当前位置:文档之家› 集成电路功耗百科

集成电路功耗百科

集成电路功耗百科
集成电路功耗百科

定义

功率的损耗,指设备、器件等输入功率和输出功率的差额。功率的损耗。电路中通常指元、器件上耗散的热能。有时也指整机或设备所需的电源功率。

功耗同样是所有的电器设备都有的一个指标,指的是在单位时间中所消耗的能源的数量,单位为W。不过复印机和电灯不同,是不会始终在工作的,在不工作时则处于待机状态,同样也会消耗一定的能量(除非切断电源才会不消耗能量)。因此复印机的功耗一般会有两个,一个是工作时的功耗,另一个则是待机时的功耗。

待机功耗

2001年,欧盟要求额定输出功率0.3W~70W的无负载功率损耗均为1W;2005年,欧盟将该标准变为额定输出功率0.3W~50W的无负载功率损耗为0.3W、额定输出功率15W~70W的无负载功率损耗为0.75W。由此可以看出,大家对电器产品功耗方面的要求正日益严格。

为了符合欧盟等组织针对产品功耗而制定的种种规范,很多新技术应运而生,主要思想是让开关电源在负载很小或空载处于待机状态时能够以较低开关频率操作。

TI公司提供的UCC28600电源方案,在30%~100%输出功率段,采用准谐振零电压和固定频率不连续模式相结合的电源控制方式,以及高达1A的驱动能力,使得反激式电源的开关损耗大为降低,整机工作效率达到85%以上;在10%~30%输出功率段,采用固定峰值电流的关断时间调制模式的电源控制方式,使得电源的动态负载响应和低功率段的转换效率都得到极大的改善;同时在大约10%输出功率段采用跳脉冲的待机控制模式,使得待机功耗低至150毫瓦特。

UCC28600能直接驱动高达200瓦特的反激式电源,同时UCC28600自身携

带的引脚功能能在待机模式下自动关断PFC功能,使得用户的设计更为简洁,费用更低廉。

TDP功耗

TDP的英文全称是“Thermal Design Power”,中文翻译为“热设计功耗”,是反应一颗处理器热量释放的指标,它的含义是当处理器达到负荷最大的时候,释放出的热量,单位为瓦(W)。

CPU的TDP功耗并不是CPU的真正功耗。功耗(功率)是CPU的重要物理

参数,根据电路的基本原理,功率(P)=电流(A)×电压(V)。所以,CPU

的功耗(功率)等于流经处理器核心的电流值与该处理器上的核心电压值的乘积。而TDP是指CPU电流热效应以及其他形式产生的热能,他们均以热的形式释放。显然CPU的TDP小于CPU功耗。换句话说,CPU的功耗很大程度上是对主板提出的要求,要求主板能够提供相应的电压和电流;而TDP是对散热系统提出要求,

要求散热系统能够把CPU发出的热量散掉,也就是说TDP功耗是要求CPU的散热系统必须能够驱散的最大总热量。

现在CPU厂商越来越重视CPU的功耗,因此人们希望TDP功耗越小越好,越小说明CPU发热量小,散热也越容易,对于笔记本来说,电池的使用时间也越长。Intel和AMD对TDP功耗的含义并不完全相同。AMD的的CPU集成了内存控制器,相当于把北桥的部分发热量移到CPU上了,因此两个公司的TDP值不是在同一个基础上,不能单纯从数字上比较。另外,TDP值也不能完全反映CPU的实际发热量,因为现在的CPU都有节能技术,实际发热量显然还要受节能技术的影响,节能技术越有效,实际发热量越小。

TDP功耗可以大致反映出CPU的发热情况,实际上,制约CPU发展的一个重要问题就是散热问题。温度可以说是CPU的杀手,显然发热量低的CPU设计有望达到更高的工作频率,并且在整套计算机系统的设计、电池使用时间乃至环保方面都是大有裨益。目前的台式机CPU,TDP功耗超过100W基本是不可取的,比较理想的数值是低于50W。

低功耗SOC设计

1)为什么需要低功耗?

随着SOC的集成度与性能的不断发展,如今的SOC已达到百瓦量级。如Intel的Itanium2功耗约130瓦,这需要昂贵的封装,散热片及冷却环境。根据摩尔定律,每18个月晶体管密度增加一倍,而电源技术要达到相同的增速,需要5年,显然电源技术已成瓶颈。电路里的大电流会使产品的寿命和可靠性降低。电源的动态压降严重的时候还会造成失效。

2)功耗从哪儿来?

功耗一般分两种:来自开关的动态功耗,和来自漏电的静态功耗。而动态功耗又可分为电容充放电(包括网络电容和输入负载),还有当P/N MOS 同时打开形成的瞬间短路电流。静态功耗也可分为几类:扩散区和衬底形成二极管的反偏电流(Idiode),另外一类是关断晶体管中通过栅氧的电流(Isubthreshold)。芯片的漏电会随温度变化,所以当芯片发热时,静态功耗指数上升。另外漏电流也会随特征尺寸减少而增加。

公式:Ptotal = Pdynamic + Pshort + Pleakage

Pswitch = A * C * V2 * F

Pshort = A (B/12) (V-2Vth)3 * F * T

Pleakage = (Idiode + Isubthreshold) * V

3)怎样减少功耗呢?

首先定义对功耗的需求,然后分析不同的架构,决定如下需求:system performance, processor and other IP selection, new modules to be designed, target technology, the number of power domains to be considered, target clock frequencies, clock distribution and structure, I/O requirements, memory requirements, analog features and voltage regulation.你还需要定

义工作模式:如startup, active, standby, idle, and power down等等,当然这些模式是由软硬件共同决定的。

理想的解决办法是不同工作模式下用不同的工作电压,但这又会造成太过复杂的情况,比如你需要考虑不同电压区域隔离,开关及电压恢复,触发器和存储器的日常存储恢复中状态缺失,等等。简单一点来讲,你可以根据高性能/高电压和低性能/低电压来划分你的设计。接下来你可以考虑系统时钟结构,这对减少动态功耗很有用。你可以使用多个时钟域,降低频率,调整相位等等。一般处理器的软件接口控制都可做到这几点。别忘了可能出现的比如glitch,skew,等问题。

一旦架构确定下来,就可以做RTL code了,当然目标还是低功耗。使用EDA工具时注意mutiple threshold leakage optimization,multiple supply voltage domains,local latch based clock gating, de-clone and re-clone restructuring, operand isolation, and gate level power optimization. 我们一条条的来看:

第一,mutiple threshold leakage optimization。库文件一般有三版:低Vth(快,大漏电),标准Vth,高Vth(慢,低漏电)。工具一般尽量用高Vth cell,而由于timing限制则需用低Vth cell.很明显,选库很重要。

第二,multiple voltage domains。不同工作电压需要库的支持。不同电压区域的划分则需要前后端设计的协作。

第三,local latch based clock gating。这是在成组的flop之前加上特定的clock gating latch.

