逆境生理指标的测定
- 格式:doc
- 大小:56.50 KB
- 文档页数:12
《植物生物学实验》逆境胁迫水稻幼苗及其生理指标分析植物生物学实验是通过一系列的实验操作和分析,来研究植物的生理、生态和分子生物学等方面的知识。
本实验主要通过逆境胁迫处理水稻幼苗,分析逆境胁迫对水稻幼苗生长和生理指标的影响。
实验材料和设备:1.水稻(水稻研究中心提供);2.生理盐水(NaCl)、二氧化硫(SO2)处理液;3.导电仪、光合仪等生理分析仪器;4.显微镜、离心机等常规实验设备。
实验步骤:1.准备水稻幼苗:从生长良好的水稻幼苗中挑选均匀的幼苗作为实验材料。
2.处理逆境胁迫:将水稻幼苗分为3组,每组包含相同数量的幼苗。
第一组为对照组,用生理盐水处理;第二组为盐胁迫组,用不同浓度的NaCl溶液处理;第三组为二氧化硫胁迫组,用不同浓度的SO2气体处理。
将幼苗放置于适当的处理液或腔室中,进行逆境胁迫处理。
3.观察幼苗生长:每天记录幼苗的外观和生长情况,包括株高、根长、叶片颜色变化等。
4.分析生理指标:适当时间点采集幼苗组织,进行一系列的生理指标分析。
例如,测定叶片的相对含水量、叶绿素含量、叶绿素荧光参数、导电率等指标,来评估幼苗的耐逆性。
5.统计和分析数据:将采集到的数据进行统计和分析,比较不同处理组的差异性,探讨逆境胁迫对水稻幼苗生长和生理指标的影响。
实验结果分析:通过观察和分析数据,可以得出逆境胁迫对水稻幼苗生长和生理指标的影响。
在盐胁迫组中,幼苗的株高和根长可能显著减少,叶片可能出现褪绿现象,并且各项生理指标可能发生异常变化;而在二氧化硫胁迫组中,幼苗的生长可能受到抑制,且可能出现叶片黄化和脱落等症状。
实验结论:通过逆境胁迫处理水稻幼苗,可以发现逆境胁迫对水稻幼苗生长和生理指标有一定的负面影响。
这些实验结果有助于我们深入了解植物在逆境环境下的生理适应机制,为进一步的研究提供理论和实验基础。
总结:本实验通过逆境胁迫处理水稻幼苗,分析逆境胁迫对水稻幼苗生长和生理指标的影响。
在实验过程中,我们需要仔细观察和记录幼苗的生长情况,并进行相应的生理指标分析。
植物抗逆性测定实验报告研究背景植物在不同的环境条件下,会受到各种逆境的影响,如高温、低温、干旱、盐碱等。
因此,了解植物的抗逆性是重要的,可以帮助人们选择适应特定环境条件的植物品种,提高农作物的产量和质量。
实验目的本实验旨在通过测定植物在不同逆境条件下的生理指标来评估植物的抗逆性能。
实验材料和方法材料- 拟南芥(Arabidopsis thaliana)幼苗- 温度调节装置- 盐溶液(0.2 M NaCl)- 干旱处理装置- 水分测定仪- 叶绿素测定仪- MDA(丙二醛)含量检测试剂盒方法1. 种植拟南芥幼苗在适宜的温度下,以确保正常生长。
2. 将一部分幼苗移至温度调节装置中,分别设置不同温度条件(如25C、35C、45C),并持续一定时间(如24小时)进行热处理。
3. 将另一部分幼苗浸泡在0.2 M NaCl溶液中,经过一定时间(如24小时)进行盐胁迫处理。
4. 将第三部分幼苗置于干旱处理装置中,断水一定时间(如48小时)进行干旱处理。
5. 分别收集处理后的植株,测量其叶片的水分含量、叶绿素含量和MDA含量。
实验结果经过不同逆境处理后,收集了拟南芥幼苗的数据如下:处理条件水分含量(%)叶绿素含量(mg/g)MDA含量(μmol/g)- -控制组90.2 2.35 0.12热处理组85.6 1.98 0.25盐胁迫组88.9 2.12 0.18干旱处理组80.5 1.45 0.36结果分析通过数据分析,我们可以得到以下结论:1. 在高温处理条件下,拟南芥幼苗的水分含量显著降低,叶绿素含量略有下降,而MDA含量明显增加。
这表明高温胁迫会导致植物脱水、叶绿素降解和细胞膜脂质过氧化。
2. 盐胁迫处理导致拟南芥幼苗的水分含量有所增加,叶绿素含量略有下降,MDA含量有轻微增加。
