91116-飞行力学-飞行动力学习题课(一)2014
- 格式:ppt
- 大小:1.11 MB
- 文档页数:1
飞行力学大作业1理论推导方程在平面地球假设下,推导飞机质心在体轴系下的动力学方。
质心惯性加速度的基本方程是式(5.1.7),其中动点就是在转动参考系F E 中的O y 。
这样r '质心相对于地球的速度,已用EV 来表示。
这里假设地轴固定于惯性空间,且0ω=。
因此,E F 的原点的加速度0a 就是与地球转动有关的向心加速度。
数值比较表明,这一加速度和g 相比通常可以略去。
而对于式(5.1.7)中的向心加速度项r ωω'的情况也是一样的,,也通常省略。
在式(5.1.7)中剩下的两项中E r V '=,而哥氏加速度为2E E V ω。
后者取决于飞行器速度的大小和方向,并且在轨道速度时至多为10%g 。
当然在更高速度时可能更大。
所以保留此项。
最后质心的加速度可以简化为如下形式:2E E ECE E E E a V V ω=+有坐标转换知:()()222()E E E E E ECB BE CE BE E E E BE E BE E EEB E E E E E EE BBBBB BBB Ba L a L V V L V L V V V V V Vωωωωωωω==+=+=+-+=++ (1)体轴系中的力方程为:f=m CB a 而 f=B A +mg+T设飞机的迎角为α,侧滑角为β,则体轴系的气动力表示为:cos cos cos sin sin ()()sin cos 0sin cos sin sin cos x y BW W y Z z A D D A L A L L C C A L a a a L αβαβααβββββ----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==--=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦重力在牵连垂直坐标系下为:00V g g ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(3)设发动机的安装角为τ,发动机的推力在机体坐标系的表示如下:cos 0sin Z x y T T T T T ττ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ (4)由坐标转换可知 :sin sin cos cos cos B BV V mg mL g mg θφθφθ-⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦(5)所以由上述公式可知:sin sin cos cos cos mg θφθφθ-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦+X Y Z ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦= m CB a = m [()E E E B B B V V ωω++] (6)其中:cos cos cos sin sin cos cos 0sin cos 00sin 0sin cos sin sin cos 0sin cos E B BW u V V V v L V w a a a a αβαβααβββββββ--⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(7) B p q r ω⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(8)EB EE B BE B p q r ω⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(9)带入原方程,可得其质心的动力学方程:cos sin [()()]cos sin [()()]sin cos cos [()()]EE x B B E E y B B E E z B B A T mg m u q q w r r v A mg m v r r u p p w A T mg m w p p v q q u τθθφτθφ+-=++-++=++-+-+=++-+(10)(2)飞机的转动动力学方程: 由G h =(11) 且I I I h R R dm =⎰()I IB B B B R L R R ω=+(12)由坐标变换知道:B BI I BI I IB B BI I IB B B h L h L R L R dm L R L R dmω==+⎰⎰(13)由书上的(4.7,4)的规则知道:B BI I IBR L R L =(14)B B B B B B h R R dm R R dmω=+⎰⎰(15)因为飞机一般认为是刚体飞机,故其变形分量一般认为为0,所以:B B B B B B B B B x xy zx B xyy yz zx yzz h R R dm R R dm I I I I I I I I I ωωκωκ==-=⎡⎤--⎢⎥=--⎢⎥⎢⎥--⎣⎦⎰⎰(16)22==0))()()()()xxy zx B xyy yz zx yzz xy yz rrx zx y z y z r ry zx z x x z r r z zx x y x yI I I I I I I I I I I L I p I r pq I I qr r h q h M I q I r p I I rp r h p h N I r I p qr I I pq q h p h κ⎡⎤--⎢⎥=--⎢⎥⎢⎥--⎣⎦=-+---+=----+-=-----+∑∑∑∑∑∑(((17)考虑发动机转子的转动惯量,可得r r r B B B h κω= (18)r rB B B B B B B Bh R R dm h h ωκω=+=+∑∑⎰ (19)可知在体轴系下的各转矩为:r rB BI I B B B B B B B B B B B B BG L G h h h h ωκωκωωκωω==+=++++∑∑000x xy zx x xy zx x xy zx xy y yz xy y yz xy y yz zx yz z zx yz z zx yz z L I I I p I I I p r q I I I p M I I I q I I I q r p I I I q N I I I r I I I r q p I I I r ⎡⎤⎡⎤⎡⎤-------⎡⎤⎡⎤⎡⎤⎡⎤⎡⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=--+--+---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-------⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦000r r x x r r y y r r z z h r q h h r p h h q p h ⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥++-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦∑∑∑∑∑∑(20)(3)()E V VB B B V L V W =+ (21)B u V v w ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ ; y x Bz W W W W ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ (22)()cos cos ()(sin sin cos cos sin )()(cos sin cos sin sin )E x y z x u W v W w W θψφθψφψφθψφψ=+++-+++()cos sin ()(sin sin sin cos cos )()(cos sin sin sin cos )E x y z y u W v W w W θψφθψφψφθψφψ=++++++-()sin ()cos cos cos E x y z u W v W w θθφθ=++++ (23)(4)由公式32V i j k ωωφθψ-=++ 再根据欧拉角的矩阵变化知100i ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 30c o s sin j φφ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦ 2s i nc o s s i n c o s c o s k θθφθφ-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(24) 当V ω和E ω均予忽略时,则[P ,Q ,R]=[p ,q ,r],即F B 相对于F I 的角速度,方程可写成如下形式:10sin 0cos cos sin 0sin cos cos P Q R θφφθφθφθφψ⎡⎤-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦(25)通过求逆,知:1sin tan cos tan 0cos sin 0sin sec cos sec P Q R φφθφθθφφψφθφθ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(26)(5)当无风和具有对称面的刚体飞机,其六自由度运动方程为:质心动力学方程:cos sin [()()]cos sin [()()]sin cos cos [()()]EE x B B E E y B B E E z B B A T mg m u q q w r r v A mg m v r r u p p w A T mg m w p p v q q u τθθφτθφ+-=++-++=++-+-+=++-+(27)若忽略地球的自转则可得:cos sin []cos sin []sin cos cos []x y z A T mg m u qw rv A mg m v ru pw A T mg m w pv qu τθθφτθφ+-=+-+=+--+=+-(28)绕质心转动的动力学方:由于具有对称面,且可以忽略B κ有:==0xy yz I I 根据(2)推出其简化的动力学方程为:22))()()()()x zx y z y zx z x z zx x y L I p I r pq I I qr M I q I r p I I rp N I r I p qr I I pq=-+--=----=----(((29)质心运动学方程:根据(3)可知,()cos cos ()(sin sin cos cos sin )()(cos sin cos sin sin )()cos sin ()(sin sin sin cos cos )()(cos sin sin sin cos )()sin ()cos cos cos E x y z E x y z E x y x u W v W w W y u W v W w W z u W v W w θψφθψφψφθψφψθψφθψφψφθψφψθθφθ=+++-+++=++++++-=++++(30)由于是无风,故x y z W W W === (31)cos cos (sin sin cos cos sin )(cos sin cos sin sin )cos sin (sin sin sin cos cos )(cos sin sin sin cos )sin cos cos cos E E E x u v w y u v w z u v w θψφθψφψφθψφψθψφθψφψφθψφψθθφθ=+-++=+++-=++(32)绕质心转动的运动学方程: 根据(4)可知sin tan cos tan cos sin sin sec cos sec P Q R Q R Q R φφθφθθφφψφθφθ=++=-=+(33)二、小扰动线化设基准运动为对称定常直线水平飞行,假设飞机是具有对称面的刚体。
目录1.请推导飞机小扰动运动方程,并分析其使用条件。
(2)2.什么是驾驶员操纵期望参数,分析其含义。
(12)3.请列写敏捷性尺度并对其含义进行分析说明。
(13)4.试说明评估飞机飞行性能的基本内容和基本方法。
(16)1.请推导飞机小扰动运动方程,并分析其使用条件。
一、小扰动法简介(1)基本概念研究飞行器的稳定性和操纵性问题时,一般把飞机运动分为基准运动和扰动运动。
基准运动(或称未扰动运动)是指在理想条件下,飞行器不受任何外界干扰,按预定规律进行的运动,如定直平飞、定常盘旋等。
基准运动参数用下标“*”表示,如V、*α、*θ等。
*由于各种干扰因素,使飞行器的运动参数偏离了基准运动参数,因而运动不按预定的规律进行,这种运动称为扰动运动。
受扰运动的参数,不附加任何特殊标记,例如V、α、θ等。
