连铸连轧综述
- 格式:docx
- 大小:226.96 KB
- 文档页数:8
我国薄板坯连铸连轧技术成就综述薄板坯连铸连轧已成为热轧薄板的重要生产方式之一,截至2013年底,我国已建成或在建15条(30流)薄板坯连铸连轧生产线,年生产能力约3724万吨,如附表所示。
我国已成为全球拥有薄板坯连铸连轧生产线最多、产能最大的国家,而且在薄板坯连铸连轧技术领域取得了重要的成就。
成就之一:薄板坯连铸连轧物理冶金过程研究薄板坯连铸连轧物理冶金特点及其组织演变规律。
薄板坯连铸连轧技术进入中国后的前几年,珠钢、北京科技大学、钢铁研究总院基于普通C-Mn钢进行了大量基础研究,揭示了薄板坯连铸连轧物理冶金过程中的组织演变规律:一是连铸凝固速率高,铸态组织晶粒细小、均匀。
二是轧制前原始奥氏体晶粒粗大,仍呈现为铸造树枝晶状。
三是虽然薄板坯连铸连轧过程总变形量小,但通过高速、大应变量的道次变形,最终产品晶粒明显细化。
钢中纳米粒子的发现。
研究发现,普通C-Mn钢采用相同的成分设计和轧制工艺,薄板坯连铸连轧的产品强度比传统流程高50MPa~100MPa。
对此,珠钢、北京科技大学、钢铁研究总院陆续在其研究中发现,钢中存在大量纳米尺寸的氧化物和硫化物,以及大量尺寸<20nm的沉淀粒子。
研究人员根据Orowan理论的位错越过粒子机制和Gladman等的理论,采用Ashby-Orowan修正模型模拟计算,结果表明,纳米析出物起到了沉淀强化作用。
成就之二:薄规格产品生产技术一方面,薄板坯连铸连轧技术衔接段采用辊底式均热炉,连铸坯出连铸机后处于加热或均热的环境中,使铸坯在进轧机前具有良好的温度均匀性,这是进行均匀热变形的前提条件;另一方面,连铸坯直接轧制为半无头和无头轧制工艺的实施提供了有利的条件,即不需复杂庞大的焊接设备焊接铸坯,因此薄板坯连铸连轧流程适于生产薄和超薄规格产品。
单坯轧制技术。
珠钢针对薄规格轧制过程中机架负荷较大、轧辊磨损严重、轧机振动剧烈、轧破堆钢甩尾等关键技术难题,提出轧辊凸度控制技术,包括热凸度模型、轧辊磨损模型和工作辊辊形,解决了轧辊凸度变化复杂导致板形严重恶化的关键技术;通过研究轧机振动控制技术、微张力控制技术、轧件稳定运行控制技术和轧制时序控制技术,解决了轧制过程无法稳定进行的技术难题,堆钢、甩尾事故减少90%;通过轧辊长寿技术,包括低应力抗剥落支承辊辊形、新型工艺润滑技术、轧辊材质和辊径配置的研究,使前段、后段工作辊和支承辊的轧制周期分别延长了80%、33%和50%,实现了薄规格产品的批量生产。
中国薄板坯连铸连轧技术的现状和发展中国薄板坯连铸连轧技术是指将熔化的金属经过连铸机连续铸造成坯料,然后通过连续轧制、切割等工艺过程,制成各种规格的薄板材料的生产技术。
目前,中国的薄板坯连铸连轧技术已经取得了较大的进步和发展。
主要体现在以下几个方面:
一、品种规格的增加
随着市场需求的不断增加,中国的薄板坯连铸连轧技术已经实现了从单一规格向多品种、小批量和高品质的发展。
目前,我国已经能够生产厚度为0.8mm以下、宽度在800mm以上的薄板产品,满足了市场对多种产品的需求。
二、技术水平的提高
随着技术的不断发展,中国的薄板坯连铸连轧技术逐步实现了数控化、自动化和智能化。
同时,新的轧制工艺和设备的应用,也使得产品的质量和生产效率得到了大幅提升。
三、环保意识的加强
在当前环保意识不断提高的背景下,中国的薄板坯连铸连轧技术也在不断推进环境保护措施。
例如,在生产过程中采用了新型的净化技术和设备,有效降低了环境污染和能源消耗。
未来,中国薄板坯连铸连轧技术还将继续发展和完善。
我们有理由相信,在技术革新和环保要求的推动下,中国的薄板坯连铸连轧技术将会更加先进、更加高效、更加环保、也更加适应市场需求。
- 1 -。
连续铸轧技术综述摘要:本文简述了连续铸轧技术基本原理、双辊式薄带连续铸轧工艺特点,并讨论了一些工艺参数对铸轧坯料质量的影响。
介绍了连续铸轧技术当前国内外发展应用现状,在此基础上展望了连续铸轧技术的难点及未来研究方向。
1.前言19 世纪中叶,Henry Bessemer 发明了双辊铸轧薄带技术,并将此技术进行专利申请,之后各国科研人员便开始对这项技术进行研究。
随着这些年来其他相关领域的技术的持续发展,这一设想才变为现实。
双辊式薄带铸轧技术是目前最热门、最有潜力的技术,近几十年这一技术在实验室才得以实现。
一些发达国家对双辊铸轧技术的研究处于领先地位,已经率先实现工业化生产。
相对于发达国家来说,我国的发展速度较为缓慢,对该技术的研究仍处于实验室生产阶段。
双辊式连续铸轧薄带是以液态金属为原料,将其倒入旋转方向相反的两个铸轧辊之间,并以铸轧辊为结晶器,用液态金属直接生产金属薄带的一个完整的生产过程。
其工艺特点是将铸造和轧制这两道工序在同一台设备上实现合二为一,与传统热轧工艺相比减少了工序,简化了生产设备,降低了生产成本,节约了能源。
因此,这一项技术的研究在工业合金板材生产中十分重要。
2.双辊式薄带铸轧技术的发展概况2.1 国内铸轧技术的发展从 20 世纪 50 年代至今,我国的科研人员就一直对薄带铸轧技术进行研究工作。
