飞行器自动控制导论_第二章飞行力学基础
- 格式:doc
- 大小:1.08 MB
- 文档页数:31
飞行器力学与飞行控制飞行器力学与飞行控制是航空学中的重要领域,它涉及着飞行器在空中运动的物理原理和如何通过控制手段来实现飞行器的稳定和操控。
本文将介绍飞行器力学的基本概念和飞行控制的技术原理。
一、飞行器力学飞行器力学是研究飞行器在空中受到的力和力的作用下产生的运动的学科。
对于飞行器来说,有三个基础力,即重力、升力和阻力。
1. 重力:飞行器受到地球引力的作用,重力是垂直向下的力,可以用质量乘以重力加速度来表示。
2. 升力:飞行器在飞行过程中产生的垂直向上的力,由机翼产生。
升力的大小与机翼的形状、面积和飞行器的速度有关。
3. 阻力:飞行器在空气中移动时受到的阻碍力,阻力的大小和飞行器的速度、形状以及空气密度有关。
飞行器力学还包括其他一些重要概念,如迎角、侧滑角等。
迎角是机翼与飞行方向之间的夹角,它决定着升力和阻力的大小。
侧滑角是飞行器在水平面上的滑移角度,它涉及到飞行器的侧向稳定性和操控。
二、飞行控制飞行控制是指通过各种控制手段来实现飞行器的稳定和操控。
飞行控制系统主要包括飞行器姿态控制和飞行轨迹控制两个方面。
1. 飞行器姿态控制:姿态控制是指控制飞行器的方向、姿态和稳定状态。
飞行器姿态的变化主要由飞行器的控制面(如副翼、升降舵等)的运动引起。
通过控制这些控制面的运动,可以实现飞行器的横滚、俯仰和偏航控制。
2. 飞行轨迹控制:轨迹控制是指控制飞行器的飞行路径和终点。
飞行轨迹的控制主要依靠发动机推力和飞行器的机动性能。
通过控制发动机的推力和调整姿态,可以改变飞行器的速度、高度和飞行方向。
飞行控制还涉及到飞行器的自动控制系统和人工操纵。
自动控制系统能够根据预设的参数和算法来实现飞行器的自主飞行。
而人工操纵则是指由飞行员通过操纵杆、脚蹬等手动控制装置来操作飞行器。
三、结语飞行器力学与飞行控制是航空学中不可或缺的重要内容。
了解飞行器力学和掌握飞行控制技术对于飞行器设计、飞行操作和飞行安全都具有重要意义。
在未来的航空发展中,随着技术的进步和需求的变化,飞行器力学与飞行控制也将不断地发展和创新,为航空事业的发展做出更大的贡献。
航空器设计中的飞行力学与控制研究航空器设计中的飞行力学与控制研究是航空工程领域的重要组成部分。
飞行力学与控制研究旨在研究飞行器在各种飞行状态下的力学特性,以及如何利用控制系统实现良好的飞行性能和稳定性。
本文将研究航空器设计中的飞行力学与控制,重点介绍飞行力学的基本原理和常用的控制方法。
1. 飞行力学的基本原理飞行力学是研究航空器在空气中受到的各种力和力矩的学科。
在航空器设计中,了解飞行力学的基本原理对实现良好的飞行性能至关重要。
飞行力学主要包括空气动力学、飞行动力学和稳定性分析。
1.1 空气动力学空气动力学是研究航空器在空气中受到的气动力和气动力矩的学科。
它与空气流动的物理过程有关,包括气动力的产生、分析和控制。
空气动力学的研究需要了解机翼、机身、尾翼等部件在不同飞行状态下的气动力特性。
通过分析气动力系数、升力和阻力等参数,可以评估飞行器的飞行性能,并为飞行器的控制系统提供基础数据。
1.2 飞行动力学飞行动力学是研究航空器在飞行过程中受到的动力学力和动力学力矩的学科。
它与航空器的运动学和动力学特性有关,包括航迹控制、俯仰姿态和横滚姿态控制等。
飞行动力学研究的重点在于分析和控制飞行器的姿态和运动状态。
