第二讲 飞机的基本飞行性能
- 格式:ppt
- 大小:2.42 MB
- 文档页数:81
飞机的飞行性能在对飞机进行介绍时,我们常常会听到或看到诸如“活动半径”、“爬升率”、“巡航速度”这样的名词,这些都是用来衡量飞机飞行性能的术语。
简单地说,飞行性能主要是看飞机能飞多快、能飞多高、能飞多远以及飞机做一些机动飞行(如筋斗、盘旋、战斗转弯等)和起飞着陆的能力。
速度性能最大平飞速度:是指飞机在一定的高度上作水平飞行时,发动机以最大推力工作所能达到的最大飞行速度,通常简称为最大速度。
这是衡量飞机性能的一个重要指标。
最小平飞速度:是指飞机在一定的飞行高度上维持飞机定常水平飞行的最小速度。
飞机的最小平飞速度越小,它的起飞、着陆和盘旋性能就越好。
巡航速度:是指发动机在每公里消耗燃油最少的情况下飞机的飞行速度。
这个速度一般为飞机最大平飞速度的70%~80%,巡航速度状态的飞行最经济而且飞机的航程最大。
这是衡量远程轰炸机和运输机性能的一个重要指标。
当飞机以最大平飞速度飞行时,此时发动机的油门开到最大,若飞行时间太长就会导致发动机的损坏,而且消耗的燃油太多,所以一般只是在战斗中使用,而飞机作长途飞行时都是使用巡航速度。
高度性能最大爬升率:是指飞机在单位时间内所能上升的最大高度。
爬升率的大小主要取决与发动机推力的大小。
当歼击机的最大爬升率较高时,就可以在战斗中迅速提升到有利的高度,对敌机实施攻击,因此最大爬升率是衡量歼击机性能的重要指标之一。
理论升限:是指飞机能进行平飞的最大飞行高度,此时爬升率为零。
由于达到这一高度所需的时间为无穷大,故称为理论升限。
实用升限:是指飞机在爬升率为5m/s时所对应的飞行高度。
升限对于轰炸机和侦察机来说有相当重要的意义,飞得越高就越安全。
飞行距离航程:是指飞机在不加油的情况下所能达到的最远水平飞行距离,发动机的耗油率是决定飞机航程的主要因素。
在一定的装载条件下,飞机的航程越大,经济性就越好(对民用飞机),作战性能就更优越(对军用飞机)。
活动半径:对军用飞机也叫作战半径,是指飞机由机场起飞,到达某一空中位置,并完成一定任务(如空战、投弹等)后返回原机场所能达到的最远单程距离。
2.4 飞机的飞行性能、稳定与操纵2.4.1 机体坐标轴系研究飞机的飞行性能、稳定与操纵原理的时候,为了描述飞机的空间位置、速度、加速度、力和力矩等向量时,须采用相应的坐标系。
常用的坐标系有:地面坐标轴系、机体坐标轴系、气流坐标轴系、航迹坐标轴系、半机体坐标轴系、稳定坐标轴系等。
这些坐标系都是三维正交右手系。
为研究问题的方便,在讨论飞机的操稳特性时,我们选用机体坐标轴系作为参考坐标系。
图 2.4.1 机体坐标轴系机体坐标轴系(Oxyz)是固定在飞机上的坐标轴系,其原点O位于飞机的质心,纵轴x位于飞机参考面(对称面)内指向前方且平行于机身轴线(或翼根弦线),横轴y垂直于飞机参考面指向右方,竖轴z在飞机参考面内垂直于纵轴指向下方,如图2.4.1所示。
飞机绕机体横轴oy的转动(称为俯仰运动)以及沿纵轴ox和竖轴oz的移动,是发生在飞机对称面内的运动,通常称为纵向运动;而飞机绕机体纵轴ox的转动(称为滚转运动)和沿横轴oy的移动,是发生在飞机横截面内的运动,称为横向运动;飞机绕竖轴oz的转动(称为偏航运动)称为方向运动。
2.4.2飞机的飞行性能和机动飞行讨论飞机的飞行性能时,将飞机作为一个质点,其上所受到的力有:重力G、动力装置的推力T、升力L和阻力D,如图2.4.2所示。
在等速直线飞行时,这些力是平衡的。
图中为航迹速度与水平面的夹角,称为爬升角。
当航迹速度位于过原点的水平面之上时,为正。
为发动安装角,为飞行迎角。
发动安装角通常很小,近似认为=0。
飞机等速直线飞行的轨迹不外有3种情况:等速直线爬升(>0)、等速直线平飞(=0)和等速直线下滑(<0)。
这3种典型等速直线运动的飞行性能分别称为爬升(或上升)性能、平飞性能和下滑性能。
图2.4.2 作用在飞机上的力图2.4.3 爬升率飞机有各种飞行状态(如起飞/着陆、等速上升/下降、上升/下降转弯、巡航、机动飞行等),概括起来可将飞机的飞行性能分为类:(1) 等速直线飞行性能(基本飞行性能),(2) 续航性能,(3) 起飞着陆性能,(4) 机动飞行性能。
第二讲飞机的基本飞行性能讲义一、引言飞机的基本飞行性能是指飞机在不同飞行阶段中的各种性能指标。
了解和掌握飞机的基本飞行性能对于飞行员和飞机设计师来说都是十分重要的。
本讲义将介绍飞机的基本飞行性能指标及其计算方法。
二、起飞性能起飞性能是飞机在地面开始起飞到到达安全飞行高度之间的性能指标。
主要包括起飞距离、起飞速度和最大爬升率。
1. 起飞距离起飞距离是指飞机从起飞开始到离地面50英尺高时所需的距离。
起飞距离计算公式如下:起飞距离 = 加速距离 + 抬轮距离 + 离地距离其中,加速距离是指飞机从静止到达起飞速度所需的距离;抬轮距离是指飞机从离地面50英尺高到离地面100英尺高所需的距离;离地距离是指飞机离开地面100英尺高时所需的距离。
2. 起飞速度起飞速度是指飞机在起飞时所需的最低速度。
起飞速度取决于飞机的重量和机翼的亮度。
一般来说,起飞速度随飞机重量的增加而增加,随机翼的亮度的增加而减小。
3. 最大爬升率最大爬升率是指飞机在起飞过程中爬升的最大速率。