这表明适量的盐胁迫可以促进植物水分的吸收和保持,但高浓度的盐会对植物造成一定程度的伤害。
3. 干旱处理导致植物的水分含量显著降低,叶绿素含量明显下降,而MDA含量显著增加。
一、实验目的通过本实验,了解植物在逆境条件下的生理反应和适应机制,探究不同逆境对植物生长的影响,以及植物如何通过生理和形态上的变化来适应逆境环境。
二、实验原理植物在逆境条件下,如干旱、盐害、低温等,会经历一系列的生理和形态变化。
这些变化包括细胞膜透性增加、渗透调节物质积累、光合作用减弱、呼吸作用变化等。
通过观察和分析这些变化,可以了解植物逆境生理的机制。
三、实验材料与方法1. 实验材料选用小麦(Triticum aestivum L.)作为实验材料,分为对照组和实验组。
2. 实验方法(1)干旱处理:将实验组小麦置于干旱条件下,对照组小麦正常浇水。
(2)盐害处理:将实验组小麦置于盐浓度分别为0、50、100、150、200 mmol/L的盐溶液中,对照组小麦正常浇水。
(3)低温处理:将实验组小麦置于4℃低温条件下,对照组小麦正常生长。
(4)生理指标测定①细胞膜透性:采用电导率法测定细胞膜透性。
②渗透调节物质含量:采用比色法测定脯氨酸和可溶性糖含量。
③光合作用强度:采用光合仪测定光合有效辐射(PAR)和光合速率。
④呼吸作用强度:采用氧气消耗法测定呼吸速率。
⑤形态指标:观察植物叶片的萎蔫程度、叶片颜色变化等。
四、实验结果与分析1. 干旱处理实验结果显示,随着干旱时间的延长,实验组小麦的细胞膜透性逐渐升高,渗透调节物质含量增加,光合作用强度降低,呼吸作用强度先升高后降低。
与对照组相比,实验组小麦的叶片萎蔫程度明显加重,叶片颜色变黄。
2. 盐害处理实验结果显示,随着盐浓度的增加,实验组小麦的细胞膜透性逐渐升高,渗透调节物质含量增加,光合作用强度降低,呼吸作用强度先升高后降低。
与对照组相比,实验组小麦的叶片萎蔫程度和叶片颜色变化均随盐浓度增加而加重。
3. 低温处理实验结果显示,实验组小麦在低温条件下,细胞膜透性升高,渗透调节物质含量增加,光合作用强度降低,呼吸作用强度降低。
与对照组相比,实验组小麦的叶片萎蔫程度明显加重,叶片颜色变紫。
植物逆境胁迫下的生理生化指标研究随着全球气候变化的加剧,植物面临着越来越频繁和严重的逆境胁迫。
逆境胁迫对植物的生长发育、生理代谢、生物化学等方面都会产生重大的影响。
因此,研究植物在逆境胁迫下的生理生化指标,对于了解植物适应环境变化的机制,提高植物抗逆能力,具有重要的科学意义和实际价值。
一、植物生理生化指标的选择与意义逆境胁迫下的植物生理生化指标种类繁多,常见指标包括植物的抗氧化酶活性、膜脂过氧化程度、光合作用参数、叶绿素含量、非饱和脂肪酸含量等。
这些指标可以从不同的层面反映植物对逆境胁迫的响应和适应能力。
例如,抗氧化酶活性可以反映植物对逆境胁迫产生的氧化应激的抵抗能力;膜脂过氧化程度可以反映植物细胞膜的稳定性;光合作用参数可以反映植物光能利用的效率;叶绿素含量可以反映植物叶片的光合能力;非饱和脂肪酸含量可以反映植物细胞膜的可流动性。
通过对这些指标的研究,可以揭示植物适应逆境胁迫的机制,为培育抗逆品种、改善植物逆境胁迫抵抗能力提供理论依据。
二、逆境胁迫下植物生理生化指标的变化逆境胁迫下,植物的生理生化指标往往会发生明显的变化。
以抗氧化酶活性为例,逆境胁迫会导致植物体内活性氧的积累,进而激活一系列抗氧化酶,如超氧化物歧化酶、过氧化物酶等的活性增强。
同时,膜脂过氧化程度也会随之增加,导致细胞膜的功能和稳定性下降。
此外,光合作用参数的变化也是逆境胁迫下植物生理生化指标的重要表现形式。
在强光辐射和干旱等逆境条件下,光合作用的光抑制现象明显,表现为光合速率的下降和光系统II的损伤。
这些指标的变化往往与植物对逆境胁迫的响应和适应密切相关。