第四,de-clone and re-clone restructuring。在layout之前,将local clock gating提到更高一级,以利于减少面积,为CTS建立“干净“的起始点。在具体布局时,对local clock gating进行re-clone,以利于优化时钟树。

第五,operand isolation。这一步通过一个通用控制信号,自动识别并关闭data path elements和分层组合模块。

第六,Classical gate level optimization。改变单元尺寸,pin swapping,去除不必要的buffer,合并门,加入buffer减少skew,调整逻辑等等。

SOC的功耗分析

大规模集成电路多采用CMOS电路,对于CMOS电路来说,在执行某一任务期间,1个时钟周期的能量消耗为:

式中:M为系统中门电路的个数,Cm为第m个门电路的负载电容, 为第k 个门电路每个时钟周期的开关次数,Vdd为电路的电源电压值。

可以看出,影响系统功耗的主要因素有工作电压、负载电容、门电路的开关次数和时钟数。这些参数就是进行SOC系统低功耗设计的出发点。

SOC不同层次的低功耗设计

影响系统功耗的参数调整主要是从系统级到物理级来进行。下面将针对各种不同层次中较为有效的设计方法进行阐述与探讨。

系统级

在系统级进行低功耗设计的主要方法有:

(1)软硬件划分

软硬件划分是从系统功能的抽象描述着手,把系统功能分解为硬件和软件来实现。通过比较采用硬件方式和软件方式实现系统功能的功耗,得出一个比较合理的低功耗实现方案。由于软硬件的划分处于设计的起始阶段,所以能为降低功耗带来更大的可能。

(2)功耗管理

功耗管理的核心思想是设计并区分不同的工作模式。其管理方式可分为动态功耗管理和静态功耗管理2种。动态功耗管理的思想就是有选择地将不被调用的模块挂起,从而降低功耗。静态功耗管理是对待机工作模式的功耗进行管理,它所要监测的是整个系统的工作状态,而不是只针对某个模块。如果系统在一段时间内一直处于空闲状态,则静态功耗管理就会把整个芯片挂起,系统进人睡眠状态,以减少功耗。

(3)软件代码优化

软件代码的功耗优化主要包括:①在确定算法时,对所需算法的复杂性、并发性进行分析,尽可能利用算法的规整性和可重用性,减少所需的运算操作和运算资源。②把算法转换为可执行代码时,尽可能针对特定的硬件体系结构进行优化。例如,由于访问寄存器比访问内存需要更少功耗,所以,可以通过合理有效地利用寄存器来减少对内存的访问。③在操作系统中充分利用硬件提供的节电模式。随着动态电压缩放技术的出现,操作系统可以通过合理地设置工作状态来减少功耗。

结构级

在结构级进行低功耗设计的主要方法有:

(1)并行结构

并行结构是将1条数据通路的工作分解到2条通路上完成。并行结构降低功耗的主要原因是其获得与参考结构相同的计算速度的前提下,其工作频率可以降低为原来的1/2,同时电源电压也可降低。并行电路结构是以牺牲芯片的面积来降低功耗。假定参考结构中的工作频率为. ,电源电压 ,整个数据通路的等效电容是 ,最坏情况下的延迟为 :,则: 。如果采用并行结构,可以使工作频率降为 /2,最坏情况下的延迟可以达到2 ,假定电源电压降低为 /1.8,由于电路的加倍和外部布线的增加,其等效的电容为2 。则:由上式可以看出,并行结构下功耗有明显的降低。

(2)流水结构

电路流水就是采用插人寄存器的办法降低组合路径的长度,达到降低功耗的目的。一个先相加再比较的电路中间插人流水线寄存器的流水结构。加法器和选择器处在2条不同的组合路径上,电路的工作频率没有改变,但每一级的电路减少,使电源电压可以降低。假设电源电压为 /1.8,由于加人了流水线寄存器,等效电容变为原来的1.2 。则:由上式可见,采用流水线结构也可以显著地降低功耗。

电路流水化和并行化可以达到降低功耗的目的,这是因为设计者可以选择电路的工作电压。如果电路工作电压固定,2种方法只能提高电路的工作速度,但功耗将相应地有所增加。

(3)编码优化

一般可采用One-Hot码、格雷码和总线反转码降低片上系统总线的功耗。 One-Hot码在一个二进制数中只允许1个数位不同于其他各数位的值;格雷码在任何2个连续的数字其对应的二进制码只有1位的数值不同。由于在访问相邻的2个地址的内容时,其跳变次数比较少,从而有效地减少了总线功耗。总线反转码是在传输数据时考虑相邻数据之间的关系来决定传输的格式。当发送部件向总线上传输第 个数据时,会将它和 进行比较,根据比较的结果来决定发送 还是 ,从而减少总线的有效翻转数,进而减少系统的功耗。

除了这几种编码外还有一些更为复杂的低功耗编码,如窄总线编码、部分总线反转编码和自适应编码等,这些编码方式的最终目的就是通过改变编码来降低不同数据切换时的平均翻转次数。在采用这些编码时,设计者应该综合考虑它们带来的其他代价,如增加的编码解码电路等。

寄存器级

在寄存器级进行低功耗设计的主要方法有三种。

(1)门控时钟

门控时钟有2种:门控到达逻辑模块的时钟和门控到达每个触发器的时钟。但不管是哪一种,都能起到降低功耗的作用。门控到达逻辑模块的时钟控制方法如下图所示。中心模块提供给模块A和模块B不同的门控时钟,当模块不工作时,可以关闭该模块,从而达到减少功耗的目的。

模块级时钟门控方法

门控到达每个触发器的时钟控制方法如下图所示。当寄存器保持数据时,可以关闭寄存器时钟输人,减少功耗。

门控时钟控制的寄存器

(2)存储分区访问

存储分区访问是将一个大的存储模块分成不同的小的存储模块,通过译码器输出的高位地址来区分不同的存储模块。工作中,只有被访问的存储器才工作,其他几块存储器不工作。多模块RAM的架构如下图所示。

多模块ram架构

根据参考文献[[4],采用此种方法可以将RAM的功耗减少12.5%。

(3)预计算

预计算是提前进行位宽较小的计算工作,如果这些操作得到的信息可以代表实际的运算结果,就可以避免再进行位宽较大的计算工作,降低电路的有效翻转率,从而达到降低功耗的目的。

集成电路的功耗优化和低功耗设计技术

集成电路的功耗优化和低功耗设计技术 摘要:现阶段各行业的发展离不开对能源的消耗,随着目前节能技术要求的不 断提升,降低功耗成为行业发展的重要工作之一。本文围绕集成电路的功耗优化 以及低功耗设计技术展开分析,针对现阶段常见的低功耗设计方式以及技术进行 探究,为集成电路功耗优化提供理论指导。 关键词:集成电路;功耗优化;低功耗 目前现代节能技术要求不断提升,针对设备的功耗控制成为当前发展的主要问题之一。 针对数字系统的功耗而言,决定了系统的使用性能能否得到提升。一般情况下,数字电路设 计方面,功耗的降低一直都是优先考虑的问题,并且通过对整个结构进行分段处理,同时进 行优化,最后总结出较为科学的设计方案,采用多种方式降低功耗,能够很大程度上提升设 备的使用性能。下面围绕数字电路的功耗优化以及低功耗设计展开分析。 一、设计与优化技术 集成电路的功耗优化和低功耗设计是相对系统的内容,一定要在设计的每个环节当中使 用科学且合理的技术手段,权衡并且综合考虑多方面的设计策略,才能够有效降低功耗并且 确保集成电路系统性能。因为集成电路系统的规模相对较大且具有一定的特殊性,想要完全 依靠人工或者手动的方式来达到这些目的并不现实且缺少可行性,一定要开发与之对应的电 路综合技术。 1 工艺级功耗优化 将工艺级功耗应用到设计当中,通常情况下采取以下两种方式进行功耗的降低: 首先,根据比例调整技术。进行低功耗设计过程中,为了能够实现功耗的有效降低会利 用工艺技术进行改善。在设计过程中,使用较为先进的工艺技术,能够让设备的电压消耗有 效缩减。现阶段电子技术水平不断提升,系统的集成度也随之提高,目前采用的零件的规格 也逐渐缩小,零件的电容也实现了良好的控制,进而能够很大程度上降低功耗。借助比例技术,除了能够将可见晶体管的比例进行调整,而且也能够缩小互连线的比例[1]。目前在晶体 管的比例缩小方面,能够依靠缩小零件的部分重要参数,进而在保持性能不被影响的情况下,通过较小的沟道长度,确保其他的参数不受影响的栅压缩方式,进而将零件的体积进行缩减,同时也缩短了延长的用时,使功耗能够有效降低。针对互连线缩小的方式主要将互连线的整 个结构进行调整,工作人员在进行尺寸缩减的过程中,会面临多方面的难题,比如系统噪音 无法控制,或者降低了电路使用的可靠性等等。 其次,采用封装技术进行降低。采用封装技术,能够让芯片与外部环境进行有效的隔离,进而避免了外部环境给电气设备造成一定的破坏与影响,在封装阶段,芯片的功耗会受到较 大的影响,因此需要使用更加有效的封装手段,才能够提升芯片的散热性,进而有效降低功 耗[2]。在多芯片的情况下,因为芯片与其他芯片之间的接口位置会产生大量的功耗,因此针 对多芯片采取封装技术,首先降低I/0接口的所有功能,接着解决电路延迟的问题,才能够 实现对集成电路的优化。 2 电路功耗优化 一般情况下,对电路级的功耗会选择动态的逻辑设计。在集成电路当中,往往会包含多 种电路逻辑结构,比如动态、静态等等,逻辑结构从本质上而言具有一定的差异性,这种差 异性也使得逻辑结构有着不同作用的功能。动态逻辑结构有着较为典型的特性[3]。静态的逻 辑结构当中所有的输入都会对接单独的MOS,因此逻辑结构功耗更大,动态的逻辑结构当中 电路通常具备N、M两个沟道,动态电路会利用时钟信号采取有效的控制,进而能够实现预