在经历了几十年的科研努力后,我国已经将双辊薄带连铸技术实现了实验室内的生产,目前正在向其工业化生产进行努力。
我国国内的洛阳铜业有限公司,首次实现了双辊薄带铸轧技术的商业化开发[1],并于 2005 年试验性地轧制出了变形镁合金薄带。
1960 年前后,经过东北大学与其他研究机构的努力合作,在长春建立了双辊式薄带铸轧生产试验线,并且成功地铸轧出了碳素钢、硅钢和高速钢板带,在这些实验中,高速钢的成果比较理想。
我国前两台双辊式异径铸机都是由东北大学在上世纪 80 年代设立完毕,且东北大学的研究者分别用此设备成功的铸出了能加工出合格工具的高速钢薄带原材料。
题目薄板坯连铸连轧开发高强度钢综述学院:专业:学号:学生姓名:任课老师日期:摘要本文通过介绍薄板坯连铸连轧技术的起源,概括薄板坯连铸连轧的发展过程,总结其工艺特点及工艺类型,从而了解了薄板坯连铸连轧与传统轧制在工艺流程上的巨大区别。
同时,也让我们看到了薄板坯连铸连轧在钢铁生产上的巨大优势,尽管目前薄板坯连铸连轧在钢铁市场中占有的份额相当大,但在高强度钢生产上却相当有限。
这将极大刺激我们对高强度钢产品的开发。
随后,本文通过总结目前用薄板坯连铸连轧技术来生产高强度钢的研究理论和产品开发、生产经验,说明薄板坯连铸连轧技术在高强度钢产品开发上的可行性和巨大的应用前景。
关键字:薄板坯;连铸连轧;高强度钢;产品开发薄板坯连铸连轧技术是20世纪80年代末世界钢铁工业发展的一项重大技术,由于薄板坯连铸连轧工艺具有流程短、成本低、成材率高、产品质量好、品种覆盖面广等突出优点,而且投资省,见效快,因而成为国际上竞相开发的重大工艺技术[1]。
世界上第一台连铸机于1986年在德国马克公司铸钢车间试验成功,世界上第一条薄板坯连铸连轧生产线于1989年6月在美国的纽柯公司的克劳福兹维尔厂(Crawfords-ville)投产,该生产线采用了西马克(SMS)的连铸连轧技术(CSP),设计年产量为80万t。
我国第一条薄板坯连铸连轧生产线于1999年8月在广州珠江钢厂建成投产。
随后,我国的薄板坯连铸连轧技术发展越来越快,到2007年,我国已有珠钢、邯钢、包钢、鞍钢、唐钢、马钢、涟钢、本钢、通钢、济钢、酒钢、唐钢等12条生产线,年产约3500万t[2]。
经过20多年的不断发展完善,薄板坯连铸连轧生产线的产品质量和产量逐渐提高,已经可以和传统的热轧流程相媲美[3],并有超越之势,而其优点也越来越明显。
薄板坯连铸连轧工艺是连铸技术发展的必然结果,它打破了传统的生产模式,将连铸与热带钢连轧有机地结合在一起。
今日,薄板坯连铸连轧技术已经步入了成熟期。
第一章绪论1.1 连铸连轧技术的简介1.1.1 连铸连轧的概念“连铸连轧”这个词包括如下概念:由连铸机生产出的高温无缺陷无须清理和再加热(但需经过短时均热和保温处理)而直接轧制成材,这样把“铸”和“轧”直接连成一条生产线的工艺流程就成为连铸连轧。
1.1.2 连铸连轧的优越性1)生产周期短,从钢水到产品的生产流程从几天或5~6小时缩短到0.5小时;2)占地面积少;3)固定资产投资少,尤其是薄板坯连铸连轧厂固定资产投资优势明显,越为常规流程的五分之一;4)金属的收的率高,尤其是无头轧制技术的长材率超过了99%;5)钢材性能好,由于铸坯过程的快速冷却,钢坯铸态组织致密,钢水的冷却强度很大,改善了钢材质量。
6)能耗少,由于采用热送热装,感应加热等技术,能耗仅为常规生产方式的35%~45%;电耗仅为常规流程的80%~90%;生产成本降低20%~30%。
1.2 连续铸钢设备连续铸钢生产所用的设备,实际上包括在连铸作用线上的一整套机械设备。
连铸设备通常可分为主体设备和辅助设备俩大部分。
主体设备包括浇铸设备—钢包运载设备,中间包及中间包小车或旋转台,结晶器及振动装置,二次冷却支撑导向装置;拉坯矫直设备-拉坯机、矫直机、引锭机、脱锭与引锭存放装置;切割设备—火焰切割机与机械剪切机(摆式剪切机、步进式剪切机等)。
辅助设备主要包括:出坯及精整设备—辊道、拉(推)钢机、翻钢机、火焰清理机等;工艺设备—中间包烘烤装置、吹氖装置、脱气装置、保护渣供给与结晶润滑装置等;自动控制与测量仪表—结晶器液面测量与显示系统、过程控制计算机、测温、测重、测长、测速、测压等仪表系统。
在连续铸钢的生产线上,出拉坯矫直机脱锭后的连铸坯需按用户或下部工序的要求,将铸坯切成定尺或倍尺。
因此在所有的连铸设备中,切割设备是非常重要的一种设备。
由于连铸坯必须在连续的运动过程中实现切割,因而连铸工艺对切割设备提出了特殊的要求,既不管采用什么型式的切割设备都必须与连铸坯实行严格的同步运动。
连铸连轧课程论文综述题目:薄板坯连铸连轧技术研发高强度钢的概述姓名专业学号指导教师日期摘要:随着世界大环境对节能降耗的要求越来越高,薄板坯连铸连轧技术以其显著的优势也被各大钢铁企业所采用,利用该技术研发高强度钢也成为了当今热点的研究项目之一。
近年来,该研究已取得了一些成果,不少钢厂有利用薄板坯连铸连轧技术生产的高强度钢投入市场。
但是,薄板坯连铸连轧技术的特点并非完全有利于高强度钢的研发,如何利用该技术在研发方面的优点、克服其缺点,也是亟待解决的问题。