通过研究飞行器的动力学方程和运动学方程,可以设计出满足飞行任务要求的控制系统,并实现良好的飞行性能。
1.3 稳定性分析稳定性分析是研究航空器在不同飞行状态下的稳定性能力的学科。
稳定性分析旨在评估飞行器在飞行过程中的稳定性和操控性。
稳定性分析需要考虑飞行器的静态稳定性和动态稳定性。
静态稳定性关注飞行器在平衡状态下的稳定性特性,动态稳定性则关注飞行器在受到扰动后的回复特性。
2. 控制方法的研究在航空器设计中,控制方法的研究是实现良好飞行性能和稳定性的关键。
常用的控制方法包括PID控制器、模糊控制、自适应控制和优化控制等。
2.1 PID控制器PID控制器是一种常用的经典控制方法,它通过比较目标值和实际值的差异,通过调整比例、积分和微分参数来实现控制器的输出。
飞行力学知识点总结一、飞行力学的基本概念1. 飞行力学的定义飞行力学是研究飞机在大气环境中的运动规律和飞行性能的科学学科。
它包括飞行动力学、飞行静力学和航向稳定性等内容。
2. 飞机的运动状态飞机的运动状态包括静止状态、匀速直线运动状态和加速直线运动状态等多种状态。
在进行飞机设计与分析时,需要充分考虑飞机在不同运动状态下的特性和性能。
3. 飞机的坐标系飞机通常采用本体坐标系和地理坐标系进行描述和分析。
本体坐标系是以飞机为参考物体建立的坐标系,用于描述和分析飞机内部的运动规律;地理坐标系是以地球表面为参考物体建立的坐标系,用于描述和分析飞机在大气中的运动规律。
4. 飞机的运动参数飞机的运动参数包括速度、加速度、位移、航向、倾角等多个参数,这些参数直接影响着飞机的飞行状态和性能。
二、风阻和升力1. 风阻的概念和特性风阻是飞机在飞行中受到的空气阻力,它随飞机速度和气动外形等因素变化。
风阻的大小直接影响飞机的燃油消耗和续航力。
2. 风阻的计算方法风阻的计算一般采用实验测定和理论计算相结合的方法,通过气动力学原理和风洞试验等手段来确定飞机在不同速度下的风阻系数和风阻大小。
3. 升力的概念和特性升力是飞机在飞行过程中所受到的向上的气动力,它是飞机能够在大气中持续飞行的重要保障。
升力的大小取决于飞机的气动外形、机翼面积和攻角等因素。
4. 升力的计算方法升力的计算一般采用理论推导和数值模拟相结合的方法,通过气动力学公式和实验数据来确定飞机在不同状态下的升力大小和升力系数。
三、飞机的稳定性和控制1. 飞机的平衡状态飞机的平衡状态包括静态平衡和动态平衡两种状态。
静态平衡是指飞机在静止状态下所处的平衡状态,动态平衡是指飞机在运动过程中所处的平衡状态。
2. 飞机的稳定性飞机的稳定性是指飞机在受到外界扰动时能够自动恢复到原来的平衡状态的能力。
飞机的稳定性直接影响着其飞行过程中的安全性和舒适性。
3. 飞机的控制系统飞机的控制系统包括飞行操纵系统、引擎控制系统和动力控制系统等多个部分,它们协同工作来保证飞机在飞行中能够保持稳定的运动状态和实现各种飞行任务。
第二章飞行力学基础2.1 飞行器空间运动的表示、飞行器操纵机构、稳定性和操纵性的概念2.1.1常用坐标系1)地面坐标系(地轴系)(Earth-surface reference frame)Sg-og xgygzg原点og 取自地面上某一点(例如飞机起飞点)。
ogxg轴处于地平面内并指向某方向(如指向飞行航线);og yg轴也在地平面内并指向右方;ogzg轴垂直地面指向地心。
坐标按右手定则规定,拇指代表og xg轴,食指代表ogyg轴,中指代表o g zg轴,如图2-1所示。
