6、飞行力学第二章2.4
- 格式:pdf
- 大小:459.45 KB
- 文档页数:35
飞行动力学第二章公式总结空气动力:X=C x qS阻力公式Y=C y qS升力公式Z=C z qS侧向力公式动压公式q=ρV22升力:C y=f(Ma,α,δ)升力系数函数C y=C y0+C yαα+C yδzδz升力系数在攻角和舵偏角不大的情况下的表达式C y=C yαα+C yδzδz轴对称时Y=Y0+Yαα+Yδzδ升力在攻角和舵偏角不大的情况下的表达式α攻角不大情况下攻角变化引起的升力Yα=C yαρV22Yδ=C yδzρV2δz舵偏角不大的情况下舵偏角变化引起的升力2侧向力:C z=C zββ+C zδzδz侧向力因数在侧滑角和舵偏角不大的情况下的表达式-C zβ=C yα轴对称下成立(不大)-C yδz=C zδz轴对称下成立(不大)阻力:X= X0+X i阻力的组成由零升阻力和诱导阻力构成C x=C x0+C x i阻力因数由零升阻力因数和诱导阻力因数构成气动力矩:M x1=m x1qSL滚转力矩M y1=m y1qSL偏航力矩M z1=m z1qSL俯仰力矩M z =f(M a ,H,α,δz ,,ωz ,α̇, δz ) 俯仰力矩的函数M z = M z 0+M z αα+M z δz δz+ M z ωz ωz+ M z αα̇+M z δz δz参数不大的情况下升力表达式 m z = m z 0+m z αα+m z δz δz+ m z ωz ̅̅̅̅ωz ̅̅̅̅+ m z α̅α̇̅+m z δz ̅̅̅̅δz̅ 无量纲力矩因数表达式 δz ̅=δzL/V 舵偏角角速度对应的无量纲参数 α̇̅=α̇L/V 攻角角速度对应的无量纲参数 ωz ̅̅̅̅=ωzL/V 俯仰角角速度对应的无量纲参数M z α=C z αSqα(x g −x F )=m z αSqαL 升力力矩和里表达式之间的关系m z α=C z α(X g ̅̅̅−X F ̅̅̅̅) 攻角升力系数和攻角升力力矩系数之间的关系 m z δz =C z δz (X g ̅̅̅−X r ̅̅̅) 舵偏角升力系数和舵偏角升力力矩系数之间的关系 m z =m z αα+m z δz δz 轴对称定常直线飞行下的升力力矩系数表达式m z ααb +m z δz δz=0 "瞬时平衡假设"下的升力力矩平衡状态方程C b y =C b ααb +C b δz δzb =(C b α−C b δz m z αm z δz )αb “瞬时平衡”状态下平衡升力的表达式m z α|α=αb <0 纵向静稳定条件m z C y =ðm zðC y =(X g ̅̅̅−X F ̅̅̅̅) 稳定性的定量表示——静稳定度 ∆α=arctanrωz V 俯仰角角速度引起的下洗角度 M z ωz =M z ω̅z ω̅z qSL 俯仰阻尼力矩表达式t t t αεεαα•∆()=(()-)实际下洗角 偏航力矩:m y =m y ββ+m y δy δy +m y ω̅y ω̅y +m y ω̅x ω̅x +m y δ̅y δy +m y β̅β 偏航力矩系数表达式 ω̅y =ωy L/V偏航角速度对应的无纲量因数 δy=δy L/V 航向舵偏角速度对应的无纲量因数 β=βL/V 偏航角角速度对应的无量纲因数m x =m x0+m x ββ+m x δy δy +m x δx δx +m x ω̅x ω̅x +m x ω̅y ω̅y 滚转力矩因数的表达式 m x ββ<0 横向静稳定性的条件M ℎ=m ℎq t S t b t 铰链力矩模式表达式M ℎ=−Y t ℎcos(α+δz ) 铰链力矩实际表达式M ℎ≈M ℎαα+M