关键词:薄板坯;连铸连轧;高强度钢;产品研发;1 前言薄板坯连铸连轧生产工艺是20世纪90年代世界钢铁工业发展的一项重大新技术,以其投资省、成本低、节能降耗、生产周期短和高钢材收得率等优势,在世界范围内得到迅速地发展[1],[2]。
近年来,随着薄板坯连铸连轧技术研究的深入和其工艺、设备和自动控制等方面技术不断发展,钢铁企业在薄板坯连铸连轧技术不断扩展产品品种,其中,研发生产高强度钢就是其中一项。
一般,我们将拉伸强度在350MPa以上的钢板为高强度钢板,高强度钢板不仅具有较高的拉伸强度和屈服强度,而且还具有高的减重潜力、高的碰撞吸收能、高的成型性和低的平面各向异性等优点。
近20年来,钢材的高强度化成为钢铁工业最具活力和创造性进展的领域,一系列热轧高强度钢(板)被越来越广泛用于建筑业、制造业和加工业,特别是载重汽车、轿车、桥梁、起重机、舰船、铁路、集装箱、容熙、工程机械、甚至航空航天等领域。
可以预见,高强度钢的用途将越来越广泛,也越来越重要,如火车提速、汽车减重等[3]。
2 薄板坯连铸连轧技术研发高强度钢的概况2.1 高强度钢的国内外发展近年来,高强度钢的研发一直受到国内外的高度重视,不少国家,如日本,甚至将其列为国家重点研究项目,在欧洲最高级的研究项目库——尤里卡计划的新材料研究项目自足下,奥迪汽车等联合研制的轻型高强度薄板可以使汽车用钢减少25%。
1994年,世界18家汽车生产厂联手成立了超轻汽车钢财团,支持高强度汽车用钢的研究。
连铸连轧知识点一、连铸工艺的发展连铸是钢铁生产中重要的工艺环节,其发展历程与钢铁工业的整体发展密切相关。
自20世纪50年代初连铸技术诞生以来,它一直是提高钢铁生产效率和降低成本的重要手段。
随着科技的进步和环保要求的提高,连铸工艺也在不断发展和改进。
二、连铸工艺的基本原理连铸是一种连续铸造的工艺,其基本原理是将熔融的钢水通过结晶器冷却并形成凝固的铸坯,然后将铸坯连续地从结晶器中拉出,通过轧机进行轧制,最终得到所需的钢材。
三、连铸工艺的特点1、高效性:连铸工艺可以实现连续生产,提高生产效率,降低能耗。
2、节能性:相比传统的模铸工艺,连铸工艺可以节约能源,降低生产成本。
3、灵活性:连铸工艺可以根据市场需求生产不同规格、不同种类的钢材。
4、环保性:连铸工艺可以减少废弃物的产生,降低环境污染。
四、连铸工艺的应用范围连铸工艺广泛应用于各种钢铁产品的生产,包括板材、带材、型材、管材等。
随着技术的发展,连铸工艺也逐渐应用于有色金属、稀有金属等领域。
五、连铸工艺的未来发展方向随着科技的不断发展,连铸工艺的未来发展方向主要集中在以下几个方面:1、智能化:利用先进的自动化技术和智能化设备,提高生产过程的自动化水平和生产效率。
2、绿色化:进一步降低能耗和废弃物排放,实现生产过程的环保和可持续发展。
3、高效化:研发更高效的连铸技术,提高生产速度和产品质量。
薄板坯连铸连轧轧制区组织模拟薄板坯连铸连轧是一种高效、节能的钢材生产工艺,具有较高的生产效率和产品质量。
在轧制过程中,钢材的组织形态和性能特点对产品的质量和使用性能具有重要影响。
因此,薄板坯连铸连轧轧制区组织模拟成为了一个备受的研究领域。
通过组织模拟,可以深入了解轧制过程中材料的组织变化和性能特点,为工艺优化和产品性能提升提供理论支持和实践指导。
薄板坯连铸连轧轧制区背景及基础概念薄板坯连铸连轧是指将液态钢水倒入薄板坯连铸机中进行连续铸造,然后将连铸坯送入轧机进行连续轧制。
薄板坯连铸连轧技术综述薄板坯连铸连轧技术是一种高效、节能的钢铁生产工艺。
它将连铸和连轧两个过程有机地结合起来,使得钢铁生产的效率大大提高,并且能够生产出高品质的薄板材料。
本文将从连铸和连轧两个方面进行综述。
一、连铸技术连铸技术是将熔化的钢水连续铸造成坯料的过程。
与传统的浇铸工艺相比,连铸技术有以下优点:1.高效节能。
传统的浇铸工艺需要大量的能量来加热和冷却模具,而连铸技术可以将钢水连续铸造成坯料,减少了能量的消耗。
2.坯料质量好。
连铸技术可以使钢水在较短的时间内冷却凝固,形成细小的晶粒,从而提高坯料的机械性能和表面质量。
3.可控性强。
连铸技术可以通过调整铸模的结构和流动状态来控制坯料的形状和尺寸,满足不同用户的需求。
二、连轧技术连轧技术是将连铸坯料经过多道轧制后变成薄板材料的过程。
与传统的轧制工艺相比,连轧技术有以下优点:1.工艺流程简化。
传统的轧制工艺需要多次反复的轧制和退火处理,而连轧技术可以将这些过程有机地结合起来,减少了生产环节和能源消耗。
2.产品质量稳定。
连轧技术可以通过调整轧制工艺参数来控制薄板材料的厚度和表面质量,保证了产品质量的稳定性。
3.生产效率高。
连轧技术可以实现高速轧制,大大提高了生产效率和产量。
三、薄板坯连铸连轧技术的应用薄板坯连铸连轧技术已经广泛应用于钢铁生产领域。
它不仅可以生产高品质的薄板材料,而且还可以有效地节约能源和减少环境污染。
目前,国内外很多大型钢铁企业都采用了薄板坯连铸连轧技术,如宝钢、鞍钢、武钢等。
同时,随着技术的不断进步和创新,薄板坯连铸连轧技术将会有更广阔的应用前景。
薄板坯连铸连轧技术是一种高效、节能、高质量的钢铁生产工艺。