2)机体坐标系(体轴系)(Aircraft-body coordinate frame)Sb-oxyz 原点o取在飞机质心处,坐标与飞机固连。
Ox与飞机机身的设计轴线平行,且处于飞机对称平面内;oy轴垂直于飞机对称平面指向右方;oz轴在飞机对称平面内;且垂直于ox轴指向下方(参看图2.1-1)。
发动机推力一般按机体坐标系给出。
3)速度坐标系(Wind coordinate frame)Sa-oxa y aza速度坐标系也称气流坐标系。
原点取在飞机质心处,oxa轴与飞行速度V的方向一致。
一般情况下,V不一定在飞机对称平面内。
oza 轴在飞机对称面内垂x图2.1-1 机体坐标系与地面坐标系直于ox a 轴指向机腹。
oy a 轴垂直于x a oz a 轴平面指向右方,如图2.1-2所示。
作用在飞机上的气动力一般按速度坐标系给出。
4)航迹坐标系(Path coordinate frame)Sk-ox k y k z k原点取在飞机质心处,ox k 轴与飞机速度V 的方向一致。
oz k 轴在包含ox k 轴的铅垂面内,向下为正;oy k 轴垂直于x k oz k 轴平面指向右方。
研究飞行器的飞行轨迹时,采用航迹坐标系可使运动方程形式较简单。
2.1.2 飞机的运动参数 1)飞机的姿态角 1.俯仰角θ(Pitch angle)机体轴ox 与地平面间的夹角。
航空航天工程师的飞行力学知识航空航天工程师是一个综合性较强的职业,需要具备相关的专业知识和技能。
其中,飞行力学是航空航天工程师所必备的核心知识之一。
本文将介绍航空航天工程师在飞行力学方面需要了解的内容,以及其在工程设计和飞行控制中的应用。
一、飞行原理飞行力学研究的基础是飞行原理。
在航空航天领域,飞行原理包括气动力学、重力学和运动学等方面的知识。
气动力学研究空气对飞机的作用力和运动产生的影响,重力学研究地球引力对飞机的作用力,而运动学则研究飞机的运动状态和路径。
二、飞行力学模型为了研究飞行器的运动,需要建立相应的力学模型。
常用的飞行力学模型有单刚体模型和多刚体模型等。
单刚体模型适用于研究简单、对称的飞行器,如常见的飞机。
多刚体模型适用于研究非对称、复杂的飞行器,如卫星和航天飞机等。
根据实际需求,航空航天工程师可以选择合适的模型进行分析和计算。
三、飞行力学方程为了描述飞行器的运动,需要建立相应的运动方程。
在飞行力学中,最常用的方程是牛顿第二定律和欧拉运动方程。
牛顿第二定律描述了物体的质量和加速度之间的关系,欧拉运动方程描述了物体的力矩和角加速度之间的关系。
通过这些方程,可以计算飞行器在不同飞行状态下的运动轨迹和力学参数。
四、飞行器稳定性与操纵性飞行器的稳定性与操纵性是设计飞行器的重要考虑因素。
稳定性是指飞行器在受到干扰后能够自动恢复到平衡状态的能力,而操纵性是指飞行器在操纵员的控制下能够按照预期进行操纵的能力。
航空航天工程师需要通过飞行力学的知识,设计出满足稳定性和操纵性要求的飞行器结构和控制系统。
五、飞行动力学飞行动力学研究飞行器的动力学特性,包括加速度、速度、高度和姿态等方面的运动。
通过飞行动力学的分析,可以优化飞行器的设计,提高其性能和安全性。
此外,飞行动力学还研究飞行器的机动性能和航迹控制等问题,为飞行员提供飞行操作指导。
六、飞行力学在航空航天工程中的应用飞行力学在航空航天工程中有广泛的应用。
