0C.2x2﹣4x﹣1=0D.2x2+4x﹣1=0二.填空题(共6小题)7.用公式法解﹣4x2+5x=9时,应先求出a,b,c的值,则a=,b=,c =.8.一元二次方程ax2+bx+c=0(a≠0)的求根公式是,条件是.9.方程x2﹣x﹣6=0的解为.10.一元二次方程(4y﹣3)(y﹣1)=4的根为.11.关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别是x1=,x2=,那么a=.12.小明设计了一个魔术盒,当任意实数对(a,b)进入其中,会得到一个新的实数a2﹣2b+3,若将实数对(x,﹣3x)放入其中,得到一个新数为5,则x=.三.解答题(共3小题)13.解方程:2x2﹣3x=1﹣2x.14.小明在解方程x2﹣5x=1时出现了错误,解答过程如下:∵a=1,b=﹣5,c=1,(第一步)∴b2﹣4ac=(﹣5)2﹣4×1×1=21(第二步)∴x=(第三步)∴x1=,x2=(第四步)(1)小明解答过程是从第步开始出错的,其错误原因是.(2)写出此题正确的解答过程.15.解方程x2=﹣3x+2时,有一位同学解答如下:解:∵a=1,b=3,c=2,b2﹣4ac=32﹣4×1×2=1,∴x===即:x1=﹣2,x2=﹣1请你分析以上解答有无错误,如有错误,请写出正确的解题过程.人教版九年级数学上册21.2.3公式法参考答案一.选择题(共6小题)1.用公式法解一元二次方程2x2+3x=1时,化方程为一般式当中的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,1【解答】解:∵方程2x2+3x=1化为一般形式为:2x2+3x﹣1=0,∴a=2,b=3,c=﹣1.故选:B.2.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,1B.1,3,1C.﹣1,3,﹣1D.1,﹣3,﹣1【解答】解:将方程整理为一般形式为﹣x2+3x﹣1=0,可得二次项系数a=﹣1,一次项系数b=3,常数项为﹣1.故选:C.3.一元二次方程ax2+bx+c=0(a≠0)的求根公式是()A.B.C.D.【解答】解:一元二次方程的求根公式为x=,故选:A.4.方程x2+x﹣1=0的一个根是()A.1﹣B.C.﹣1+D.【解答】解:∵a=1,b=1,c=﹣1,∴△=b2﹣4ac=12﹣4×(﹣1)=5,则x=,所以x1=,x2=.故选:D.5.用公式法解方程4y2=12y+3,得到()A.y=B.y=C.y=D.y=【解答】解:∵4y2=12y+3∴4y2﹣12y﹣3=0∴a=4,b=﹣12,c=﹣3∴b2﹣4ac=192∴y==.故选:C.6.x=是下列哪个一元二次方程的根()A.2x2+4x+1=0B.2x2﹣4x+1=0C.2x2﹣4x﹣1=0D.2x2+4x﹣1=0【解答】解:解一元二次方程的公式为x=.所以a=2,b=4,c=1.所以方程为2x2+4x+1=0故选:A.二.填空题(共6小题)7.用公式法解﹣4x2+5x=9时,应先求出a,b,c的值,则a=﹣4,b=5,c=﹣9.【解答】解:方程整理得:﹣4x2+5x﹣9=0,则a=﹣4,b=5,c=﹣9.故答案为:﹣4;5;﹣98.一元二次方程ax2+bx+c=0(a≠0)的求根公式是,条件是b2﹣4ac≥0.【解答】解:由一元二次方程ax2+bx+c=0,移项,得ax2+bx=﹣c化系数为1,得x2+x=﹣配方,得x2+x+=﹣+即:(x+)2=当b2﹣4ac≥0时,开方,得x+=解得:x=.故答案为:,b2﹣4ac≥0.9.方程x2﹣x﹣6=0的解为x=2或x=.【解答】解:∵x2﹣x﹣6=0,∴a=1,b=,c=﹣6,∴△=3+24=27,∴x=,∴x=2或x=,故答案为:x=2或x=10.一元二次方程(4y﹣3)(y﹣1)=4的根为y1=,y2=.【解答】解:方程化为4y2﹣7y﹣1=0,△=(﹣7)2﹣4×4×(﹣1)=65,y=,所以y1=,y2=.故答案为y1=,y2=.11.关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别是x1=,x2=,那么a=1.