它在钢铁生产中发挥着越来越重要的作用,是推动钢铁产业可持续发展的重要手段之一。
连铸连轧知识点连铸和连轧是金属工业中常见的两个工艺过程。
连铸是指将液态金属连续铸造成坯料的过程,而连轧是指将坯料经过一系列压制和变形操作,连续地轧制成所需尺寸的金属板、带材或线材的过程。
本文将介绍连铸和连轧的基本概念、工艺流程和主要应用。
一、连铸连铸是一种高效的金属铸造技术,具有生产速度快、坯料质量好等优点。
连铸主要应用于钢铁、铜、铝等金属的生产中。
1. 连铸的基本原理连铸的基本原理是将熔融的金属通过连续浇注的方式,直接铸造成连续的坯料。
具体原理如下:首先,将金属熔融至液态,并通过加热设备保持在一定温度范围内;然后,通过连续浇注系统,将熔融金属均匀地注入到连铸结晶器中;在连铸结晶器中,通过冷却剂的作用,使金属迅速凝固,并形成坯料;最后,通过一系列传动装置,将连续产生的坯料送往下游的轧制设备或其他后续处理过程中。
2. 连铸的工艺流程连铸的工艺流程一般包括以下几个关键步骤:(1)冶炼:将矿石等原料经过熔炼处理,得到液态的金属合金;(2)调温:通过加热设备将金属保持在一定的液态温度;(3)连续浇注:通过连续浇注系统,将熔融金属注入到连铸结晶器中;(4)结晶与凝固:在连铸结晶器中,通过冷却剂的作用,使金属迅速凝固,并形成坯料;(5)切割和输送:将连续产生的坯料切割成合适的长度,并送往下游的加工设备。
3. 连铸的应用连铸广泛应用于钢铁、铜、铝等金属的生产中。
在钢铁工业中,连铸可以直接将炼钢铁水铸造成连续坯料,用于后续轧制成钢板和钢材。
在有色金属工业中,连铸可以将液态金属铸造成连续的板材、带材和线材,用于制造电线电缆、汽车零部件等产品。
二、连轧连轧是一种将金属坯料经过多道次的压制和变形操作,连续地轧制成所需尺寸的金属板、带材或线材的工艺过程。
连轧具有高效快速、坯料成形完整等特点,广泛应用于钢铁、有色金属等工业领域。
1. 连轧的基本原理连轧的基本原理是通过一系列的压制和变形操作,使金属坯料逐渐减小厚度、增大长度,并达到所需的尺寸要求。
连铸连轧生产工艺连铸连轧是一种高效率的金属加工工艺,该工艺将铁水连续浇注到连铸机中,在连铸机上将铁水快速冷却成坯料,然后通过连轧机进行连续轧制,最终得到所需的产品。
本文将对连铸连轧生产工艺进行详细介绍。
连铸连轧工艺由连铸机和连轧机两个主要部分组成。
首先是连铸机,连铸机由多个连续结构的浇铸模具组成,每个模具都有一个铸型腔用于接收铁水。
当一炉铁水被完全倒入后,连铸机开始工作。
铁水经过喷嘴喷入铸型腔中,经过快速冷却后形成坯料。
冷却有很多方式,常见的是通过水喷淋冷却或者通过内部的冷却器冷却。
冷却后的坯料时不时地剪断,并通过辊道传输到连轧机。
连轧机是将坯料连续轧制成所需产品的装置。
一般来说,连轧机由多个辊子组成,可以将坯料不断地通过辊子间的空隙进行轧制。
辊子通常分为多个工作辊和支持辊,工作辊是主要负责轧制的,而支持辊则是用于支撑坯料并平衡力的。
通过控制辊子的速度和间隙,可以使坯料在连轧机中快速变形,从而得到所需形状的产品。
例如,钢坯可以通过连轧机轧制成钢板,钢棒等。
连铸连轧工艺相比传统的离散铸造和轧制工艺,具有许多显著优点。
首先,连铸连轧工艺可以实现连续生产,从而提高生产效率。
相比离散铸造和轧制工艺,连铸连轧工艺减少了产品在生产过程中的停留时间,有效减少生产周期,提高了生产效率。
其次,连铸连轧工艺可以减少产品的变形和出现缺陷的可能性。
在连铸连轧过程中,坯料的变形是在连续产生的,产品形状相对稳定,因此可以减少变形和出现缺陷的可能性。
同时,由于坯料在连轧过程中受到很大压力的作用,使其内部结构更加紧密,提高了产品的强度和硬度。
最后,连铸连轧工艺还可以减少能耗并降低生产成本。
连续生产可以减少能耗浪费,同时由于工艺参数的控制更加精准,可以减少废品率,降低了生产成本。
总之,连铸连轧是一种高效率的金属加工工艺,通过连续的铸造和轧制过程,可以快速地生产出所需的产品。
其优点包括高生产效率,减少变形和缺陷的可能性,降低能耗和生产成本等。
2005 No16#专题综述#重 型 机 械# 1 #薄板坯连铸连轧技术综述高静娜,李强,任廷志,黄文,金昕( 燕山大学机械工程学院,河北秦皇岛066004)摘要:本文介绍了薄板坯连铸连轧技术的发展过程,总结和分析了薄板坯连铸连轧生产工艺的实质、特点、类型及其关键技术,展望了薄板坯连铸连轧技术的发展趋势,并针对我国薄板坯连铸连轧的生产提出了一些尚待解决的问题和努力方向。