第二章飞行力学基础2.1 飞行器空间运动的表示、飞行器操纵机构、稳定性和操纵性的概念2.1.1常用坐标系1)地面坐标系(地轴系)(Earth-surface reference frame)Sg-og xgygzg原点og 取自地面上某一点(例如飞机起飞点)。
ogxg轴处于地平面内并指向某方向(如指向飞行航线);og yg轴也在地平面内并指向右方;ogzg轴垂直地面指向地心。
坐标按右手定则规定,拇指代表og xg轴,食指代表ogyg轴,中指代表o g zg轴,如图2-1所示。
2)机体坐标系(体轴系)(Aircraft-body coordinate frame)Sb-oxyz 原点o取在飞机质心处,坐标与飞机固连。
Ox与飞机机身的设计轴线平行,且处于飞机对称平面内;oy轴垂直于飞机对称平面指向右方;oz轴在飞机对称平面内;且垂直于ox轴指向下方(参看图2.1-1)。
发动机推力一般按机体坐标系给出。
3)速度坐标系(Wind coordinate frame)Sa-oxa y aza速度坐标系也称气流坐标系。
原点取在飞机质心处,oxa轴与飞行速度V的方向一致。
一般情况下,V不一定在飞机对称平面内。
oza 轴在飞机对称面内垂x图2.1-1 机体坐标系与地面坐标系直于ox a 轴指向机腹。
oy a 轴垂直于x a oz a 轴平面指向右方,如图2.1-2所示。
作用在飞机上的气动力一般按速度坐标系给出。
4)航迹坐标系(Path coordinate frame)Sk-ox k y k z k原点取在飞机质心处,ox k 轴与飞机速度V 的方向一致。
oz k 轴在包含ox k 轴的铅垂面内,向下为正;oy k 轴垂直于x k oz k 轴平面指向右方。
研究飞行器的飞行轨迹时,采用航迹坐标系可使运动方程形式较简单。
2.1.2 飞机的运动参数 1)飞机的姿态角 1.俯仰角θ(Pitch angle)机体轴ox 与地平面间的夹角。
以抬头为正。
2.偏航角ψ(Yaw angle)机体轴ox 在地平面上的投影与地轴o g x g 间的夹角。
以机头右偏航为正。
3.滚转角φ(Roll angle)又称倾斜角,指机体轴oz 与通过ox 轴的铅垂面间的夹角。
飞机向右倾斜时图2.1-2 速度坐标系与地面坐标系为正。
2)速度轴系与地面轴系的关系以下三个角度表示速度坐标系与地面坐标系的关系。
1.航迹倾斜角γ飞行速度矢量与地平面间的夹角,以飞机向上飞时的γ为正。
2. 航迹方位角χ飞行速度矢量在地平面上的投影与o g x g 间的夹角,以速度在地面的投影在o g x g 之右为正。
3. 航迹滚转角μ速度轴oz a 与包含ox a 轴的铅垂面间的夹角。
飞机向右倾斜时为正。
3)速度向量与机体轴系的关系 1.迎角α (Angle of attack)速度向量V 在飞机对称面上的投影与机体轴ox 轴的夹角。
以V 的投影在box 轴之下为正,如图2.1-3所示。
2. 侧滑角β(Sideslip angle)速度向量V 与飞机对称面的夹角。
以速度V 处于对称面之右时为正。
3)机体坐标系的速度分量飞行速度V 在机体坐标系三个轴上的分量分别为u 、v 和w 在滚动轴b x 上的分量:ubx b yb zo图2.1-3 迎角与侧滑角在俯仰轴b y 上的分量:v 在偏航轴b z 上的分量:w 迎角和侧滑角可以用速度分量定义u warctan=α (2.1-1) Vvarcsin =β (2.1-2)其中21222)(w v u V ++=如果迎角和侧滑角很小(〈15º〉,则式(2.1-1)和式(2.1-2)可以近似为u w=α (2.1-3) Vv=β (2.1-4)其中α和β的单位为弧度(rad )。