【解答】解:由关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别是x1=,x2=,∴a=1,b=﹣4,c=3,故答案为:112.小明设计了一个魔术盒,当任意实数对(a,b)进入其中,会得到一个新的实数a2﹣2b+3,若将实数对(x,﹣3x)放入其中,得到一个新数为5,则x=﹣3.【解答】解:根据题意,得:x2+6x+3=5,即x2+6x﹣2=0,∵a=1,b=6,c=﹣2,∴△=36﹣4×1×(﹣2)=44>0,则x==﹣3,故答案为:﹣3.三.解答题(共3小题)13.解方程:2x2﹣3x=1﹣2x.【解答】解:原方程化为2x2﹣x﹣1=0,∵a=2,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×2×(﹣1)=9,∴x==,∴x1=1,x2=﹣.14.小明在解方程x2﹣5x=1时出现了错误,解答过程如下:∵a=1,b=﹣5,c=1,(第一步)∴b2﹣4ac=(﹣5)2﹣4×1×1=21(第二步)∴x=(第三步)∴x1=,x2=(第四步)(1)小明解答过程是从第一步开始出错的,其错误原因是原方程没有化成一般形式.(2)写出此题正确的解答过程.【解答】解:(1)故答案为:一,原方程没有化成一般形式;(2)∵a=1,b=﹣5,c=﹣1,∴b2﹣4ac=(﹣5)2﹣4×1×(﹣1)=29.∴x=15.解方程x2=﹣3x+2时,有一位同学解答如下:解:∵a=1,b=3,c=2,b2﹣4ac=32﹣4×1×2=1,∴x===即:x1=﹣2,x2=﹣1请你分析以上解答有无错误,如有错误,请写出正确的解题过程.【解答】解:解答有错误,正确的解法是:方程整理得:x2+3x﹣2=0,这里a=1,b=3,c=﹣2,∵△=9+8=17,∴x=,解得:x1=,x2=.。
《解一元二次方程》课下作业 第2课时 公式法
积累●整合
1、用公式法解方程4x 2-12x=3得( )
A .x=26
3±-
B .x=26
3±
C .x=23
23±-
D .x=23
23±
2、不解方程,判别方程5x 2-7x+5=0的根的情况是(
) A .有两个相等的实数根
B .有两个不相等的实数根
C .只有一个实数根
D .没有实数根
3、关于x 的方程x 2-mx+m -3=0( )
A .一定有两个不相等的实数根
B .没有实数根
C .一定有两个相等的实数根
D .以上说法都不正确
4、已知x 2+3x+5=9,则代数式3x 2+9x -2的值为( )
A .4
B .6
C .8
D .10
5、在下列方程中,有实数根的是( )
A .m 2+2m -3=0
B .5+m = -6
C .m 2-2m+3=0
D .1-m m =1
1-m 6、已知方程3x 2+4x=0,下列说法正确的是( )
A .只有一个根
B .只有一个根x=0
C .有两个根,x 1=0,x 2= -3
4 D .有两个根,x 1=0,x 2= 3
4 7、已知a 、b 、c 是△ABC 的三条边,则方程cx 2+(a+b )x+4
c =0的根的情况是( )
A .没有实数根
B .有两个不相等的实数根
C .有两个相等的实数根
D .无法确定
8、三角形两边长分别是8和6,第三边的长是一元二次方程x 2-16x+60=0的一个
实数根,则该三角形的面积是( )
A .24
B .24或58
C . 48
D .58
拓展●应用
9、在一元二次方程ax 2+bx+c=0中,若a 与c 异号,则方程的根的情况是
10、若关于x 的方程x 2-(m+2)x+m=0的 根的判别式b 2-4ac=5,则m=
11、关于x 的一元二次方程kx 2-6x+1=0有两个不相等的实数根,则k 的取值范
围是
12、已知一元二次方程x 2-(4k -2)x+4k 2=0有两个不相等的实数根,则k 的最大
整数值为
13、中国民歌不仅脍炙人口,而且还有许多教育意义,有一首《牧童王小良》的
民歌还包含着一个数学问题:牧童王小良,放牧一群羊,问他羊几只,请你仔细想。
头数加只数;只数减头数;只数乘头数;只数除头数。
四数连加起,正好一百数。
如果设羊的只数为x ,则根据民歌的大意,你能列出的方程是 探索●创新