关键词: 薄板坯; 连铸连轧; 发展趋势中图分类号: T F 77717 文献标识码: A 文章编号:1001- 196X(2005) 06- 0001- 05The overview on continuous casting &rolling technology f or thin slabGA O Jing-na,LIQi a n g ,RE NTi n g -z h i ,H UANGW e n ,JIN X in( Colleg e of M echanical Eng ineering,Ya ns ha n U ni ve rsi ty,Qin hua ngd ao 066004,China)Abstract:T h e dev elo pment of continuous casting & ro lling technology for thin slab is intro duced in this pa-per,and its essence,char acterist ics,ty pes and key techniques are analyzed.T h e developing trend o f contin-uous cast ing & rolling technolog y for thin slab is looked for ward to and finally some unsettled problems in ourco untry on continuous casting & rolling technology for thin slab are broug ht forw ar d.Key words: thin slab; continuous casting & rolling; developing trend1前言薄板坯连铸连轧技术是20世纪 80年代末世卷板将由薄板坯连铸连轧机组生产。
薄板坯连铸连轧技术综述薄板坯连铸连轧技术是一种先进的钢铁生产技术,它将连铸和连轧两个工序有机地结合在一起,实现了钢铁生产的高效、节能、环保和高质量。
本文将从薄板坯连铸连轧技术的原理、特点、应用和发展趋势等方面进行综述。
一、薄板坯连铸连轧技术的原理薄板坯连铸连轧技术是将连铸和连轧两个工序有机地结合在一起,实现了钢铁生产的高效、节能、环保和高质量。
其原理是:将熔融的钢水通过连铸机连续铸造成薄板坯,然后将薄板坯直接送入轧机进行连续轧制,最终得到所需的薄板产品。
这种技术不仅可以减少钢铁生产的能耗和环境污染,还可以提高钢铁产品的质量和生产效率。
二、薄板坯连铸连轧技术的特点1.高效节能:薄板坯连铸连轧技术将连铸和连轧两个工序有机地结合在一起,避免了传统钢铁生产中的多次加热和冷却过程,大大降低了能耗和生产成本。
2.环保节能:薄板坯连铸连轧技术可以减少钢铁生产中的二氧化碳、氮氧化物等有害气体的排放,降低了环境污染和对大气的负荷。
3.高质量:薄板坯连铸连轧技术可以实现钢铁产品的高质量生产,因为它可以避免传统钢铁生产中的多次加热和冷却过程,减少了钢铁产品的氧化和变形。
4.生产效率高:薄板坯连铸连轧技术可以实现钢铁产品的高效生产,因为它可以将连铸和连轧两个工序有机地结合在一起,减少了生产周期和生产成本。
三、薄板坯连铸连轧技术的应用薄板坯连铸连轧技术已经广泛应用于钢铁生产中,特别是在高端钢铁产品的生产中。
例如,汽车、航空航天、电子、建筑等领域的高端钢铁产品都可以采用薄板坯连铸连轧技术进行生产。
此外,薄板坯连铸连轧技术还可以用于生产高强度、高韧性、高耐磨性等特殊钢铁产品。
四、薄板坯连铸连轧技术的发展趋势随着钢铁生产技术的不断发展和进步,薄板坯连铸连轧技术也在不断地改进和完善。
未来,薄板坯连铸连轧技术将更加注重环保、节能和高效,同时还将更加注重钢铁产品的高质量和高附加值。
此外,薄板坯连铸连轧技术还将更加注重智能化和自动化,以提高生产效率和生产质量。
薄板坯连铸连轧综述1.前言连铸连轧技术作为钢铁生产工业近年来最重要的技术进步之一,具有节省能源、流程短、设施少、成材率高、生产成本低、产品质量好、品种开发潜力大等突出优点11~文而在薄板坯在生产过程中应用该技术时获得的组织晶粒细小、二次枝晶间距小、偏析程度低,应用该技术进行生产优势更加明显⑹。
因此,全世界各大钢铁生产企业纷纷引进投建薄板坯连铸连轧生产线。
近些年来,随着薄板坯连铸连轧技术日益成熟和广泛,使人们熟悉到原来的薄板坯连铸连轧技术仍有很多不足之处,开头进行技术的再开发和提高,使技术更臻于成熟和完善。
2.薄板坯连铸连轧技术简介2.1连铸连轧技术连铸连轧全称连续铸造连续轧制I,是将液态金属连续通过水冷结晶器凝固后直接进入轧机进行塑性变形的工艺方法。
传统生产工艺是用熔炼炉将炼好的钢液铸成铸锭,经过保温、锻造制成锻坯,之后再通过均热炉加热到高温并保温一段时间后才进行热轧。
这一过程需要多次加热保温,既铺张了能源,也使生产周期过长。
而连铸连轧技术则是把熔炼好的液态钢倒入连铸机中轧制出钢坯(称为连铸坯),然后不经冷却,在均热炉中保温肯定时间后直接进入热连轧机组中轧制成型的钢铁轧制工艺。
这种工艺奇妙地把铸造和轧制两种工艺结合起来,相比于传统的先铸造出钢坯后经加热炉加热再进行轧制的工艺具有简化工艺、改善劳动条件、增加金属收得率、节省能源、提高连铸坯质量、便于实现机械化和自动化的优点口~叫2.2薄板坯连铸连轧连铸坯在轧制之前依据板坯厚度可以分为厚板坯连铸、中厚板坯连铸和薄板坯连铸。
随着连铸坯厚度的减小,板坯中部的冷却速度增大。
冷却速度增大之后,铸坯中部的晶粒变得细小、缺陷削减、偏析减轻、二次枝晶的间距也随之减小。
表1为文献⑺中依据钢研院供应的报告资料所做的统计。
因此,连铸连轧技术应用于薄板坯后的优势更加明显。