ℎδz δz 铰链力矩的近似表达式 推力:P =m s μe +S a (P a −P ℎ) 推力的表达式 M p =R p ×P 推力力矩表达式重力:G=G 1+F e 重力表达式F e =mR e Ωe 2cosψe 离心惯性力的表达式 g =g 0R e 2(R e +H e )2 重力加速度随高度变化的表达式导弹建模基础:m dV dt =F质心移动的动力学公式 dH dt =M 绕质心转动的动力学公式导弹质心移动的动力学方程:m dV dt =m (ðV ðt +Ω×V)=F 用相对坐标系表示以绝对坐标系为基准的矢量变化率表示-力 ρ=V θ 曲率半径的计算公式a y2=Vθ 弹道法线加速度 导弹绕质心转动的动力学方程:dH dt =ðH ðt +ω×H =M用相对坐标系表示以绝对坐标系为基准的矢量变化率表示-力矩 H =J ∙ω动量矩M =J ∙α力矩 J ={J x1−J x1y1−J z1x1−J x1y1J y1−J y1z1−J z1x1−J y1z1J z1} 三维空间下转动惯量矩阵 dm dt =−m s (t)导弹质量流率方程 m =m 0−∫m s (t)dt tf t0 导弹质量方程角度几何关系:cosφ=cosα1cosα2+cosβ1cosβ2+cosγ1cosγ2 余弦定理α=ϑ−θ 无滚转无侧滑角度关系时β=ψ−ψv 无攻角无滚转时角度关系操纵关系方程:N =P +R 控制力为空气动力与推力的合力N =N n +N τ 控制力的切向与法向的分解N τ=P τ−X 切向控制力分解 N n =P n +Y +Z 法向控制力分解导弹飞行的运动方程组(轴对称型导弹,以地面为绝对坐标系): 质心移动的动力学方程(弹体->弹道坐标系):m dV dt =Pcosαcosβ−X −mgsinθ切向运动的动力学方程 mV dθdt =P (sinαcosγv +cosαsinβsinγv )+Ycosγv −Zsinγv −mgcosθ 竖直法向运动的动力学方程 −mVcosθdψv dt =P (sinαsinγv −cosαsinβcosγv )+Ysinγv +Zcosγv 水平法向运动的动力学方程 绕质心转动的动力学方程(弹体坐标系):J xdωx dt +(J z −J y )ωy ωz =M x 弹体x 轴力矩表达式 J ydωy dt +(J x −J z )ωz ωx =M y 弹体y 轴力矩表达式 J z dωz dt +(J y −J x )ωx ωy =M z 弹体z 轴力矩表达式质心移动的运动学方程(弹道->地面坐标系):dxdt=Vcosθcosψv地面坐标系x轴方向运动学方程dydt=Vsinθ地面坐标系y轴方向运动学方程dxdt=−Vcosθsinψv地面坐标系z轴方向运动学方程绕质心转动的运动学方程(弹体->地面坐标系):dϑdt=ωy sinγ+ωz cosγ俯仰角角速度表达式dψdt =1cosϑ(ωy cosγ+ωz sinγ)偏航角角速度表达式dγdt=ωx−tanϑ(ωy cosγ+ωz sinγ)滚转角角速度表达式质量方程:dmdt=−m s角度转换:sinβ=cosθ[cosγsin(ψ−ψv)+sinϑsinγcos(ψ−ψv)]−sinθcosϑsinγ侧滑角用其他角的表达关系cosα=[cosϑcosθcos(ψ−ψv)+sinϑsinθ]/cosβ俯仰角用其他角进行表示cosγv=[cosγcos(ψ−ψv)−sinϑsinγsin(ψ−ψv)]/cosβ速度滚转角的表示控制方程:ε1=0 俯仰方向的控制方程ε2=0 滚转方向的控制方程ε3=0 偏航方向的控制方程ε4=0 