14、若0是关于x 的方程(a -2)x 2+3x+a 2-2a -8=0的解,求实数a 的值,并讨论此方程解的情况。
15、先阅读,再填空解题:
(1)方程x 2-x -6=0的根是x 1=3,x 2= -2,则x 1+ x 2=1,x 1· x 2= -6
(2)方程2x 2-5x+3=0的根是x 1=1,x 2= 23,则x 1+ x 2=25,x 1· x 2=2
3 (3)方程x 2+2x -1=0的根是x 1= ,x 2= ,则x 1+ x 2= ,x 1· x 2= 根据以上(1)(2)(3)你能否猜出:
如果关于x 的一元二次方程ax 2+bx+c=0(a≠0,且a 、b 、c 为常数)的两个实数根是x 1,x 2,那么x 1+ x 2及x 1· x 2与系数a 、b 、c 有什么关系?请写出你的猜想并说明理由。
参考答案
1、答案:D 解析:4x 2-12x -3=0,x=84814412+±,即x=2
323±,故选D 2、答案:D 解析:b 2-4ac=49-4×5×5<0,所以没有实数根,故选D
3、答案:A 解析:b 2-4ac=(-m )2-4(m -3)=m 2-4m+12=(m -2)2+8>0,故选A
4、答案:D 解析:因为x 2+3x+5=9,所以x 2+3x=4,所以3x 2+9x=12,原式=12-2=10,故选D
5、答案:A 解析:A 中b 2-4ac=16>0,故选A
6、答案:C 解析:用公式法解出来即可
7、答案:B 解析:b 2-4ac=(a+b )2-4c·
4c =(a+b )2-c 2 ,∵a+b >c ∴(a+b )2-c 2 >0,故选B
8、答案:B
解析:x 2-16x+60=0的解x 1=6,x 2= 10,根据三边之间关系知都成立,当x=6时,面积为58,当x=10时,面积为24,故选B
9、答案:有两个不相等的实数根
解析:b 2-4ac 中a 、c 异号,-4ac 为正,所以b 2-4ac >0,所以方程有两个不相等的实数根
10、答案:±1
解析:[-(m+2)]2-4m=5,m=±1
11、答案:k <9且k≠0
解析:一元二次方程kx 2-6x+1=0有两个不相等的实数根,所以(-6)2-4k >0,
k <9,又因为原方程为一元二次方程,所以k≠0,所以k <9且k≠0
12、答案:0
解析:一元二次方程x 2-(4k -2)x+4k 2=0有两个不相等的实数根,所以[-
(4k -2)]2-4×4k 2>0,即k <
4
1,k 的最大整数为0 13、答案:x 2+2x+1=100
解析:头数加只数为2x ;只数减头数为0;只数乘头数为x 2;只数除头数为
1。
相加即为x 2+2x+1=100
14、答案:将x=0代入(a -2)x 2+3x+a 2-2a -8=0得
a 2-2a -8=0
利用求根公式可得a 1=-2,a 2=4
当a=-2时,原方程为-4x 2+3x=0,此时方程的解为x 1=0,x 2=4
3 当a=4时,原方程为2x 2+3x=0,此时方程的解为x 1=0,x 2=2
3- 解析:将x=0代入方程,得到关于a 的方程,再根据a 的值确定方程解的情况。
15、答案:(3)x 1=-1+2,x 2= -1-2,x 1+ x 2=-2,x 1· x 2= -1
猜想:x 1+ x 2=-a b ,x 1· x 2= a
c 理由:因为一元二次方程ax 2+bx+c=0(a≠0,a 、b 、c 为常数)的两个实数根是:
x 1=a ac b b 242-+-, x 2=a
ac b b 242--- 所以x 1+ x 2=a ac b b 242-+-+a
ac b b 242--- =
a
b 22- =-a b x 1· x 2=a a
c b b 242-+-·a
ac b b 242--- =2
2
224)4()(a ac b b --- =2
224)4(a ac b b -- =a
c 解析:仔细观察题中每一个方程两根的和,积与系数的关系,就容易得出结
论:“若一元二次方程ax 2+bx+c=0(a≠0,a 、b 、c 为常数)的两个实
数根是x 1, x 2,则x 1+ x 2=-a b ,x 1· x 2= a
c ”。