集成电路低功耗设计方法研究【文献综述】

毕业设计文献综述 电子信息科学与技术 集成电路低功耗设计方法研究 摘要:随着IC制造工艺达到纳米级,功耗问题已经与面积、速度一样受到人们关注,并成为制约集成电路发展的关键因素之一。同时,由于电路特征尺寸的缩小,之前相比于电路动态功耗可以忽略的静态漏功耗正不断接近前者,给电路低功耗设计提出了新课题,即低漏功耗设计。本文将分析纳米工艺下芯片功耗的组成和对低漏功耗进行研究的重要性,然后介绍目前主要的低功耗设计方法。此外,由于ASIC技术是目前集成电路发展的趋势和技术主流,而标准单元是ASIC设计快速发展的重要支撑,本文在最后提出了标准单元包低漏功耗设计方法,结合电路级的功耗优化技术,从而拓宽ASIC功耗优化空间。 关键字:低功耗,标准单元,ASIC设计 前言: 自1958年德克萨斯仪器公司制造出第一块集成电路以来,集成电路产业一直以惊人的速度发展着,到目前为止,集成电路基本遵循着摩尔定律发展,即集成度几乎每18个月翻一番。 随着制造工艺的发展,IC设计已经进入了纳米级时代:目前国际上能够投入大规模量产的最先进工艺为40nm,国内的工艺水平正将进入65nm;2009年,Intel酷睿i系列创纪录采用了领先的32nm 工艺,并且下一代22nm工艺正在研发中。但伴随电路特征尺寸的减小,电路功耗数值正呈指数上升,集成电路的发展遭遇了功耗瓶颈。功耗问题已经同面积和速度一样受到人们重视,成为衡量IC设计成功与否的重要指标之一。若在设计时不考虑功耗而功利地追求集成度的提高,则可能会使电路某些部分因功耗过大引起温度过高而导致系统工作不稳定或失效。如Intel的1.5GHz Pentium Ⅳ处理器,拥有的晶体管数量高达4200万只,功率接近95瓦,整机生产商不得不为其配上了特大号风扇来维持其正常工作。功耗的增大不仅将导致器件的可靠性降低、芯片的稳定性下降,同时也给芯片的散热和封装带来问题。因此,功耗已经成为阻碍集成电路进一步发展的难题之一,低功耗设计也已成为集成电路的关键设计技术之一。 一、电路功耗的组成 CMOS电路中有两种主要的功耗来源,动态功耗和静态功耗。其中,动态功耗包括负载电容的充放电功耗(交流开关功耗)和短路电流引起的功耗;静态功耗主要是由漏电流引起的功耗,如图1所示。

数字集成电路低功耗分析

数字集成电路低功耗分析 摘要: 电子产品功耗的大小不仅限制了便携设备电池使用时间,也在一定程度上影响着设备性能。研究如何降低功耗己经成为所有IC设计者必须考虑的重要问题,对功耗的优化也是目前每个IC设计企业的必要环节。本文主要对数字集成电路功耗的优化方法进行了分析,分别从工艺级、电路级、版图级、门级、寄存器级、算法级和系统级分析了低功耗的优化方法。 关键词:低功耗;集成电路;优化 引言: 随着移动设备快速大量的增加和芯片处理速度的提高,芯片的功耗己成为集成电路设计者必须考虑的重要问题,于此同时对芯片的整体性能评估己经由原来的面积和速度变成了面积、时序、可测性和功耗的综合考虑,而且功耗所占的比重越来越大。 低功耗技术的研究背景: 集成电路是一个二十世纪发展起来的高技术产业,也是二十一世纪世界进入信息化社会的前提和基础。在1958年德克萨斯仪器公司生产出第一块集成电路,集成电路产业就一直保持着快速的发展速度,处在数字化和信息化时代的今天,数字集成电路的应用和改进显得尤为重要,从电子管到晶体管再到中小规模集成电路和超大规模集成电路,到现在市场上主流的专用集成电路(ASIC),以及现处于快速发展的系统级芯片,数字集成电路始终朝着速度更快,集成度更高,

规模更大的方向不断发展。从目前状况来看,数字集成电路基本上仍然遵循摩尔定律来发展—集成度几乎每18个月增长一倍。但是随着芯片规模的不断扩大,功耗问题变得越来越突出,并且成为制约数字集成电路发展的重要因素。长期以来,面积最小化和处理的高速度是数字集成电路设计中最主要的问题。现在,因为新的IC技术工艺的使用和集成度越来越高,降低芯片功耗逐渐成为了非常重要的一个因素。在亚微米和深亚微米的技术中,由于能量消耗而产生的余热使电路中的某些功能受到了不同程度的影响。功耗的增加意味着电迁移率的增加。当芯片温度上达到一定的程度时,电路就无法正常工作,因此复杂系统的性能就会被严重的影响到,并且整个系统的可靠性将会降低,尤其对于要求具有长生命周期和高可靠性的电子产品来说,降低功耗是必然的选择。从产品市场需求来看,近年来依靠电池供电的数码产品的大量使用如便携电脑、移动通讯工具等,这些产品的功耗严重影响着用户的使用体验,为了使产品具有更长的使用时间,迫切需要降低产品功耗。目前,功耗的优化方法有很多种,也越来越具有针对性,但大体思路都是通过降低工作电压和工作频率、减少计算量等方法来实数字集成电路的功耗优化。数字集成电路低功耗优化的下一个研究方向是结合多个层次的功耗分析及优化方法。 数字集成电路低功耗优化方法: 低功耗设计技术大致可以分为两类:动态技术和静态技术。静态技术是指从系统构造、工作原理方面入手,降低系统功耗,如选用低功耗器件,采用异步电路体系设计等。而动态技术则是通过改变系统