表2 根据钢研院提供的报告资料统计生产工艺铸坯厚度(mm)冷却速度木F品间距(mm)中间品粒组织情况厚板环连铸200-300W― 10°450晶粒粗大,有中心疏松中厚板坯连铸>90-150IO-1l~ιo∣250薄板坯连铸40-70IO1-IO240~100晶粒细小,致密,没有疏松3.薄板坯连铸连轧技术的进展历史依据产品生命周期理论和薄板坯连铸连轧技术各个不同进展阶段的详细特征,特殊是市场特征,可将薄板坯连铸连轧技术的进展分为下列四个阶段bl©:1、研发期(1985~1989) 1986年德国施罗曼一西马克公司(SMS)建筑了一台采纳“漏斗型”结晶器的立弯式薄板坯连铸机,并以6m∕min的拉速胜利地生产出50 mmX 1600 mm的薄板坯,该技术被称为CSP。
世界薄板坯连铸连轧技术设备发展综述世界薄板坯连铸连轧技术设备发展综述1989年美国纽柯公司采用德国西马克公司开发的紧凑型带钢生产(CSP)作业线,在全球率先开展了工业化生产,之后德国、中国、日本、意大利、俄罗斯、加拿大、埃及、印度、奥地利等国的钢铁公司也相继安装,并对其工艺进行进一步设计和开发,获得了一批颇具影响、独具特色的科研成果,使CSP发展成为20年来全球钢铁业一项具有重要意义的创新技术。
西马克的紧凑型带钢生产技术1985年,德国西马克公司在实验工厂成功地铸造出来第一块50毫米的薄板坯后,又创造设计了紧凑型带钢生产技术。
在生产实践中,CSP工艺不仅降低了能量需求,而且,由于其独特的工艺条件,还提高了带钢质量。
与厚板坯相比,薄板坯凝固速度更快,对生产高质量的钢种如微合金钢和硅钢十分有利。
与传统工艺相比,CSP生产的非取向电工钢的变形损失显著减少。
另外,由于温度均匀,薄板坯在宽度、厚度和长度上都达到了严格的标准,“冷边”问题不再出现,粗大晶粒的现象也消失了。
CSP生产线保证了轧制工艺的高效稳定,确保了带钢的宽度、厚度都被控制在理想的公差范围内。
紧凑型带钢生产技术的优势引起了中国珠钢、邯钢、马钢、唐钢、涟钢、酒钢的高度关注。
邯钢、马钢通过从西马克公司引入传统生产线,提高了他们的热轧生产能力,并开发了一批特色产品。
涟钢利用半无头轧制技术,铸造出270米超长扁坯和0.78毫米超薄产品。
武钢于2009年2月建成新的CSP生产线,专门生产非取向电工钢。
达涅利加强表面质量控制意大利达涅利研制开发了独特的薄板坯连铸技术,目的是克服第一代连铸机在产品质量和设备生产能力方面受到的限制。
这项新技术已借助于灵活的薄板坯连铸机概念而变为现实,到目前为止,达涅利薄板坯连铸机已经能够浇铸用于板带生产的所有钢种。
达涅利开发的新一代薄板坯连铸机,充分利用了漏斗形结晶器设计的优点,使最早凝固的初生坯壳沿出坯方向从漏斗形逐渐过渡到较为平坦的形状,从而解决了铸坯表面质量问题。
连铸连扎工艺简介连铸连轧呀,这可是个超级有趣又很厉害的工艺呢!一、连铸连轧工艺的概念连铸连轧简单来说,就是把钢水直接从炼钢炉里倒出来后,经过连铸机连续铸造成钢坯,然后这个钢坯都不带停歇的,马上就进入轧机进行轧制。
就像是一场接力赛,前面的连铸环节一完成,马上就把“接力棒”传给轧机这个“选手”。
这和传统工艺相比,可就省略了好多步骤,传统的是先铸好钢坯,得把钢坯冷却,再加热,然后才进行轧制。
这就好比传统工艺得让“运动员”休息会儿,再重新热身才能比赛,而连铸连轧是一气呵成。
二、连铸连轧的优点1. 节省能源这工艺能节省超多的能源呢。
你想啊,传统工艺里,钢坯冷却再加热,这得消耗多少能源啊。
就像你煮了一锅汤,放凉了又重新加热,多浪费火呀。
连铸连轧就不存在这个问题,从钢水到钢材成品,一路顺下来,能源损耗大大降低。
2. 提高生产效率因为是连续的过程,中间没有停顿,生产的速度就像开了挂一样。
就像一条快速流淌的河流,没有阻碍,源源不断地生产出钢材。
这可不得了,在同样的时间里,能生产出更多的产品,满足市场对钢材大量的需求。
3. 提升产品质量连铸连轧过程中的连续操作,使得钢材内部组织更加均匀。
这就好比一块蛋糕,如果是一口气做好的,那它的质地就会很均匀,要是中间停了再做,可能就会有分层之类的问题。
钢材也是一样,内部组织均匀的钢材,它的强度、韧性等性能就会更好。
三、连铸连轧的关键设备1. 连铸机连铸机可是这个工艺里的大功臣。
它负责把钢水变成钢坯。
它的构造很复杂,有结晶器,这个结晶器就像是一个神奇的模具,钢水进去就开始初步成型。
还有冷却系统,要确保钢坯在合适的温度下凝固成型。
如果冷却太快或者太慢,那钢坯可就不合格了。
2. 轧机轧机是负责把钢坯变成我们需要的钢材形状的设备。
它有不同的轧辊,通过轧辊的挤压,钢坯就会逐渐变成我们想要的形状,比如说板材、管材或者棒材。
轧机的精度要求可高了,就像一个非常精密的雕刻师,一点点地把钢坯雕琢成合适的样子。
薄板坯连铸连轧综述1.前言连铸连轧技术作为钢铁生产工业近年来最重要的技术进步之一,具有节约能源、流程短、设备少、成材率高、生产成本低、产品质量好、品种开发潜力大等突出优点[1~5]。
而在薄板坯在生产过程中应用该技术时获得的组织晶粒细小、二次枝晶间距小、偏析程度低,应用该技术进行生产优势更加明显[6]。