速度大小的控制方程描述导弹纵向运动的方程组(忽略z、β、ψ、ψv、ωy、γ、γv、ωx):质心移动的动力学方程:m dVdt=Pcosα−X−mgsinθ纵向平面内沿速度方向的动力学方程mV dθdt=Psinα+Y−mgcosθ纵向平面内速度纵法线方向的动力学方程绕质心转动的动力学方程:J z dωzdt=M z纵向平面内绕弹体z轴旋转的动力学方程质心移动的运动学方程:dxdt=Vcosθ纵向平面水平运动学方程dydt=Vsinθ纵向平面竖直运动学方程绕质心转动的运动学方程:dϑdt=ωz弹体绕z轴的转动质量方程:dmdt=−m s质量变化方程几何关系方程:α=ϑ−θ纵向平面俯仰角、弹道倾角、攻角之间的关系控制方程:ε1=0 俯仰方向的控制方程ε4=0 速度大小的控制方程侧向运动方程组(基于纵向运动方程组):质心移动的动力学方程:−mVcosθdψvdt=P(sinα+Y)sinγv−(Pcosαsinβ−Z)cosγv速度侧法向方向动力学方程绕质心转动的动力学方程:J x dωxdt=M x−(J z−J y)ωzωy绕弹体x轴转动的力矩守恒J y dωydt=M y−(J x−J z)ωxωz绕弹体y轴转动的力矩守恒质心移动的运动学方程:dzdt=−Vcosθsinψv地面坐标系下z轴方向的运动绕质心转动的运动学方程:dψdt =1cosϑ(ωy cosγ−ωz sinγ)偏航方向转动方程dγ=ωx−tanϑ(ωy cosγ−ωz sinγ)滚转方向转动方程dt几何关系方程:sinβ=cosθ[cosγsin(ψ−ψv)+sinϑsinγcos(ψ−ψv)]−sinθcosϑsinγ侧滑角用其他角的表达关系cosγv=[cosγcos(ψ−ψv)−sinϑsinγsin(ψ−ψv)]/cosβ速度滚转角的表示控制方程:ε2=0 侧滑角的控制方程ε3=0 滚转角的控制方程有侧滑无倾斜的水平运动方程组:条件:θ=0弹道倾角为零γ=γv=0滚转角为零ωx=0滚转角速度为零质心移动的动力学方程(弹体->弹道坐标系):=Pcosαcosβ−X切向运动的动力学方程m dVdtPsinα+Y=mg竖直法向运动的动力学方程−mVcosθdψv=−Pcosαsinβ+Z水平法向运动的动力学方程dt绕质心转动的动力学方程(弹体坐标系):=M y弹体y轴力矩表达式J y dωydt=M z弹体z轴力矩表达式J z dωzdt质心移动的运动学方程(弹道->地面坐标系):dx=Vcosψv地面坐标系x轴方向运动学方程dtdx=−Vsinψv地面坐标系z轴方向运动学方程dt绕质心转动的运动学方程(弹体->地面坐标系):dϑdt=ωz俯仰角角速度表达式dψdt =ωycosϑ偏航角角速度表达式质量方程:dmdt=−m s角度转换:α=ϑ俯仰方向角度关系β=ψ−ψv偏航方向角度关系控制方程:ε2=0 偏航方向的控制方程ε4=0 速度大小的控制方程导弹的质心运动:条件:m zααb+m zδzδzb=0攻角方向的力矩守恒m yββb+m yδyδyb=0侧滑角方向的力矩守恒ε1=0 ε2=0 ε3=0 ε4=0 俯仰、侧滑、滚转、速度方向上实现理想控制质心移动的动力学方程(弹体->弹道坐标系):m dVdt=Pcosαb cosβb−X b−mgsinθ切向运动的动力学方程mV dθdt=P(sinαb cosγv+cosαb sinβb sinγv)+Y b cosγv−Z b sinγv−mgcosθ竖直法向运动的动力学方程−mVcosθdψvdt=P(sinαb sinγv−cosαb sinβb cosγv)+Y b sinγv+Z b