三、植物逆境胁迫下生理生化指标研究的方法和技术对于植物逆境胁迫下的生理生化指标研究,需要运用一系列的方法和技术进行分析和检测。
常用的方法包括酶活性测定、色谱分析、光合作用测定、光谱分析等。
例如,通过酶活性的测定,可以分析抗氧化酶活性的变化情况;通过色谱分析,可以测定植物中非饱和脂肪酸的含量;通过光合作用测定,可以评估植物的光合能力。
实验目的和意义■本实验设计主要通过培养》直物的幼苗,给予幼苗不适宜的干旱胁迫处理,来研究植物对逆境的反应,通过测定幼苗I的膜透性、脯氨酸含量的变化,研究逆境对植松生长的影响及植賜内鸟卩的生理巫化#几理°2013-4 6 2仍能捉供足够的自由水,以维持止常的生命活动。
2013-46 4实验原理■植物细胞膜起调节控制细胞内外物质交换的作用,它的选择透性定其最車要的功能z •。
为植物遭受逆境伤害时,细胞膜受到不同稈度的破坏,膜的透性增加,选择透件丧失,细胞内部分电解质外滲。
膜结构破坏的程度与逆境的强度、持续的时间、作物品种的抗性等因索有关。
因此,硕膜透性的测年常町作为逆境伤吿的一个个理指标,广泛应用在植物抗栓生理研究中。
■当质膜的选軽透性被破坏时细胞内电解质外滲,其中包扌舌盐类、仃机酸等,这牝物质进入环境介质I,如果坏境介质是蒸他水,那么这吐物质的外滲会使蒸饰水的导电性增加,衣现在电导率的增加上。
植物受伤曲愈严电,外渗的物质越多, 掘驢專性勰鶴曲得射电£率就越高(不同抗性卅,种实验材料和器材•实验材料■绿豆苗•器材:分光光度计、水浴锅.烘箱、天平、带塞试管、烧杯、研钵、石英砂、漏斗、滤纸、玻棒.电导率仪•试剂:80%乙醇、酸性苗三酮试剂、脯氨酸标准母液、人造沸石、活性碳法测定电解质的和对外渗率,来了解干旱2013-4-65 8謂貂谕实验步骤■ 1・脯氨酸标准曲线制作:吸取脯氨酸标准母液0, 0.5, 1.25, 2.5, 5.0,7.5, 10.0, 15.0mL 分别放入8个50mL容量瓶中,分别加入蒸憎水定容至50mL,配成0.0, 1.0,2.5, 5.0, 10.0, 15.0, 20.0, 30.0|ig/mL的系列溶液。
■分别吸取上述各标爪•溶液2mL,冰醋酸2mL, 苗三酮试剂2mL,加入到10mL带塞刻度试管中, 塞上塞子,于沸水浴中加热15分钟,用分光光度计测定520nm的光密度值,以零浓度为空白对照。
《植物生物学实验》逆境胁迫水稻幼苗及其生理指标分析植物生物学实验是研究植物的各个方面的生理和生态特性的实验。
本实验主要研究逆境胁迫对水稻幼苗的影响及其生理指标分析。
一、实验目的1.了解逆境胁迫对水稻幼苗生长发育的影响;2.比较正常生长条件下和逆境胁迫条件下水稻幼苗的生理指标差异。
二、实验材料和方法1.材料-水稻种子;-培养基;-高温胁迫设备;-蚕豆细菌物质(ABA);-叶绿素测定试剂盒;-盐溶液。
2.方法1)水稻种子发芽:将水稻种子在培养皿中用纱布覆盖并加入适量的蒸馏水,放置于暗处,保持湿润,等待种子发芽;2)分别将发芽的水稻种子均匀撒在含有培养基的培养皿中;3)正常生长条件下:将培养皿放置在温度适宜、光照强度合适的环境下进行培养;4)逆境胁迫条件下:在高温胁迫设备中将培养皿放置在高温胁迫条件下进行培养;5)取出生长一定时间后的水稻幼苗,测量其生长指标,包括根长、茎长、叶片数量等;6)取幼苗叶片进行叶绿素含量测定:将若干鲜叶片取出,放入离心管中,加入适量乙醇,用电子天平称量叶片重量,并记录下来;7)使用叶绿素测定试剂盒按照说明书进行测定,并记录下结果;8)构建高盐胁迫实验组:将一部分水稻幼苗放入含有一定浓度盐溶液的培养皿中,对比正常生长条件下的水稻幼苗。
三、预期结果及讨论1.高温胁迫对水稻幼苗生长发育的影响:预期结果:高温胁迫条件下,水稻幼苗的生长速度将减慢,叶片数量明显减少。
讨论:高温胁迫会破坏水稻幼苗的细胞结构,导致生长发育受到抑制。
温度过高会影响光合作用,导致光合产物减少,从而影响生长速度。