因此,全世界各大钢铁生产企业纷纷引进投建薄板坯连铸连轧生产线。
近些年来,随着薄板坯连铸连轧技术日益成熟和广泛,使人们认识到原来的薄板坯连铸连轧技术仍有许多不足之处,开始进行技术的再开发和提高,使技术更臻于成熟和完善。
2.薄板坯连铸连轧技术简介2.1连铸连轧技术连铸连轧全称连续铸造连续轧制,是将液态金属连续通过水冷结晶器凝固后直接进入轧机进行塑性变形的工艺方法。
传统生产工艺是用熔炼炉将炼好的钢液铸成铸锭,经过保温、锻造制成锻坯,之后再通过均热炉加热到高温并保温一段时间后才进行热轧。
这一过程需要多次加热保温,既浪费了能源,也使生产周期过长。
而连铸连轧技术则是把熔炼好的液态钢倒入连铸机中轧制出钢坯(称为连铸坯),然后不经冷却,在均热炉中保温一定时间后直接进入热连轧机组中轧制成型的钢铁轧制工艺。
这种工艺巧妙地把铸造和轧制两种工艺结合起来,相比于传统的先铸造出钢坯后经加热炉加热再进行轧制的工艺具有简化工艺、改善劳动条件、增加金属收得率、节约能源、提高连铸坯质量、便于实现机械化和自动化的优点[1~5]。
2.2薄板坯连铸连轧连铸坯在轧制之前依据板坯厚度可以分为厚板坯连铸、中厚板坯连铸和薄板坯连铸。
随着连铸坯厚度的减小,板坯中部的冷却速度增大。
冷却速度增大之后,铸坯中部的晶粒变得细小、缺陷减少、偏析减轻、二次枝晶的间距也随之减小。
表1为文献[7]中根据钢研院提供的报告资料所做的统计。
因此,连铸连轧技术应用于薄板坯后的优势更加明显。
3.薄板坯连铸连轧技术的发展历史根据产品生命周期理论和薄板坯连铸连轧技术各个不同发展阶段的具体特征,特别是市场特征,可将薄板坯连铸连轧技术的发展分为下列四个阶段[8~12]:1、研发期(1985~1989)1986年德国施罗曼—西马克公司(SMS)建造了一台采用“漏斗型”结晶器的立弯式薄板坯连铸机,并以6 m/min的拉速成功地生产出50 mm×1600 mm的薄板坯,该技术被称为CSP。
几乎同时,德国曼内斯曼德马克公司(MDH)采用改进的超薄型扁形水口和平板直弧形结晶器以4.5 m/min的拉速成功地生产出60 mm×900 mm和70 mm×1200 mm的薄板坯,该技术被称为ISP。
1988年奥钢联(VAI)采用薄平板型结晶器及薄型浸入式水口浇出第一块厚度为70 mm的不锈钢薄板坯,该技术被称为CONROLL。
此外,意大利达涅利(DANIELI)、日本住友等公司也开展了研究、开发薄板坯连铸连轧技术的工作。
2、引入期(1989~1994)。
1989年6月世界上第一条薄板坯连铸连轧生产线在美国纽柯公司的克劳福兹维尔厂建成投产,该生产线采用了SMS的CSP技术,年产80万t。
1992年,一条年产50万t的ISP生产线在意大利的阿维迪建成投产,并于1993年9月达到设计产量。
与此同时,意大利达涅利的FTSR技术、日本住友金属的QSP技术及奥地利奥钢联(VAI)的CONROLL技术等处于半工业试验阶段。
3、成长期(1994~1999)。
针对最先投产的几条生产线所遇到的产量和质量问题,各供货商采取了相应的改进措施。
使机构配置得到了优化,衔接段工艺不断简化、适用,并优化了整个生产流程,最终产品的质量也得到了提升。
4、成熟期(1999至今)。
薄板坯连铸连轧技术经过近二十年的不断发展,工艺、设备、自动化系统等日趋完善,产品质量和产量也不断提高,足以与常规热轧流程相媲美。
因此可以说薄板坯连铸连轧技术已步入了成熟期。
4.薄板坯连铸连轧技术的优势4.1薄板坯连铸连轧技术的经济优势连铸连轧技术由于整个生产流程较传统工艺简化许多,并且不用反复加热,因此可以节省投资成本和生产成本,生产效率也大为提升。
另外,生产过程中由于加热时间减少,工期工艺缩短,使得原料损耗减少,成材率得到提高。
所以薄板坯连铸连轧技术相比于传统生产技术显现出巨大的经济优势。
根据SMS公司的资料,薄板坯连铸连轧工艺的优势主要在于:投资低,约为传统热连轧的58%。
从整个生产流程来看,电炉-薄板坯连铸-连轧的热轧卷的吨材投资量将降至300美元左右;而高炉-转炉-薄板坯连铸-连轧的热轧卷的吨材投资量将降至600~800美元,甚至更低些[13],薄板坯连铸连轧工艺能耗低,约低50%;生产成本约为常规轧机的78%;成材率比常规轧机高1.8%左右;而维修费用约为常规轧机的39%。
4.2薄板坯连铸连轧技术的技术优势4.2.1细晶高强由于薄板坯连铸浇铸的铸坯薄(一般为50~90mm),在结晶器及二冷区的快速冷却过程中,柱状晶短,等轴晶区宽,晶粒细化;而在随后的直接轧制中取消了γ→α相变区的中间冷却而使产品组织得到弥散硬化,从而使产品的机械性能强化,十分有利于生产高强度钢材。
珠钢目前已大批量生产高强度钢板,其屈服强度345 MPa的集装箱板极限厚度为1.4 mm,屈服强550 MPa的高强度汽车结构板极限厚度达1.8 mm,屈服强度大于700 MPa的高强度集装箱板极限厚度为2 mm。
在稍加微合金元素V,Ti 的情况下便可开发出晶粒尺寸为3~4μm的超细晶粒高成形性结构钢[7]。
4.2.2降低缺陷连铸连轧技术在生产过程中铸坯的冷却速度加快。
快速凝固有利于夹杂物的形成,使它们成为细小的球状。