cosγv水平法向运动的动力学方程质心移动的运动学方程(弹道->地面坐标系):dxdt=Vcosθcosψv地面坐标系x轴方向运动学方程dydt=Vsinθ地面坐标系y轴方向运动学方程dxdt=−Vcosθsinψv地面坐标系z轴方向运动学方程质量方程:dmdt=−m s描述导弹质心铅锤平面内运动方程组:质心移动的动力学方程:m dVdt=Pcosα−X−mgsinθ纵向平面内沿速度方向的动力学方程mV dθdt=Psinα+Y−mgcosθ纵向平面内速度纵法线方向的动力学方程质心移动的运动学方程:dxdt=Vcosθ纵向平面水平运动学方程dydt=Vsinθ纵向平面竖直运动学方程质量方程:dmdt=−m s质量变化方程几何关系方程:δzb=−m zαm zδzαb控制方程:ε1=0 俯仰方向的控制方程ε4=0 速度大小的控制方程导弹质心在水平面内的运动方程组:条件:θ=0弹道倾角为零γ=γv=0滚转角为零ωx=0滚转角速度为零α->0攻角很小β->0侧滑角很小质心移动的动力学方程(弹体->弹道坐标系):=P−X b切向运动的动力学方程m dVdtPαb+Y=mg竖直法向运动的动力学方程−mVcosθdψv=−Pβb+Z b水平法向运动的动力学方程dt质心移动的运动学方程(弹道->地面坐标系):dx=Vcosψv地面坐标系x轴方向运动学方程dtdz=−Vsinψv地面坐标系z轴方向运动学方程dt质量方程:dm=−m sdt角度转换:ψ=ψv+βb偏航角、速度滚转角、侧滑角水平飞行时的几何关系ϑ=α水平飞行时俯仰角和攻角之间的几何关系m zααb+m zδzδzb=0攻角方向的力矩守恒m yββb+m yδyδyb=0侧滑角方向的力矩守恒控制方程:ε2=0 滚转方向的控制方程ε4=0 速度大小的控制方程过载:过载矢量的定义n=NGF i=nG i通过过载来求导弹任意部分的外力大小过载的投影:(Pcosαcosβ−X)速度坐标系x轴方向过载的投影n x3=1Gn y3=1(Psinα+Y)速度坐标系y轴方向过载的投影Gn z3=1G(Pcosαcosβ+Z)速度坐标系z轴方向过载的投影n x2=1G(Pcosαcosβ−X)弹道坐标系x轴方向过载的投影n y2=1G(cos(γv) (sin(α) P + Y) − sin(γv) (−sin(β) cos(α) P + Z))弹道坐标系y轴方向过载的投影n z2=1G(sin(γv) (sin(α) P + Y) + cos(γv) (−sin(β) cos(α) P + Z))弹道坐标系z轴方向过载的投影过载表示动力学方程:m dVdt=N x2+G x2沿速度方向的动力学方程mV dθdt=N y2+G y2沿速度法向纵向对称面内的动力学方程−mVcosθdψvdt=N z2+G z2沿速度法向横向动力学方程用V、θ、ψv来表示过载:n x2=1gdVdt+sinθn y2=Vgdθdt+cosθn z2=−Vgdψvdtcosθ根据过载判断飞行状态:n x2=sinθ等速飞行n y2=cosθ不做上下拐弯n z2=0不做左右拐弯曲率半径与过载之间的关系:ρy2=V2g(n y2−cosθ)竖直转弯曲率半径与过载之间的关系ρz2=V2cosθg(n z2)水平转弯曲率半径与过载之间的关系n L=1G(PsinαL+qSC ymax)极限过载表达式n L>n P>n R(LIMIT>P ASSABLE>REQUIRE)ε1=α−α∗=0 给定攻角下的理想控制关系式ε1=n y2−n y2∗=0 给定法向过载下的理想控制关系式α=n y2−(n y2b )α=0n y2αb 给定过载下小攻角的表达式式ε1=θ−θ∗=0 给定弹道倾角下的理想控制关系式ε1=ϑ−ϑ∗=0 给俯仰角下的理想控制关系式δz =K ϑ(ϑ−ϑ∗) 给定俯仰角下升降舵的偏转控制律θ=arcsin (1VdH ∗dt ) 给定弹道倾角的方案飞行可按给定高度飞行的方案弹道 α=mg P+Y α←[Psinα+Y =mg] 等高飞行下小攻角的表达式δz =−m z0+mgm zαP+Y αm z δz 等高飞行小攻角瞬时平衡假设下舵偏角表达式δz =δz0+K H (H −H 0)+K H ΔH等高飞行下升降舵的偏转控制律(微分项消除震荡) 侧滑转弯飞行情况下的飞行方案:3303()=y y b y b n n n ααα=- 平衡状态下的攻角的法向过载表达式303()1=y b y b n n ααα=- 平衡状态下无倾斜的攻角的法向过载表达式3031/cos ()=y v b y b n n αααγ=- 平衡状态下无侧滑的攻角的法向过载表达式水平面内给定弹道偏角下侧滑转弯飞行情况下的飞行方案: 2*0v v 给定弹道偏角的理想控制关系式dV dt =P−X m 切向方程303()1=y b y b n n ααα=- 竖直法向方程 −V gdψv dt n z3 b β=β 水平法向方程 dx dt=Vcosψv x 轴方向方程*()V V t 给定弹道倾角水平面内给定侧滑角或偏航角下侧滑转弯飞行情况下的飞行方案: φ:2*0v v 给定弹道偏角的理想控制关系式β:2*0v v 给定侧滑角的理想关系式dV dt =P−X m 切向方程303()1=y b y b n n ααα=- 竖直法向方程 dψv dt=1mV (Pβ−Z) 水平法向方程 dx dt=Vcosψv x 轴方向方程 dz dt =−Vsinψv z 轴方向方程φ:*()t 给定偏航角v =-水平飞行下侧滑、偏航、弹道偏角之间的几何关系 β:()*=t 给定侧滑角水平面内给定侧向过载下侧滑转弯飞行情况下的飞行方案:222*=n n ()0x x t 给定过载下的控制方程dV dt =P−X m 切向方程303()1=y b y b n n ααα=- 竖直法向方程 dψv dt=−g V n z2 水平法向方程dz dt =−Vsinψv z 轴方向方程 22b z z n n β角度和过载间关系 22*()z z n n t 给法向过载自动瞄准的相对运动方程组(极坐标系): cos cos T T drV V dt导弹与目标之间的矢径方向关系式 sin sin T T dq rV V dt 导弹与目标之间的角度方向关系式 q 导弹自身角度关系式q T T 目标角度关系式=0 导引关系式遥控导引的运动学方程组:d cos RV dt基站与导弹之间矢径方向关系式 sindR V dt 速度垂直于目标线方向上的关系式 航天器的开普勒轨道推导:3r r r 万有引力下的动力学方程 const h r r单位质量的角动量守恒 r rv h L 拉普拉斯常量-守恒 22v E const r 能量守恒 222=+2L Eh 三个守恒量之间的关系。
title飞行力学(北京理工大学) 中国大学mooc答案100分最新版content部分章节作业答案,点击这里查看第一章作用在飞行器上的力和力矩(下)测验(单元一)1、对于机(弹)体坐标系,英式和俄式定义是不同的,其中()。
答案: 飞行器的立轴正方向定义相反2、在地面坐标系中,确定速度矢量的方向可以通过()。
答案: 弹道倾角和弹道偏角3、俄式弹道坐标系和英式航迹坐标系之间存在以下哪种关系,()。
答案: 英式航迹坐标系绕其轴旋转-90°可与俄式弹道坐标系重合4、若某矢量在坐标系A和坐标系B中的投影之间存在,则坐标系A与B之间的关系是()。
答案: 两个坐标系的轴重合5、判断飞行器是否具有纵向静稳定性,可以根据()。