数字集成电路物理设计阶段的低功耗技术

数字集成电路物理设计阶段的低功耗技术 张小花(200XXXXXXXX) 2011年六月 摘要:通过一个图像处理SoC的设计实例,着重讨论在物理设计阶段降低CMOS功耗的方法。该方法首先调整 PAD摆放位置、调整宏单元摆放位置、优化电源规划,得到一个低电压压降版图,间接降低CMOS功耗;接着,通过规划开关活动率文件与设置功耗优化指令,直接降低CMOS功耗。最终实验结果表明此方法使CMOS功耗降低了 10.92%。基于该设计流程的图像处理SoC已经通过ATE设备的测试,并且其功耗满足预期目标。 关键词: 集成电路; 物理设计; 电压降; 低功耗 Digital integrated circuit physical design phase of the low power technology luo jiang nan(2008102041) June, 2011 Abstract: through a image processing of SoC design examples, the paper discuss the physical design stage reduce power consumption method. CMOS This method firstly PAD put the position, adjusting adjustment macro unit put the position, optimizing power planning, get a low voltage pressure drop, reduce the power consumption of the CMOS indirect territory; Then, through the planning activities rate documents and set switch power optimization, reduce the power consumption of the CMOS setup instructions directly. Finally the experimental results show that the method that CMOS power consumption was reduced by 10.92%. Based on the design process of the image processing has been through the ATE the SoC test equipment, and its power consumption to meet expectations. Keywords: IC; physical design; voltage drop; low power consumption 1 引言 随着集成电路规模的扩大以及便携式和嵌入式应用需求的增长,低功耗数字集成电路设计技术日益受到重视,已成为集成电路设计的研究热点.通常低功耗设计技术包括三个方面:设计中的低功耗技术、封装的低功耗技术和运行管理的低功耗技术.其中设计中的低功耗技术包括前端设计阶段的 体系结构级低功耗技术、RTL级低功耗技术、门级低功耗技术和物理设计阶段的低功耗 技术.

MRS201低功耗霍尔元件

TMR 超低功耗全极磁开关 概述 是一款集成了隧道磁阻(TMR )传感器和CMOS 技术,为高灵敏度、高速、低功耗、高精度应用而开发的全极磁开关。采用高精度推挽式半桥TMR 磁传感器和CMOS 集成电路,包括TMR 电压发生器、比较器、施密特触发器和CMOS 输出电路,能将变化的磁场信号转化为数字电压信号输出。通过内部电压稳压器来提供温度补偿电源,并允许宽的工作电压范围。以低电压工作、1微安级的供电电流、高响应频率、宽的工作温度范围、优越的抗外磁干扰特性成为众多低功耗、高性能应用的理想选择。采用两种封装形式:SOT23-3和TO-92S 。 功能框图 产品特性 ? 隧道磁电阻 (TMR) 技术 ? 1.5微安超低功耗 ? 高频率响应可达1kHz ? 全极磁开关 ? 高灵敏度,低开关点 ? 宽工作电压范围 ? 卓越的温度稳定性 ? 优越的抗外磁场性能 典型应用 ? 流量计,包括水表、气表和热量表 ? 接近开关 ? 速度检测 ? 线性及旋转位置检测 磁开关MRS201MRS201MRS201MRS201MRS201MRS201

管脚定义 TO-92S SOT23-3 极限参数 性能参数(V CC = 3.0V, T A = 25°C) 注:在以上测试中,电源和地之间需连接一个0.1μF的电容。

磁特性(V CC = 3.0V, T A = 25°C) 电压和温度特性 输出和磁场关系 注:上电时,在工作磁场为零时,输出信号为高电平。 磁场感应方向磁场强度

MRS201应用指南 封装尺寸 SOT23-3封装图: 平行于TMR 传感器敏感方向的磁场超过工作点门限︱B OPS ︱(︱B OPN ︱)时,输出低电平。当平行于TMR 传感器敏感方向的磁场低于释放点︱B RPS ︱(︱B RPN ︱)时,输出高电平。磁场工作点和释放点的差值就是传感器的回差B H 。 为了降低外部噪音,推荐在传感器电源和地之间增加一个滤波电容(靠近传感器)。如应用电路图所示,典型值为0.1μF 。 MRS201

集成电路工艺原理(期末复习资料)

第一章 1、何为集成电路:通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、 电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如Si、GaAs)上,封装在一个内,执行特定电路或系统功能。 关键尺寸:集成电路中半导体器件能够加工的最小尺寸。 2、它是衡量集成电路设计和制造水平的重要尺度,越小,芯片的集成度越高,速度越 快,性能越好 3、摩尔定律:、芯片上所集成的晶体管的数目,每隔18个月就翻一番。 4、High-K材料:高介电常数,取代SiO2作栅介质,降低漏电。 Low-K 材料:低介电常数,减少铜互连导线间的电容,提高信号速度 5、功能多样化的“More Than Moore”指的是用各种方法给最终用户提供附加价值,不 一定要缩小特征尺寸,如从系统组件级向3D集成或精确的封装级(SiP)或芯片级(SoC)转移。 6、IC企业的分类:通用电路生产厂;集成器件制造;Foundry厂;Fabless:IC 设计公 司;Chipless;Fablite 第二章:硅和硅片的制备 7、单晶硅结构:晶胞重复的单晶结构能够制作工艺和器件特性所要求的电学和机械性 能 8、CZ法生长单晶硅把熔化的半导体级硅液体变成有正确晶向并且被掺杂成n或p型 的固体硅锭; 9、直拉法目的:实现均匀掺杂和复制籽晶结构,得到合适的硅锭直径,限制杂质引入; 关键参数:拉伸速率和晶体旋转速度 10、CMOS (100)电阻率:10~50Ω?cm BJT(111)原因是什么? 11、区熔法?纯度高,含氧低;晶圆直径小。 第三章集成电路制造工艺概况 12、亚微米CMOS IC 制造厂典型的硅片流程模型 第四章氧化;氧化物 12、热生长:在高温环境里,通过外部供给高纯氧气使之与硅衬底反应,得到一层热生长的SiO2 。 13、淀积:通过外部供给的氧气和硅源,使它们在腔体中方应,从而在硅片表面形成一层薄膜。 14、干氧:Si(固)+O2(气)-> SiO2(固):氧化速度慢,氧化层干燥、致密,均匀性、重复性好,与光刻胶的粘附性好. 水汽氧化:Si (固)+H2O (水汽)->SiO2(固)+ H2 (气):氧化速度快,氧化层疏松,均匀性差,与光刻胶的粘附性差。 湿氧:氧气携带水汽,故既有Si与氧气反应,又有与水汽反应。氧化速度氧化质量介于以上两种方法之间。