4)机体坐标系的角速度分量机体坐标系相对于地面坐标系的转动角速度ω沿机体坐标系各轴的分量分别为p 、q 和r滚动角速度p :与机体坐标轴b x 一致; 俯仰角速度q :与机体坐标轴b y 一致; 偏航角速度r :与机体坐标轴b z 一致。
飞行器的三个线运动和三个转动构成了飞行器的六自由度运动。
2.1.3 飞行器的操纵机构飞机的运动通常利用升降舵、方向舵、副翼及油门杆来控制。
升降舵(Elevator )偏转角用e δ表示,规定升降舵后缘下偏为正。
e δ的正向偏转产生的俯仰力矩M 为负值,即低头力矩。
副翼(Ailerons)偏转角用a δ表示,规定右副翼后缘下偏(左副翼随同上偏)为正。
a δ正向偏转产生的滚转力矩L 为负值。
方向舵(Rudder)偏转角用r δ表示,规定方向舵后缘向左偏转为正。
r δ正向偏转产生的偏航力矩N 为负值。
驾驶员通过驾驶杆、脚蹬和操纵杆操纵舵面。
规定驾驶杆前推位移e W 为正(此时e δ亦为正);左倾位移a W (此时a δ亦为正);左脚蹬向前位移r W 为正(此时r δ亦为正)。
油门(Throttle)杆前推为正,对应加大油门从而加大发动机推力。
反之为负,即收油门,减小推力。
2.1.5 稳定性和操纵性的概念稳定性是平衡状态的性质,为了讨论稳定性我们首先定义什么是平衡。
如果一架飞机保持稳定的匀速飞行,则合力以绕质心的合力矩都等于零。
满足这要求的飞机就是说它在平衡状态下或者飞行在平衡条件下。
相反,如果力和力矩的总和不为零,则飞机将会经历平移和旋转加速。
飞行器的稳定性是指飞行器在飞行过程中,由于受到某种干扰,是其偏离了原来的飞行状态,当干扰消失之后,飞行器能够恢复到原来飞行状态的能力。
这种扰动可能来自于大气的现象、发动机推力改变、或驾驶员的偶然操纵等。
若飞行器可以恢复到原来的飞行状态,就称它是稳定的,或称之为具有稳定性;若扰动后的运动越来越偏离原来的飞行状态,称它是不稳定的;若扰动后的运动既不恢复也不远离原来的运动,称为中立稳定。
一架飞机只有是足够稳定的,驾驶员才不会感觉很疲劳,因为不稳定的飞机是驾驶员必须不停地操纵飞机以便应付外界的扰动。
虽然本身在空气动力上不太稳定或不稳定的飞机可以飞行,但是不够安全,除非增加机电设备以提供人工的稳定性,这种设备称为增稳系统。
一般所说的飞行器的稳定性,实际上包含两方面的含意。
一是指飞行器(包括稳定自动器)的稳定性;另一方面是指飞行器自身(不包括稳定自动器)的稳定性。
飞机稳定的稳定一般分为静态稳定和动态稳定,静态稳定性是指飞机受到扰动后返回到其初始平衡状态的趋势。
飞行器自身的稳定性,也称飞行器静稳定性,它是指飞行器受到扰动后返回到初始平衡状态的趋势。
它与飞行器的气动外形和布局有关。
包括:(1)纵向静稳定性,是指飞机围绕y 轴的稳定性; 当飞行器在作平衡飞行时,若有一个外力干扰,是它的迎角增大,干扰消除后,靠飞机本身气动特性(驾驶员不偏转舵面),产生一个恢复力矩试图使飞机恢复到原来的平衡状态。
经过理论推导和实验发现只要保证气动力焦点在质心之后,并有一定的距离,就可以保证迎角是稳定的。
(2)方向静稳定性。
方向静稳定性是指飞机绕z 轴的静稳定性。
当飞行受到偏航扰动时,飞行器有自动返回到平衡状态的趋势。
由于飞机具有方向静稳定性,飞机总是指向相对风的方向,所以也称风向标稳定性。
(3)滚动静稳定性。