答案: 焦点和质心相对于飞行器头部的前后位置6、飞行器的弹道倾角是指()。
答案: 飞行器的速度矢量与水平面的夹角7、飞行器的侧滑角是指()。
答案: 飞行器速度矢量与飞行器纵向对称面之间的夹角8、研究飞行力学问题时,将地面坐标系当成惯性坐标系,需要()。
答案: 忽略地球的自转和公转,将其视为静止不动9、飞行器的俯仰角是指()。
答案: 飞行器的纵轴与水平面之间的夹角10、如果坐标系A和坐标系B的原点重合,且坐标系A的某坐标轴被坐标系B的某两个坐标轴形成的平面所包含,则由坐标系A向坐标系B进行旋转变换时,()。
答案: 经过2次初等旋转变换,即可使两个坐标系完全重合11、飞行器绕质心转动的动力学方程一般投影到()中。
答案: 弹体坐标系12、在建立导弹动力学基本矢量方程时,用到了()。
答案: 固化原理13、关于纵向运动和侧向运动,()是正确的。
答案: 导弹的纵向运动可以独立存在,但侧向运动不能独立存在14、民航飞机在一定的高度上平飞,关于其运动特点,下述描述错误的是()。
答案: 飞机主要通过侧滑形成侧向力,从而进行水平面内的转弯15、在水平面内飞行的两个飞行器,速度相同,则()。
答案: 法向过载大的飞行器的曲率半径较小,飞行器越容易转弯16、关于过载下列说法错误的是()。
飞行力学知识点总结一、飞行力学的基本概念1. 飞行力学的定义飞行力学是研究飞机在大气环境中的运动规律和飞行性能的科学学科。
它包括飞行动力学、飞行静力学和航向稳定性等内容。
2. 飞机的运动状态飞机的运动状态包括静止状态、匀速直线运动状态和加速直线运动状态等多种状态。
在进行飞机设计与分析时,需要充分考虑飞机在不同运动状态下的特性和性能。
3. 飞机的坐标系飞机通常采用本体坐标系和地理坐标系进行描述和分析。
本体坐标系是以飞机为参考物体建立的坐标系,用于描述和分析飞机内部的运动规律;地理坐标系是以地球表面为参考物体建立的坐标系,用于描述和分析飞机在大气中的运动规律。
4. 飞机的运动参数飞机的运动参数包括速度、加速度、位移、航向、倾角等多个参数,这些参数直接影响着飞机的飞行状态和性能。
二、风阻和升力1. 风阻的概念和特性风阻是飞机在飞行中受到的空气阻力,它随飞机速度和气动外形等因素变化。
风阻的大小直接影响飞机的燃油消耗和续航力。
2. 风阻的计算方法风阻的计算一般采用实验测定和理论计算相结合的方法,通过气动力学原理和风洞试验等手段来确定飞机在不同速度下的风阻系数和风阻大小。
3. 升力的概念和特性升力是飞机在飞行过程中所受到的向上的气动力,它是飞机能够在大气中持续飞行的重要保障。
升力的大小取决于飞机的气动外形、机翼面积和攻角等因素。
4. 升力的计算方法升力的计算一般采用理论推导和数值模拟相结合的方法,通过气动力学公式和实验数据来确定飞机在不同状态下的升力大小和升力系数。
三、飞机的稳定性和控制1. 飞机的平衡状态飞机的平衡状态包括静态平衡和动态平衡两种状态。
静态平衡是指飞机在静止状态下所处的平衡状态,动态平衡是指飞机在运动过程中所处的平衡状态。
2. 飞机的稳定性飞机的稳定性是指飞机在受到外界扰动时能够自动恢复到原来的平衡状态的能力。
飞机的稳定性直接影响着其飞行过程中的安全性和舒适性。
3. 飞机的控制系统飞机的控制系统包括飞行操纵系统、引擎控制系统和动力控制系统等多个部分,它们协同工作来保证飞机在飞行中能够保持稳定的运动状态和实现各种飞行任务。
第二章飞行力学基础2.1 飞行器空间运动的表示、飞行器操纵机构、稳定性和操纵性的概念2.1.1常用坐标系1)地面坐标系(地轴系)(Earth-surface reference frame)Sg-og xgygzg原点og 取自地面上某一点(例如飞机起飞点)。