最大爬升率取决于飞机的发动机推力、机翼提供的升力和飞机的阻力。
飞机的最大爬升率在不同高度下可能会有所不同。
三、巡航性能巡航性能是指飞机在巡航飞行阶段的性能指标。
主要包括巡航速度、巡航升力系数和巡航推力。
1. 巡航速度巡航速度是指飞机在巡航飞行阶段所保持的恒定速度。
巡航速度取决于飞机的气动性能和发动机的推力。
为了保持较低的燃料消耗和较长的航程,飞机会选择一个较低的巡航速度。
2. 巡航升力系数巡航升力系数是指飞机在巡航飞行阶段的升力与机翼面积、空气密度和飞机速度的比值。
巡航升力系数影响飞机的升力和阻力。
3. 巡航推力巡航推力是指飞机在巡航飞行阶段的发动机推力。
巡航推力决定飞机的速度和燃料消耗。
四、下降和着陆性能下降和着陆性能是指飞机从巡航飞行阶段到着陆的过程中的性能指标。
主要包括下降速度、下降距离和着陆距离。
1. 下降速度下降速度是指飞机从巡航飞行阶段开始向地面下降时的速度。
飞行器的飞行原理和飞行性能飞行原理一、飞机的升力和阻力飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。
在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。
流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理:流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。
连续性定理阐述了流体在流动中流速和管道切面之间的关系。
流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。
伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。
伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。
飞机的升力绝大部分是由机翼产生,尾翼通常产生负升力,飞机其他部分产生的升力很小,一般不考虑。
从上图我们可以看到:空气流到机翼前缘,分成上、下两股气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。
机翼上表面比较凸出,流管较细,说明流速加快,压力降低。
而机翼下表面,气流受阻挡作用,流管变粗,流速减慢,压力增大。
这里我们就引用到了上述两个定理。
于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。
这样重于空气的飞机借助机翼上获得的升力克服自身因地球引力形成的重力,从而翱翔在蓝天上了。
机翼升力的产生主要靠上表面吸力的作用,而不是靠下表面正压力的作用,一般机翼上表面形成的吸力占总升力的60-80%左右,下表面的正压形成的升力只占总升力的20-40%左右。
飞机飞行在空气中会有各种阻力,阻力是与飞机运动方向相反的空气动力,它阻碍飞机的前进,这里我们也需要对它有所了解。
按阻力产生的原因可分为摩擦阻力、压差阻力、诱导阻力和干扰阻力。
起飞试验的目的是测定飞机飞行手册所需要的起飞性能参数,和验证所讨论的飞机型态满足于合格审定的性能要求,当要生产一种新飞机时,需要进行一个完整系列的起飞试验,确定起飞速度和距离、滚动加速度和制动加速度,抬前轮速率和最小离地速度等参数。
根据美国联邦航空局适航条例规定,凡装载二十人以上的民用飞机应按照联邦航空条例第25部(FAR25)验证其符合性。
其中B分部中直接涉及飞机飞行性能的条款13条,是飞机设计时考虑起飞、爬升、航行、进场和着陆必须遵守的安全标准。
而飞行手册是飞机一个重要软件组成部分、其中的性能数据就根据FAR25部有关飞行性能条款的规定和飞机飞行动力、发动机推力特性进行计算和编制的。
起飞性能符合性验证工作可理解为三个方面:(1)起飞性能原始参数的验证;(2)飞行手册中起飞性能的计算;(3)对起飞性能计算。
FAR25定义了各种起飞速度,讨论了加速-减速距离、起飞航迹和起飞距离。
给出了一些适用于起飞试验的速度和术语的定义是有益的,因为许多速度和术语关系到其它类型的性能和规章的论述,起飞性能原始参数是计算起飞性能所必须的原始特征数据。
这些参数一般要通过试飞确定或加以校核。
1.失速速度Vs:飞机最小安全速度,是飞机基本特征速度之一(其它还有VMU、VMCA、VMCG),它是决定飞机其它特征速度之一,这些特征速度为:VEF、V1、VR、VLOF、V2;而且是确定操稳特性试飞速度范围的基准速度。
因此,在试飞的早期就要进行失速速度的试飞,仅次于空速校正试飞。
飞机手册中给出飞机各种构型和重量下的Vs值,以便直接提醒飞行人员飞行时速度不小于该值。
另外Vs还是起飞等各阶段速度的参考值。
根据FAR25.201失速演示规定:(a)必须在直线飞行和30°坡度转变中演示失速:给出了失速速度的定义以及确定失速速度时对飞机状态的要求,包括:推力、起落架位置、襟翼位置、重量、重心。
试飞时,一般说来前重心为不利位置,这主要是此时需要平尾产生比后重心时更大的上仰力矩,平尾产生的负升力较大,因而此时的失速速度更大,但是为了确定重心对失速速度的影响程度,还是有必要适当进行一些后重心的失速速度。