当一架飞机受到扰动,偏离水平状态,发生了倾斜,飞行器能靠自身的气动特性产生恢复力矩试图使其恢复到水平状态。
在动态稳定性的研究中,我们关心飞机在受到干扰,偏离平衡点之后,运动的历史过程。
注意静态稳定不能保证动态稳定。
飞机的操纵性所包含的内容较多。
如要求操纵简单、省力、符合驾驶员的生理习惯,操纵力和操纵机构位移适合,以及飞机对驾驶员操纵反应时差要适当等。
从操纵的功用来说,所谓操纵性是指:飞机能按照驾驶员的操纵意图,以一定的运动过程改变飞行方向或姿态。
因此操纵性是飞机改变飞行状态的能力。
, 2.2空气动力与力矩2.2.1空气动力在气流坐标系的分解总的空气动力∑R 沿气流坐标系各轴的分量分别为a a a Z Y X ,,,通常用D 和L 分别表示阻力和升力,于是有a X D -=,a Z L -=。
空气动力学常采用无因次气动力系数形式,其定义如下:阻力系数(沿a ox 的分量)W D S V D C 221/ρ=,阻力系数a x C 向后为正侧力系数(沿a oy 的分量)W a y S V Y C a 221/ρ=,侧力系数a y C 向右为正升力系数(沿a oz 的分量)W L S V L C 221/ρ=,向上为正2.6.2总的空气动力矩在机体坐标系的分解机体转动惯量是以机体坐标系来定义的,所以合力矩矢量沿机体轴分解成L ,M ,N 。
无因次力矩系数定义如下:绕ox 轴的滚转力矩系数b S V L C W l 221/ρ= 绕oy 轴的俯仰力矩系数A W m c S V M C 221/ρ=绕oz 轴的偏航力矩系数b S V N C W n 221/ρ=以上各式中的ρ是空气密度,V 是为空速,W S 为机翼参考面积,b 为机翼展长,A c 是机翼平均气动弦长。
2.3纵向气动力和气动力矩 2.3.1升力升力L :飞机总的空气动力∑R 沿气流坐标系a Z 轴的分量,向上为正。
产生升力的主要部件是飞机的机翼。
1)机翼的几何形状和几何参数 机翼剖面见图2.3-1翼弦长c :翼型前缘A 到后缘B 的距离。
相对厚度:%100⨯=cδδ,δ为最大厚度相对弯度:%100⨯=cf,f 为中弧线最高点至翼弦线距离。
展弦比:wS b A 2=,b 为机翼展长,w S 为机翼面积。
B图2.3-1机翼剖面梯形比:%100⨯=rtc c λ,t c ,r c 分别是翼尖弦长和翼根弦长 翼平均空气动力弦:dy y c S c b WA )(22/02⎰=(2.3-1)这里,)(y c 表示沿机翼展向坐标y 处的翼弦长; 前缘后掠角0Λ,如图2.3-2所示。
1/4弦线点后掠角4/1Λ,如图2.3-2所示。
2)机翼的升力(1)亚声速时升力产生的机理当气流以某一迎角α流过翼型时,由于翼型上表面凸起的影响,使得流管变细,即截面积S 减小。
根据连续方程VS=m(常数)可知,翼型上表面的流速必然增加,而下表面流速则减小,如图2.3-3所示,根据伯努利方程0221p V p =+ρ(常数),流速大的地方,压强将减小,反之增大。
因此,翼型的上下表面将产生压力差。
因此,垂直飞行速度矢量的压力差的总和,就是升力。
c图2.3-2 机翼平面形状压力系数p :翼面上某点的压强p 与远前方自由气流的压强∞p ,同远前方自由气流的动压之比,即221∞∞∞-=V p p p ρ (2.3-2)压力分布图:将翼面上各点的压力系数的数值光滑连接,若p 为负值(吸力)则箭头向外,若为正值(即压力)箭头指向翼面,如图2.3-4所示。