长条夹杂物的减少有利于获得各向同性的弯曲性能。
另外,铸坯的宏观中心偏析情况也大为改善。
4.2.3产品薄规格化在常规热连轧机上由于坯厚(200~250 mm),变形量大、道次多、轧辊热膨胀大、轧制不稳定等原因,在生产薄规格产品(≤2 mm以下)时对产量影响较大,而薄板坯连铸连轧工艺的产量主要取决于连铸,板坯进轧机时尾部在炉内保温,不需升速轧制,而且开轧温度较高,因而较适宜生产薄规格带钢。
传统热轧带钢产品的厚度主要分布情况是:2.00~2.99mm,约占47.5%;3.00~4.99mm约占25.7%;1.50~1.99mm,约占14.3%;而小于1.50mm仅占0.3%。
二十世纪90年代以来,由于薄板坯连铸连轧工艺的发展,使得热轧薄板的最小厚度已经有可能达到1mm以下,而其产品主要厚度范围将主要分布在1.0~3.0mm 之间。
对于传统冷轧带钢轧机的产品而言,其厚度分布情况是:约有60%分布在0.6~1.2mm之间,约有15%分布在1.2~1.6mm之间。
因此,薄板坯连铸连轧作业线的热轧产品将部分挤占1.0~2.2mm之间冷轧产品的市场[14]。
4.2.4生产特种钢薄板坯连铸连轧技术在设计和投产的开始阶段主要是为了提高生产效率、降低生产成本。
因此该技术更多的被大型钢铁企业所应用,用于大规模生产使用量大的普通板材、带材。
对于生产工艺要求高的较为特殊钢种,薄板坯连铸连轧技术在开始阶段并未涉及。
薄板坯连铸连轧技术经过十多年的发展、完善,已从开发初期的以低成本、生产中低档次产品,帮助中小企业进入扁平材生产领域并取得良好的经济效益,发展到目前与传统的钢铁联合企业的转炉工艺有机结合,生产双相钢和TRIP钢及电工钢、奥氏体不锈钢等品种,充分利用了薄板坯连铸连轧技术工艺优越性的另一方面,表明薄板坯连铸连轧技术在高端产品的应用方面仍有很大的潜力。
以高附加值的薄和超薄规格热轧板卷为主导产品,与常规热轧工艺争夺市场,而且大有替代之势。
5.薄板坯连铸连轧技术的种类[15,16]5.1 CSP工艺技术世界第一条CSP生产线薄板坯连铸连轧生产线已于1989年建成投产,因其工艺开发早,技术成熟,工艺及设备相对较简单可靠,故实际应用也最多。
CSP 技术的主要特点是采用立弯式铸机漏斗形结晶器,最初的铸坯很薄,一般为40~50mm,未采用液芯压下,后部设辊底式隧道炉作为铸坯的加热均热及缓冲装置,采用5~6架精轧机,成品带钢最薄为1~2mm。
5.2 ISP工艺技术ISP工艺由MDH公司开发,采用矩形平板结晶器,并相应采用扁平薄形浸入式水口、直结晶器弧形铸机。
1992年在意大利Arvedi厂最初建成投产ISP铸机铸坯厚度60mm,经0段的液芯压下减薄到43mm,在铸机后设有3架在线预轧机架,在不切断铸机的情况下将铸坯轧薄成15~25mm厚度的中间坯,按定尺切断后通过安装在辊道上的感应加热后进入称为Cremona炉的用煤气加热保温的卷取箱,两卷位的中间坯卷交替向4架的精轧机(现已增加了第5机架以生产更薄的产品)喂料。
生产能力可达80万t/a,最薄成品为1mm。
5.3 FTSR工艺技术FSTR由达湟利公司开发,采用透镜形结器,在铜板结晶的下口宽面仍具有凸出的形状,直延伸到二冷0段末铸坯才逐步就矩形,铜板晶器连带0段一起被称为长漏斗形结晶器,或H2结晶器。
它具有CSP漏斗形结晶器的优点,又减少了铸坯的变形率,有利于生产包晶在内一些裂纹敏感性钢种并有利于提高拉速。
采用结晶器弧形铸机及液芯压下,但它不同于ISP在0段完成液芯压下,而是应用一套液穴长度制软件系统,通过所浇钢种、铸坯断面、中包温度、拉速、结晶器冷却及二冷等参数来测算和控制坯液穴长度,并合理分配各扇形段的压下,使最的压下点接近液穴的末端,以获得最佳的减少析及中心疏松而提高铸坯质量的效果。
FTST工艺按不同的要求,铸坯出结晶器厚50~90mm,经液芯压下后为35~70mm,在采取无头轧制的情况下最薄的产品可达到0.7~0.8mm,单流铸机生产线生产能力可达160万t/a。
5.4 CONROLL工艺技术CONROLL技术由奥钢联(VAI)开发,其流程为:弧形连铸机-辊底式加热炉-除鳞机-连轧机组(带AGC、窜辊及弯辊装置)-层流冷却-卷取机。
CONROLL技术的主要特点是采用平行板直结晶器,结晶器出口处板坯厚70mm,由于铸坯在结晶器内未变形,因此具有良好的表面质量。
该铸机浇铸板坯厚75~125mm。
另外,由于板坯断面积大,故可采用较低的拉速,降低结晶器的磨损,减少了拉漏几率;在卷重相同的情况下,板坯定尺短,输送辊道、加热炉长度均较短。
6.薄板坯连铸连轧技术的发展趋势近年来,随着对薄板坯连铸连轧技术的深入研究,其工艺、设备和自动控制等方面新的技术不断开发,使其得到迅速发展和完善。
今后技术的发展主要在于薄板坯连铸连轧工艺与高炉-转炉匹配生产;进一步提高产品质量,扩大产品范围;进一步减小产品厚度,实现“以热代冷”,提高产品的竞争能力等。
6.1 薄板坯连铸连轧生产线与高炉-转炉流程匹配生产利用高炉-转炉来匹配薄板坯连铸连轧,不仅不受废钢和电力等因素的限制,而且前后工序顺畅,从而降低了投资成本和生产成本,提高了生产效率,增强了市场竞争力。