功率半导体应用提速 电源管理芯片一马当先

科学技术的飞速发展,使半导体技术形成两大分支:一个是以大规模集成电路为核心的微电子技术,实现对信息的处理、存储与转换;另一个则是以功率半导体器件为主,实现对电能的处理与变换。功率半导体器件与大规模集成电路一样具有重要价值,在国民经济和社会生活中具有不可替代的关键作用。 电力、电子两大领域并行发展 功率半导体器件在其发展的初期(上世纪60年代-80年代)主要应用于工业和电力系统,近二十年来,随着4C产业(通信、计算机、消费电子、汽车)的蓬勃发展,功率半导体器件的应用范围有了大幅度的扩展,已渗透到国民经济与国防建设的各个领域,其技术已成为航空、航天、火车、汽车、通讯、计算机、消费类电子、工业自动化和其他科学与工业部门的至关重要的基础。 过去,通常把大规模集成电路和功率半导体器件的关系比喻为大脑和四肢,因为大规模集成电路的作用是接受和处理信息,而功率器件则根据这些信息指令产生控制功率,去驱动相关电机进行所需的工作。上世纪80年代以后,随着新型功率半导体器件如VDMOS、IGBT及功率集成电路的兴起,功率半导体器件步入一个新的领域,除了驱动电机之外,其为信息系统提供电源|稳压器的功能也越来越引人注目。因此,功率半导体器件在系统中的地位已不仅限于“四肢”,而是为整个系统“供血”的“心脏”。 概括而言,功率半导体器件的技术领域主要分为两大门类,即以发电、变电、输电为代表的电力领域和以电源管理应用为代表的电子领域。随着技术的进步,这两大领域的功率半导体器件正沿着不同的路径发展。在电力领域,功率半导体器件以超大功率晶闸管、IG CT技术为代表,继续向高电压、大电流的方向发展;而在电子领域,电源管理器件则倾向于集成化、智能化以及更高的频率和精度。北京工业大学电子信息与控制工程学院亢宝位教授在接受记者采访时表示:“功率半导体器件的这两大技术领域由于用途各异,不存在谁替代谁的问题,两个领域的技术发展是并行不悖的。”不过,亢宝位同时也指出,由于历史的原因,按照很早以前的管理体制,电力领域归原机械部系统管理,而电子领域归原电子工业部门管理,原有挂靠在两个管理系统的企业、学会、协会等社会网络需要加强合作、加速融合,以促进我国的功率半导体产业快速发展。 促进节能及产业升级 使用功率半导体器件的最根本的目的,一是为了将电压、电流、频率转换到负载所需要的数值,二是为了更有效地利用电能。 功率半导体器件的广泛应用可以实现对电能的传输转换及最佳控制,大幅度提高工业生产效率、产品质量和产品性能,大幅度节约电能、降低原材料消耗,因此,它已经愈加明显地成为加速实现我国能源、通信、交通等量大面广基础产业的技术改造和技术进步的支柱。例如在绿色照明工程中,在节能灯中使用VDMOS产品将提高节能灯的性能及寿命,彻底纠正节能灯在人们头脑中留下的寿命短、节电不省钱的印象,使节能灯应用到千家万户。I GBT的出现及在空调、UPS电源等中的广泛应用,使效率得到大幅提高,同时体积也大幅缩小。如逆变焊机原来要两个人才能拿动,采用了IGBT器件之后,体积只有书包大小,重量仅为几公斤,同时其性能、效率及可靠性等也得到质的改进。 功率半导体器件的应用对于节约能源具有深远影响。在人类所消耗的电能中有75%需经功率半导体器件转换成一定的形式后才可供最终设备使用。新型功率半导体器件能较大

超低功耗电路的设计原则及设计分析

超低功耗电路的设计原则及设计分析 以手机为代表的电池供电电路的兴起,为便携式仪表开创了一个新的纪元。超低功耗电路系统(包括超低功耗的电源、单片机、放大器、液晶显示屏等)已经对电路设计人员形成了极大的诱惑。毫无疑问,超低功耗电路设计已经对低功耗电路提出了挑战,并将扩展成为电子电路中的一个重要应用领域。 虽然超低功耗设计仍然是在CMOS集成电路(IC)基础上发展起来的,但是因为用户众多,数千种专用或通用超低功耗IC不断涌现,使设计人员不再在传统的CMOS型IC上下功夫,转而选择新型超低功耗IC,致使近年来产生了多种超低功耗仪表。电池供电的水表、暖气表和煤气表近几年能够发展起来就是一个证明。目前,电池供电的单片机则是超低功耗IC的代表。 本文将对超低功耗电路设计原则进行分析,并就怎样设计成超低功耗的产品作一些论述,从而证明了这种电路在电路结构和性价比等方面对传统电路极具竞争力。 1 CMOS集成电路的功耗分析 无论是低功耗还是超低功耗IC,主要还是建立在CMOS电路基础上的。虽然超低功耗IC 对单元电路进行了新形式的设计,但作为功耗分析,仍然离不开CMOS电路基本原理。以74系列为代表的TTL集成电路,每门的平均功耗约为10mW;低功耗的TTL集成电路,每门平均功耗只有1mW。74系列高速CMOS电路,每门平均功耗约为10μW;而超低功耗CMOS 通用小规模IC,整片的静态平均功耗却可低于10μW。传统的单片机,休眠电流常在50μA~2mA范围内;而超低功耗的单片机休眠电流可达到1μA以下。 CMOS电路的动态功耗不仅取决于负载,而且就电路内部而言,功耗与电源电压、集成度、输出电平以及工作频率都有密切联系。因此设计超低功耗电路时不得不对全部元件的内外性质做仔细分析。 CHMOS或CMOS电路的功耗特性一般可以表示为: P=PD+PA

智能功率集成电路发展概述

微电子技术学科前沿(三) ——智能功率集成电路发展技术前沿调研 指导老师:罗萍 学生:叶庆国 学号:2011032030018 SPIC:智能功率集成电路。随着微电子技术和功率MOS器件的发展,目前又新兴出一个领域:SPIC,Smart Power IC 。将输出功率集成器件与低压控制的信号处理以及传感、保护、检测、诊断等功能电路集成到同一芯片,是微电子技术和电力电子技术、控制技术、检测技术相结合的产物。SPIC自问世以来已经有了巨大的进步,汽车电子、平板显示、开关电源,电机驱动,工业控制,电源管理各方面应用广泛。 现就从SPIC(智能功率集成电路)的电路层面的技术实现,新型功率器件,封装技术,应用领域等多方面调研来了解智能集成电路的前沿动态。 1、Spic电路 SPIC 将所有的高压器件与低压电路集成在同一芯片上,消除了原来电力电子装置中各模块之间多余的连接[6]。这样既提高了电路的稳定性,也可以明显降低原来在高频工作时各模块之间引线对电路造成的破坏性影响,甚至可将过温、过流、过压和欠压等保护电路都集成进芯片去增强对功率器件的保护。因此,不仅显著地提高集成度、降低成本,更可令芯片整体的可靠性获得提升。 SPIC 共分为三个功能模块,分别是功率控制、传感保护和智能接口,如图1-3所示。其中,功率控制主要包括用作开关的各种功率半导体器件以及它们的驱动电路,在常见的率器件图腾柱式应用中,由于高侧器件的驱动电路与低侧器件的驱动电路分别参考不同的基准电位,驱动电路部分通常还要包含一个高压电平位移电路用以顺利从低侧向高侧传递控制信号。传感保护模块通过模拟电路采集芯片内各种电压、电流、温度信息并反馈给保护电路,在适当之时对芯片进行有效防护。另外,电力电子装置除了要与源和负载对接之外,还常常要与外部的计算机对接以实现编码控制。因此智能接口模块也非常重要,它使得SPIC 外界信息沟通及各种高级指令得以实现。 单片式 单片式智能功率集成电路具有成本低、体积小、工作稳定等诸多优点,自20世纪90 年代中期问世以来已得到广泛应用。功率半导体器件是单片式智能功率集成电路发展的关键所在,如何提高功率半导体器件的耐压、降低其导通电阻以及解决其工艺兼容性直接关系着单片式智能功率集成电路的发展。RESURF(REduced SURface Field)技术是设计横向功率半导体器件的关键技术之一,它能够在保证横向功率半导体器件击穿电压不变的同时,降低横向功率半导体器件的导通电阻。 开关电源,即是电路中的功率器件通过开关两种状态切换来控制电源向负载 输出稳定功率的一种电力电子装置。传统的开关电源,由于生产工艺技术水平不 足的原因,除其功率管和控制电路之外,还另有若干个分立器件,使得开关电源 在成本、体积以及可靠性等方面都受到不小的限制。因此,开关电源一直沿着以 下两个方向不断发展。 第一个方向是对开关电源的核心单元——控制电路实现集成化[27],1977 年国外率先推出PWM(Pulse Width Modulation,脉冲宽度调制)控制器集成电路,如美国SiliconGeneral 公司的SG3524、美国Uuitrode 公司(已被美国Texas Instruments公司收购)的UC3842。