2.叶绿素含量测定结果:预期结果:高温胁迫条件下,水稻幼苗叶绿素含量将下降。
讨论:高温胁迫会破坏叶绿素分子结构,降低光合作用的效率,从而导致叶绿素含量下降。
3.盐胁迫对水稻幼苗生长发育的影响:预期结果:高盐胁迫条件下,水稻幼苗的根系生长受到抑制,茎长也将减慢。
讨论:高盐浓度会破坏水稻幼苗的细胞结构,导致水分和营养的吸收受到限制,从而影响生长发育。
植物抗逆性检测方法及流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!植物抗逆性检测方法及流程解析植物抗逆性,即植物对环境压力如干旱、寒冷、盐碱、病虫害等的抵抗能力,是衡量植物适应性和生存能力的重要指标。
各生理指标的测定方法一、脯氨酸含量的测定1.茚三酮法1.1原理在正常环境条件下,植物体内游离脯氨酸含量较低,但在逆境(干旱、低温、高温、盐渍等)及植物衰老时,植物体内游离脯氨酸含量可增加10-100倍,并且游离脯氨酸积累量与逆境程度、植物的抗逆性有关。
用磺基水杨酸提取植物样品时,脯氨酸游离于磺基水杨酸的溶液中,然后用酸性茚三酮加热处理后,溶液即成红色,再用甲苯处理,则色素全部转移至甲苯中,色素的深浅即表示脯氨酸含量的高低。
在520nm波长下比色,从标准曲线上查出(或用回归方程计算)脯氨酸的含量。
1.2步骤试剂:(1)25%茚三酮:茚三酮------------0.625g冰乙酸------------15ml6mol/L磷酸--------10ml70°C水浴助溶;(2)6mol/L磷酸:85%磷酸稀释至原体积的2.3倍;(3)3%磺基水杨酸:磺基水杨酸------3g加蒸馏水至------100ml实验步骤:(1)称取0.1g样品放入研钵,加5ml3%磺基水杨酸研磨成匀浆,100°C沸水浴15min;(2)冰上冷却,4000rpm离心10min;(3)提取液2ml+冰醋酸2ml+25%茚三酮2ml混合均匀,100°C沸水浴30min,冰上冷却;(4)加4ml甲苯混合均匀,震荡30,静置30min;(5)以甲苯为空白对照,再520nm下测定吸光值。
1.3计算方法脯氨酸含量(μg/gFW)=某某提取液总量(ml)/样品鲜重(g)某测定时提取液用量(ml)某10^6公式中:某-----从标准曲线中查得的脯氨酸含量(μg)提取液总量---------------------------5ml测定时提取液用量---------------------2ml问题及质疑:1.酸性体系下,脯氨酸与茚三酮加热反应后的最终产物为红色,再实验过程中,仅有少数时候能发现红色产物。
原因有待确定。
逆境生理指标的测定要求:选三个指标一、植物组织中超氧物歧化酶活性的测定催化下列反应: 2 +2H + → H 2O 2 + O 2 反应产物H 2O 2可被过氧化氢酶进一步分解或被过氧化物酶利用。
因此SOD 有保护生物体免受活性氧伤害的能力。
已知此酶活力与植物抗逆性及衰老有密切关系,故成为植物逆境生理学的重要研究对象。
原理本实验依据超氧化物歧化酶抑制氮蓝四唑(NBT )在光下的还原作用来确定酶活性大小。
在有可被氧化物质存在下,核黄素可被光还原,被还原的核黄素在有氧条件下极易再氧化而产生 , 可将氮蓝四唑还原为蓝色的化合物,蓝色化合物在560nm 处有最大吸收,而SOD 可清除 从而抑制了蓝色化合物的形成。
因此光还原反应后,反应液蓝色愈深说明酶活性愈低,反之酶活性愈高。
据此可以计算出酶活性大小。
试剂0.05mol/L 磷酸缓冲液(pH7.8);130mmol/L 甲硫氨酸(Met )溶液:称1.9399g Met 用磷酸缓冲液定容至100ml ;750μmol/L 氮蓝四唑溶液:称取0.06133g NBT 用磷酸缓冲液定容至100ml 避光保存; 100μmol/L EDTA-Na 2溶液:取0.03721g EDTA -Na 2用磷酸缓冲液定容至100ml ;20μmol/L 核黄素溶液:取0.00753g 核黄素用磷酸缓冲液定容至1000ml 避光保存(当天配制)。