ogxg轴处于地平面内并指向某方向(如指向飞行航线);og yg轴也在地平面内并指向右方;ogzg轴垂直地面指向地心。
坐标按右手定则规定,拇指代表og xg轴,食指代表ogyg轴,中指代表o g zg轴,如图2.1-1所示。
2)机体坐标系(体轴系)(Aircraft-body coordinate frame)Sb-oxyz 原点o取在飞机质心处,坐标与飞机固连。
Ox与飞机机身的设计轴线平行,且处于飞机对称平面内;oy轴垂直于飞机对称平面指向右方;oz轴在飞机对称平面内;且垂直于ox轴指向下方(参看图2.1-1)。
发动机推力一般按机体坐标系给出。
3)速度坐标系(Wind coordinate frame)Sa-oxa y aza速度坐标系也称气流坐标系。
原点取在飞机质心处,oxa轴与飞行速度V的方向一致。
一般情况下,V不一定在飞机对称平面内。
oza 轴在飞机对称面内垂x图2.1-1 机体坐标系与地面坐标系直于ox a 轴指向机腹。
oy a 轴垂直于x a oz a 轴平面指向右方,如图2.1-2所示。
作用在飞机上的气动力一般按速度坐标系给出。
4)航迹坐标系(Path coordinate frame)Sk-ox k y k z k原点取在飞机质心处,ox k 轴与飞机速度V 的方向一致。
oz k 轴在包含ox k 轴的铅垂面内,向下为正;oy k 轴垂直于x k oz k 轴平面指向右方。
研究飞行器的飞行轨迹时,采用航迹坐标系可使运动方程形式较简单。
2.1.2 飞机的运动参数 1)飞机的姿态角 1.俯仰角θ(Pitch angle)机体轴ox 与地平面间的夹角。
第二章飞行力学基础2.1 飞行器空间运动的表示、飞行器操纵机构、稳定性和操纵性的概念2.1.1常用坐标系1)地面坐标系(地轴系)(Earth-surface reference frame)Sg-og xgygzg原点og 取自地面上某一点(例如飞机起飞点)。
ogxg轴处于地平面内并指向某方向(如指向飞行航线);og yg轴也在地平面内并指向右方;ogzg轴垂直地面指向地心。
坐标按右手定则规定,拇指代表og xg轴,食指代表ogyg轴,中指代表o g zg轴,如图2-1所示。
2)机体坐标系(体轴系)(Aircraft-body coordinate frame)Sb-oxyz 原点o取在飞机质心处,坐标与飞机固连。
Ox与飞机机身的设计轴线平行,且处于飞机对称平面内;oy轴垂直于飞机对称平面指向右方;oz轴在飞机对称平面内;且垂直于ox轴指向下方(参看图2.1-1)。
发动机推力一般按机体坐标系给出。
3)速度坐标系(Wind coordinate frame)Sa-oxa y aza速度坐标系也称气流坐标系。
原点取在飞机质心处,oxa轴与飞行速度V的方向一致。
一般情况下,V不一定在飞机对称平面内。
oza 轴在飞机对称面内垂x图2.1-1 机体坐标系与地面坐标系直于ox a 轴指向机腹。
oy a 轴垂直于x a oz a 轴平面指向右方,如图2.1-2所示。
作用在飞机上的气动力一般按速度坐标系给出。
4)航迹坐标系(Path coordinate frame)Sk-ox k y k z k原点取在飞机质心处,ox k 轴与飞机速度V 的方向一致。
oz k 轴在包含ox k 轴的铅垂面内,向下为正;oy k 轴垂直于x k oz k 轴平面指向右方。
研究飞行器的飞行轨迹时,采用航迹坐标系可使运动方程形式较简单。
2.1.2 飞机的运动参数 1)飞机的姿态角 1.俯仰角θ(Pitch angle)机体轴ox 与地平面间的夹角。