数字集成电路低功耗物理实现技术与UPF

数字集成电路低功耗物理实现技术与UPF 孙轶群sun.yiqun@https://www.doczj.com/doc/6c12542293.html, 国民技术股份有限公司 Nationz Technologies Inc 摘要 本文从CMOS电路功耗原理入手,针对不同工艺尺寸下数字集成电路的低功耗物理实现方法进行描述,并着重描述了Synopsys UPF(Unified Power Format)对低功耗设计的描述方法。UPF是Synopsys公司提出的一种对芯片中电源域设计进行约束的文件格式。通过与UPF 格式匹配的Liberty文件,UPF约束文件可以被整套Galaxy物理实现平台的任何一个环节直接使用,并将设计者的电源设计约束传递给设计工具,由工具完成设计的实现工作,从而实现整套数字集成电路低功耗物理实现的流程。 1.0 概述 本文从数字集成电路低功耗设计原理下手,对设计中低功耗的实现技术进行描述,包括完成低功耗设计需要的库资料以及常用EDA工具对低功耗技术实现的方法。 2.0 CMOS电路的低功耗设计原理 CMOS电路功耗主要分3种,静态功耗主要与工艺以及电路结构相关,短路电流功耗主要与驱动电压、p-MOS和n-MOS同时打开时产生的最大电流、翻转频率以及上升、下降时间有关,开关电流功耗主要与负载电容、驱动电压、翻转频率有关。做低功耗设计,就必须从这些影响功耗的因素下手。 3.0 低功耗设计手段及Library需求 低功耗的设计手段较为复杂,但对于不同的设计,或者不同的工艺,实现的方法却各不相同。 3.1 0.18um及以上工艺 0.18um及以上工艺,在低功耗设计手段上较为有限,主要原因在于,静态功耗很小,基本不用关心。 动态功耗方面,主要的功耗来自于Switching Power,即与负载电容、电压以及工作中的信号翻转频率相关。 减小负载电容,就必须在设计上下功夫,减少电路规模。减少信号翻转频率,除了降低时钟频率外,只有在设计上考虑,能不翻转的信号就不翻转。至于电压,由于0.18um及以上工艺的阈值电压有一定的限制,因此,供电电压降低,势必影响工作频率。 一般说来,在0.18um工艺下设计电路,主要有以下几种对低功耗设计的考虑。 3.1.1 静态功耗可以忽略 根据现有项目经验可知,利用0.18um工艺Standard Cell设计出来的某芯片,数字逻辑加上Ram和Rom约40万门的电路,在完全静止的状态下,功耗约200uA左右(实测数据为400uA 左右,包括了50uA Flash,30uA的PHY,113uA的VR,其他模拟部分漏电不大,因此这里估算为200uA)。这样的功耗,我们是可以接受的。如果非要减少静态功耗,则可以参照90nm工艺的设计思路,专门设计高阈值电压的MOSFET,或者专门设计切断电源所需的元件,但由此带来设计的复杂性,对0.18um工艺的影响还是很大的。如果设计规模没有那么大,且可以满足应用,往往还是可以忽略这个结果的。 3.1.2 时钟门控减小不必要的动态功耗 在寄存器的电路设计中,时钟输入端都会有一个反向器负载,就算输入端不发生变化,时钟的变化也会造成该反向器的变化,由此产生动态功耗。因此在如果该寄存器输入在某种条件下等于输出(即输出保持)时,可以将时钟门控住,以减少无效的时钟翻转。 时钟门控的实现原理如下图所示:

常用低功耗设计

随着半导体工艺的飞速发展和芯片工作频率的提高,芯片的功耗迅速增加,而功耗增加又将导致芯片发热量的增大和可靠性的下降。因此,功耗已经成为深亚微米集成电路设计中的一个非常重要的考虑因素。为了使产品更具有竞争力,工业界对芯片设计的要求已从单纯的追求高性能、小面积,转换为对性能、面积、功耗的综合要求。微处理器作为数字系统的核心部件,其低功耗设计对降低整个系统的功耗具有非常重要的意义。 本文首先介绍了微处理器的功耗来源,重点介绍了常用的低功耗设计技术,并对今后低功耗微处理器设计的研究方向进行了展望。 1 微处理器的功耗来源 研究微处理器的低功耗设计技术,首先必须了解其功耗来源。高层次仿真得出的结论如图1所示。 从图1中可以看出,时钟单元(Clock)功耗最高,因为时钟单元有时钟发生器、时钟驱动、时钟树和钟控单元的时钟负载;数据通路(Datapath)是仅次于时钟单元的部分,其功耗主要来自运算单元、总线和寄存器堆。除了上述两部分,还有存储单元(Mem ory),控制部分和输入/输出 (Control,I/O)。存储单元的功耗与容量相关。 如图2所示,C MOS电路功耗主要由3部分组成:电路电容充放电引起的动态功耗,结反偏时漏电流引起的功耗和短路电流引起的功耗。其中,动态功耗是最主要的,占了总功耗的90%以上,表达式如下: 式中:f为时钟频率,C1为节点电容,α为节点的翻转概率,Vdd为工作电压。

2 常用的低功耗设计技术 低功耗设计足一个复杂的综合性课题。就流程而言,包括功耗建模、评估以及优化等;就设计抽象层次而言,包括自系统级至版图级的所有抽象层次。同时,功耗优化与系统速度和面积等指标的优化密切相关,需要折中考虑。下面讨论常用的低功耗设计技术。 2.1 动态电压调节 由式(1)可知,动态功耗与工作电压的平方成正比,功耗将随着工作电压的降低以二次方的速度降低,因此降低工作电压是降低功耗的有力措施。但是,仅仅降低工作电压会导致传播延迟加大,执行时间变长。然而,系统负载是随时间变化的,因此并不需要微处理器所有时刻都保持高性能。动态电压调节DVS (Dynarnic Voltage Scaling)技术降低功耗的主要思路是根据芯片工作状态改变功耗管理模式,从而在保证性能的基础上降低功耗。在不同模式下,工作电压可以进行调整。为了精确地控制DVS,需要采用电压调度模块来实时改变工作电压,电压调度模块通过分析当前和过去状态下系统工作情况的不同来预测电路的工作负荷。 2.2 门控时钟和可变频率时钟 如图1所示,在微处理器中,很大一部分功耗来自时钟。时钟是惟一在所有时间都充放电的信号,而且很多情况下引起不必要的门的翻转,因此降低时钟的开关活动性将对降低整个系统的功耗产牛很大的影响。门控时钟包括门控逻辑模块时钟和门控寄存器时钟。门控逻辑模块时钟对时钟网络进行划分,如果在当前的时钟周期内,系统没有用到某些逻辑模块,则暂时切断这些模块的时钟信号,从而明显地降低开关功耗。图3为采用“与”门实现的时钟控制电路。门控寄存器时钟的原理是当寄存器保持数据时,关闭寄存器时钟,以降低功耗。然而,门控时钟易引起毛刺,必须对信号的时序加以严格限制,并对其进行仔细的时序验证。 另一种常用的时钟技术就是可变频率时钟。根据系统性能要求,配置适当的时钟频率,避免不必要的功耗。门控时钟实际上是可变频率时钟的一种极限情况(即只有零和最高频率两种值),因此,可变频率时钟比门控时钟技术更加有效,但需要系统内嵌时钟产生模块PLL,增加了设计复杂度。去年Intel公司推出的采用先进动态功耗控制技术的Montecito处理器,就利用了变频时钟系统。该芯片内嵌一个高精度数字电流表,利用封装上的微小电压降计算总电流;通过内嵌的一个32位微处理器来调整主频,达到64级动态功耗调整的目的,大大降低了功耗。