与基准运动差别甚小的扰动运动称为小扰动运动。
(2)基本假设在小扰动假设条件下,一般情况就能将飞行器运动方程进行线性化。
但为了便于将线性扰动运动方程组分离为彼此独立的两组,即纵向和横侧小扰动方程组,以减少方程组阶次而解析求解,还需要做下列假设:1)飞行器具有对称平面(气动外形和质量分布均对称),且略去机体内转动部件的陀螺力矩效应。
2)在基准运动中,对称平面处于铅垂位置(即0φ=),且运动所在平面且运动所在平面与飞行器对称平面相重合(即0β=)。
在满足上述条件下,可以认为,在扰动运动中,纵向气动力和力矩只与纵向运动参数有关,而横侧向气动力和力矩也只与横侧运动参数有关。
有了这些推论,就不难证明扰动运动方程可以分离为彼此独立的两组。
其中一组只包含纵向参数,即飞行器在铅垂平面内作对称飞行时的运动参数,,,,,,,,,g g e p u w q x z αθγδδ等,称为纵向扰动运动方程组;另一组只包含横侧参数,即飞行器在非对称平面内的运动参数,,,,,,,,,,g a r v p r y βψχφμδδ等,称为横侧向扰动运动方程组。
title飞行力学(北京理工大学) 中国大学mooc答案100分最新版content部分章节作业答案,点击这里查看第一章作用在飞行器上的力和力矩(下)测验(单元一)1、对于机(弹)体坐标系,英式和俄式定义是不同的,其中()。
答案: 飞行器的立轴正方向定义相反2、在地面坐标系中,确定速度矢量的方向可以通过()。
答案: 弹道倾角和弹道偏角3、俄式弹道坐标系和英式航迹坐标系之间存在以下哪种关系,()。
答案: 英式航迹坐标系绕其轴旋转-90°可与俄式弹道坐标系重合4、若某矢量在坐标系A和坐标系B中的投影之间存在,则坐标系A与B之间的关系是()。
答案: 两个坐标系的轴重合5、判断飞行器是否具有纵向静稳定性,可以根据()。
答案: 焦点和质心相对于飞行器头部的前后位置6、飞行器的弹道倾角是指()。
答案: 飞行器的速度矢量与水平面的夹角7、飞行器的侧滑角是指()。
答案: 飞行器速度矢量与飞行器纵向对称面之间的夹角8、研究飞行力学问题时,将地面坐标系当成惯性坐标系,需要()。
答案: 忽略地球的自转和公转,将其视为静止不动9、飞行器的俯仰角是指()。
答案: 飞行器的纵轴与水平面之间的夹角10、如果坐标系A和坐标系B的原点重合,且坐标系A的某坐标轴被坐标系B的某两个坐标轴形成的平面所包含,则由坐标系A向坐标系B进行旋转变换时,()。
答案: 经过2次初等旋转变换,即可使两个坐标系完全重合11、飞行器绕质心转动的动力学方程一般投影到()中。
答案: 弹体坐标系12、在建立导弹动力学基本矢量方程时,用到了()。
答案: 固化原理13、关于纵向运动和侧向运动,()是正确的。
答案: 导弹的纵向运动可以独立存在,但侧向运动不能独立存在14、民航飞机在一定的高度上平飞,关于其运动特点,下述描述错误的是()。
答案: 飞机主要通过侧滑形成侧向力,从而进行水平面内的转弯15、在水平面内飞行的两个飞行器,速度相同,则()。
答案: 法向过载大的飞行器的曲率半径较小,飞行器越容易转弯16、关于过载下列说法错误的是()。
航天飞行动力学作业(1)1. 动坐标系矢量导数已知火箭相对于地面坐标系的速度5500/v m s =,弹道倾角10θ=,并在纵向平面内运动,俯仰角速度为 1.5/s ω=,火箭俯仰角为30。
整流罩质心距离火箭质心为20m ,质心整流罩分离时相对于火箭箭体的相对速度为2m/s r v =,速度倾角(与火箭纵轴夹角)为45,求整流罩相对于地面坐标系的速度矢量。
解答: c =+r r ρ,c r 为整流罩在地面坐标系下的矢径,r 为火箭质心在地面坐标系下的矢径,ρ为整流罩质心距离火箭质心距离。
c d d d dt dt dt =+r r ρ d dt t δδ=+⨯ρρωρ c d d dt dt tδδ=++⨯r r ρωρ111111cx x rx x x cy y ry y y cz z rz z z v v v v v v v v v ωρωρωρ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=++⨯⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ 5500*cos102*cos 450205417.95500*sin102*sin 4500956.900 1.5/57.300cx cy cz v v v ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=++⨯=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ 2. 变质量质点动力学方程设火箭发动机秒耗量100kg/s m =,相对喷气速度为3000m/s e μ=,俯仰角速度为 1.5/s ω=,转动惯量变化率1000kg m/s z I =⋅,喷口距离质心距离为10m ρ=,求火箭发动机工作产生的附件哥氏力、附加相对力,附加哥氏力矩,附加相对力矩。
解答:附加哥氏力:0100221000052.3561.5/57.300k T e F m -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥'=-⨯=-⨯⨯⨯=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ωρ 附加相对力:30003000001000000rele F m -⎡⎤⎡⎤⎢⎥⎢⎥'=-⨯=-⨯=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦μ 附加哥氏力矩:0000100100()00001000000001000 1.5/57.30 1.5/57.30287.96kT e T e M m tδδ--⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'=-⋅-⨯⨯=--⨯⨯⨯=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦Iωρωρ 附加相对力矩:0rele e M m '=-⨯=ρμ3. 引力和重力及其夹角将地球视为标准椭球模型,编程求解地表处地心维度分别为=306090φ,,时的:(1)引力加速度,r g g φ;(2)重力加速,r k k φ;(3)离心惯性加速度,er e a a ϕ''; (4)引力加速度与地心矢径夹角1μ;(5)重力加速度与地心矢径夹角μ;(6)地理纬度0B 。