集成电路制造工艺_百度文库(精)

从电路设计到芯片完成离不开集成电路的制备工艺,本章主要介绍硅衬底上的CMOS 集成电路制造的工艺过程。有些CMOS 集成电路涉及到高压MOS 器件(例如平板显示驱动芯片、智能功率CMOS 集成电路等),因此高低压电路的兼容性就显得十分重要,在本章最后将重点说明高低压兼 容的CMOS 工艺流程。 1.1 基本的制备工艺过程 CMOS 集成电路的制备工艺是一个非常复杂而又精密的过程,它由若干单项制备工艺组合而成。下面将分别简要介绍这些单项制备工艺。 1.1.1 衬底材料的制备 任何集成电路的制造都离不开衬底材料——单晶硅。制备单晶硅有两种方法:悬浮区熔法和直拉法,这两种方法制成的单晶硅具有不同的性质和不同的集成电路用途。 1 悬浮区熔法 悬浮区熔法是在20世纪50年代提出并很快被应用到晶体制备技术中。在悬浮区熔法中,使圆柱形硅棒固定于垂直方向,用高频感应线圈在氩气气氛中加热,使棒的底部和在其下部靠近的同轴固定的单晶籽晶间形成熔滴,这两个棒朝相反方向旋转。然后将在多晶棒与籽晶间只靠表面张力形成的熔区沿棒长逐步向上移动,将其转换成单晶。 悬浮区熔法制备的单晶硅氧含量和杂质含量很低,经过多次区熔提炼,可得到低氧高阻的单晶硅。如果把这种单晶硅放入核反应堆,由中子嬗变掺杂法对这种单晶硅进行掺杂,那么杂质将分布得非常均匀。这种方法制备的单晶硅的电阻率非常高,特别适合制作电力电子器件。目前悬浮区熔法制备的单晶硅仅占有很小市场份额。 2 直拉法

随着超大规模集成电路的不断发展,不但要求单晶硅的尺寸不断增加,而且要求所有的杂质浓度能得到精密控制,而悬浮区熔法无法满足这些要求,因此直拉法制备的单晶越来越多地被人们所采用,目前市场上的单晶硅绝大部分采用直拉法制备得到的。 拉晶过程:首先将预处理好的多晶硅装入炉内石英坩埚中,抽真空或通入惰性气体后进行熔硅处理。熔硅阶段坩埚位置的调节很重要。开始阶段,坩埚位置很高,待下部多晶硅熔化后,坩埚逐渐下降至正常拉晶位置。熔硅时间不宜过长,否则掺入熔融硅中的会挥发,而且坩埚容易被熔蚀。待熔硅稳定后即可拉制单晶。所用掺杂剂可在拉制前一次性加入,也可在拉制过程中分批加入。拉制气氛由所要求的单晶性质及掺杂剂性质等因素确定。拉晶时,籽晶轴以一定速度绕轴旋转,同时坩埚反方向旋转,大直径单晶的收颈是为了抑制位错大量地从籽晶向颈部以下单晶延伸。收颈是靠增大提拉速度来实现的。在单晶生长过程中应保持熔硅液面在温度场中的位置不变,因此,坩埚必须自动跟踪熔硅液面下降而上升。同时,拉晶速度也应自动调节以保持等直生长。所有自动调节过程均由计算机控制系统或电子系统自动完成。 1.1.2 光刻 光刻是集成电路制造过程中最复杂和关键的工艺之一。光刻工艺利用光敏的抗蚀涂层(光刻胶)发生光化学反应,结合刻蚀的方法把掩模版图形复制到圆硅片上,为后序的掺杂、薄膜等工艺做好准备。在芯片的制造过程中,会多次反复使用光刻工艺。现在,为了制造电子器件要采用多达24次光刻和多于250次的单独工艺步骤,使得芯片生产时间长达一个月之久。目前光刻已占到总的制造成本的1/3以上,并且还在继续提高。 光刻的主要工艺步骤包括:光刻胶的涂覆,掩模与曝光,光刻胶显影,腐蚀和胶剥离。下面分别进行简要的介绍: 1 光刻胶涂覆

音频功率集成电路及功率器件的现代研究

音频功率集成电路及功率器件的现代研究 摘要在科技水平不断提升的情况下,功率集成电路出现了高速的发展态势。在功率集成电路中,音频功率放大器属于重要的构成部分,在消费类电子产品领域中具有广泛的应用。作为全球最大的消费类电子商品市场以及生产的基地,对于音频功率放大器的需求在不断的增多,而且要求标准越来越多。本文对于音频功率集成电路和功率器件展开研究,为实践工作提供有价值的参考。 关键词音频功率集成电路;功率器件;消费类电子 功率集成电路为高压功率器件与信号处理系统和接口电路、外围驱动电路以及检测电路、保护电路等等在相同的芯片上面进行集聚的集成电路。音频功率放大器在功率集成电路中占据着重要的地位,属于不可或缺的构成。当前,研究音频功率放大器、分析音频功率集成电路和功率器件已经是重点探索的方面。 1 音频功率集成电路概况 功率半导体器件在发展期间经历了很多的阶段,在二十一世纪前后,功率半导体器件的发展到了密切的结合集成电路的阶段。在功率半导体器件和集成电路充分联系结合期间,使得功率和微电子器件在芯片制造工艺慢慢趋同,MOS型器件的封装技术靠近着集成电路,而且在器件结构方面将功率MOS型器件以及集成电路在相同芯片或者包装进行设置已经是趋势。音频功率放大芯片的对象就是指各种形式的音箱以及喇叭,采取功率这一途径让微弱的声音信号进行放大,进而获得到足够的驱动负载功能。音频放大器的主要参数很多,包括电源纹波抑制比、总谐波失真加噪声、信噪比、增益、最大输出功率、关断电流以及输出偏移电压。TDA7294為DMOS大功率音频功放集成电路,特点和性能包括作电压高达±40伏、出功率大,音乐功率可达IOOW、失真和低噪音、音和STAND-BY 待机功能等[1]。 2 LS7294电路的分析和仿真 TDA7294的内部等效电路主要包含有四个部分,即分别是双极晶体管组成的输入级、运放和大功率MOS管组成的电流输出级、MOS管构成的第二级放大及电平移位电路、短路保护及过热保护电路。于输出级和第二级电压放大级的密勒电容增添进交流负反馈,可以良好的减轻TDA7294输出级失真问题。同时能够实现分开供电电压放大级和电流放大级的形式,做到将通过电流相互影响降低,属于理想的保真举措。因实施参考输入端的静音功能,所以予以LS7294两个差分PNP对管输入的方式。而且参考输入端涵盖阻尼回路,将静音控制进行优化。关键的环节包括输入级及控制开关、基准源和待机/静音窗口比较器、静音控制单元和待机控制单元、输出功率管下管保护电路、输出功率管上管保护电路及自举电路以及中间MOS增益级及功率输出级电路。仿真时外围电路闭环增益经反馈,可以控制在30dB,在静态的工作期间电流大概是在16.5mA。

智能功率器件的原理

智能功率器件的原理与应用 1 智能功率器件的特点及产品分类 1.1 智能功率器件的特点 所谓智能功率器件,确实是把功率器件与传感器、检测和操纵电路、爱护电路及故障自诊断电路等集成为一体并具有功率输出能力的新型器件。由于这类器件可代替人工来完成复杂的功率操纵,因此它被给予智能的特征。例如,在智能功率器件中,常见的爱护功能有欠电压爱护、过电压爱护、过电流及短路爱护、过热爱护。此外,某些智能功率器件还具有输出电压过冲爱护、瞬态电流限制、软启动和最大输入功率限制等爱护电路,从而大大提高了系统的稳定性与可靠性。 智能功率器件具有体积小、重量轻、性能好、抗骚扰能力强、使用寿命长等显著优点,可广泛用于单片机测控系统、变频调速器、电力电子设备、家用电器等领域。

1.2 智能功率器件的产品分类 智能功率器件可分成两大类,即智能功率集成电路与智能功率模块。 1)智能功率集成电路 智能功率集成电路的种类专门多,下面仅列出几种典型产品。 ——高压功率开关调节器(High Voltage Power Switching Regulator)。例如,美国摩托罗拉公司研制的MC33370系列产品。 ——智能功率开关(IntelligentP ower Switch)。例如,德国西门子(Siemens)公司生产的Smart SIPMOS智能功率开关,产品型号有BTS412B、BTS611等。 2)智能功率模块 智能功率模块是采纳微电子技术和先进的制造工艺,把智能功率集成电路与微电子器件及外围功率器件组装成一体,能实现智能功率操纵的商品化部件。模块大多采纳密封式结构,以保证良好的电气绝缘和抗震性能。用户只须了解模块的外特性,即可使用。因此,它能简化

集成电路功耗百科

定义 功率的损耗,指设备、器件等输入功率和输出功率的差额。功率的损耗。电路中通常指元、器件上耗散的热能。有时也指整机或设备所需的电源功率。 功耗同样是所有的电器设备都有的一个指标,指的是在单位时间中所消耗的能源的数量,单位为W。不过复印机和电灯不同,是不会始终在工作的,在不工作时则处于待机状态,同样也会消耗一定的能量(除非切断电源才会不消耗能量)。因此复印机的功耗一般会有两个,一个是工作时的功耗,另一个则是待机时的功耗。 待机功耗 2001年,欧盟要求额定输出功率0.3W~70W的无负载功率损耗均为1W;2005年,欧盟将该标准变为额定输出功率0.3W~50W的无负载功率损耗为0.3W、额定输出功率15W~70W的无负载功率损耗为0.75W。由此可以看出,大家对电器产品功耗方面的要求正日益严格。 为了符合欧盟等组织针对产品功耗而制定的种种规范,很多新技术应运而生,主要思想是让开关电源在负载很小或空载处于待机状态时能够以较低开关频率操作。 TI公司提供的UCC28600电源方案,在30%~100%输出功率段,采用准谐振零电压和固定频率不连续模式相结合的电源控制方式,以及高达1A的驱动能力,使得反激式电源的开关损耗大为降低,整机工作效率达到85%以上;在10%~30%输出功率段,采用固定峰值电流的关断时间调制模式的电源控制方式,使得电源的动态负载响应和低功率段的转换效率都得到极大的改善;同时在大约10%输出功率段采用跳脉冲的待机控制模式,使得待机功耗低至150毫瓦特。 UCC28600能直接驱动高达200瓦特的反激式电源,同时UCC28600自身携 带的引脚功能能在待机模式下自动关断PFC功能,使得用户的设计更为简洁,费用更低廉。 TDP功耗 TDP的英文全称是“Thermal Design Power”,中文翻译为“热设计功耗”,是反应一颗处理器热量释放的指标,它的含义是当处理器达到负荷最大的时候,释放出的热量,单位为瓦(W)。 CPU的TDP功耗并不是CPU的真正功耗。功耗(功率)是CPU的重要物理 参数,根据电路的基本原理,功率(P)=电流(A)×电压(V)。所以,CPU 的功耗(功率)等于流经处理器核心的电流值与该处理器上的核心电压值的乘积。而TDP是指CPU电流热效应以及其他形式产生的热能,他们均以热的形式释放。显然CPU的TDP小于CPU功耗。换句话说,CPU的功耗很大程度上是对主板提出的要求,要求主板能够提供相应的电压和电流;而TDP是对散热系统提出要求,

低功耗电路设计

便携式产品低功耗电路设计的综合考虑 集成电路和计算机系统的发展对低功耗的要求越来越高 分析了功耗产生的主要原因以及与成本的关系 如今为了适应这一变化 低功率逻辑电路的标准被定义为每一级门电路功耗小于1.3uW/MHz最终用户认为 对于总体系统设计来说这是电子工业发展的必然趋势更轻和功能更强大的最终产品 从功率观点看设计任务将变得更加艰巨 就是单个或一组充电电池能维持设备连续几天的工作 另外绿色所有政府部门采购的台式电脑必须符合功耗要求 VLSI技术公司移动产品部销售经理Barta指出深绿色 这些机器将挂起所有操作直到被相关激励信号唤醒后才进入正常运行模式 ARPA?y?ú??μí1|?êμ?×óáìóò×÷é?è??D?? ê1D?ò?′úμ?×ó?μí3μ?1|o?????μíóú??óD?μí3μ?1|o? ?÷?tμ??′1üàíμè?÷??áìóò?Dμ??è????ê? òò?a?aá???áìóòé??°′óá?μ??ìo?D?o?′|àí 随着每隔几年电路密度的成倍增大难度越来越大 LSI逻辑公司ASIC市场部副总裁Koc说200k门数的芯片 这么大的功率已经远远超过了封装的散热能力 因为高温工作会给集成电路带来可靠性和功能性问题 与温度有关的这些故障模型包括工作器件故障以及电流密度 低功率应用 在电池供电模式下由于受便携式电脑的实际尺寸和重量限制也限制了电池的大小和重量

低功率系统的另一个例子是蜂窝电话模拟电路 电池在充电一次后接收模式下工作一整天 一般来说而现在系统设计都将功耗作为其中的一项重要性能指标 同时也带来功耗问题但利用适当的功率控制方法或创新性设计可以获得多种解决方案 首先则速度越慢 会减小电容充放电的电流或负载驱动电流较低的电压将导致较低的输出功率或较低的信号幅度 产生功耗的原因 整体的功耗取决于诸多因素封装密度产品性能和供电电压往往速度越高功耗越大 它通常由负载器件和寄生元件产生 在电阻性负载电路如模拟电路中更是如此 电路中的导线(金属导线)和层间寄生电阻会产生静态阻抗功耗 有源器件的正常工作模式可用一条转移曲线和某些I-V特性来描述 适用于全部有源器件对无源和有源器件来说 在CMOS电路中I-V转移曲线是一个瞬态函数 从一个状态转移到另一个状态不消耗功率转移曲线并不是理想的方形理论上看 具有零内阻的开关器件会在电源与地之间形成直接短路的现象 最大的功耗来自于内部和外部电容的充放电 据此 峰值电流I=C(V/T)T是上升或下降沿时间因此峰值电流通常都比较大此时C 是指输出端的负载电容F则是开关频率 所需要的电源电压也越高由此产生的影响涉及到电源总线母板布线另外 因此可能会影响到系统的总体封装

相关主题
文本预览
相关文档 最新文档