方法1、酶液提取 取一定部位的植物叶片(视需要定,去叶脉)0.5g 于预冷的研钵中,加1ml 磷酸缓冲液在冰浴下研磨成浆,加缓冲液使终体积为5ml 。
取2~3ml 于10000rpm 下离心10分钟,上清液即为SOD 粗提液。
2、显色反应 取5ml 试管(或指形管,要求透明度好)7支,3支试管为测定管,另4支为对照管,按表1加入各溶液。
混匀后将1支对照管置暗处,其他各管置于4000lx 日光灯下反应20min (要求各管受光情况一致,反应室的温度高时反应时间可以缩短,温度低时反应时间可适当延长(温度范围30~37℃)。
植物逆境生理学研究技术的使用方法与注意事项植物逆境生理学研究是一个重要的领域,它涉及到植物在各种恶劣环境条件下的适应机制和生理响应。
为了深入了解植物在逆境环境下的适应能力以及提高农作物的抗逆性,科学家们积极开展相关研究。
然而,要想有效地进行植物逆境生理学研究,研究者需要掌握一系列的实验技术和注意事项。
首先,植物生理测量技术是植物逆境研究的基础。
其中包括了测量植物生物量和各种生理指标的方法。
在实验中,研究者可以使用称重法来测量植物的生物量变化,这是一种常用的方法,但需要注意的是,在称重的过程中要确保植物的根系彻底清洗干净,以避免干扰测量结果。
此外,植物的光合作用是衡量植物生理活性的重要指标之一,因此测定植物的净光合速率也是必不可少的。
可以使用叶绿素荧光测量仪来测量植物的光合参数,但需要注意的是,测量前要将植物样本充分适应测试环境,使其达到稳定状态。
在测量过程中要避免阳光直射,严格控制光照强度和湿度条件。
其次,植物逆境研究中的水分胁迫是一个重要的研究方向。
为了研究植物在水分胁迫条件下的响应机制,科学家们需要使用适当的技术来模拟和监测水分胁迫。
一种常用的方法是注射PEG(聚乙二醇)溶液来造成植物的渗透胁迫,这可以通过调整PEG溶液的浓度来控制。
此外,还可以使用控制灌溉的方法来模拟不同水分条件下的植物生长环境。
在进行水分胁迫实验时,需要注意的是要均衡植物样本的生长环境,保持相对恒定的温度和湿度。
在给植物提供水份时要确保注水均匀,以避免造成局部水分胁迫。
另外,温度胁迫也是植物逆境生理学研究中的重要内容之一。
为了模拟不同的温度胁迫条件,研究者可以使用恒温培养箱或温度控制装置来控制植物的生长温度。
在进行温度胁迫实验时,需要注意的是要选择适当的温度梯度和时间长度,以确保植物受到一定程度的温度胁迫,并且不会造成植物的死亡或损伤。
此外,植物在温度胁迫下的生理响应也需要使用合适的技术来测定,如测定植物组织中的可溶性蛋白含量和抗氧化酶活性,以及测定温度对植物细胞膜透性的影响等。
5逆境胁迫水稻幼苗及其生理指标分析逆境和胁迫环境对水稻幼苗的生理指标有一定的影响。
本文将从逆境胁迫的定义、逆境胁迫对水稻幼苗的影响以及水稻幼苗的生理指标分析三个方面进行探讨。
首先,逆境和胁迫环境指的是与生物体自身生理功能发生冲突或者超出其耐受极限的外界环境条件。
逆境胁迫环境中的高温、低温、干旱、盐碱等因素会对水稻幼苗的生长发育产生重要影响。
例如,高温会导致水稻幼苗受热休克,并影响光合作用以及营养物质的合成和运输,从而降低生物体的生长速度。
低温则会抑制水稻幼苗的生长,降低光合效率,影响营养物质的吸收和代谢。
干旱会导致水稻幼苗的渗透调节能力下降,进而引发脱水现象,影响光合作用和碳水化合物代谢。
盐碱环境会造成水稻幼苗的根系受限,抑制气体交换和水分吸收,影响生长发育。
其次,逆境胁迫对水稻幼苗的影响可以通过分析生理指标来进行评估。
其中,包括叶绿素含量、叶片相对含水量、根系活力、超氧化物歧化酶(SOD)和过氧化氢酶(POD)活性等指标。
叶绿素是水稻幼苗的主要光合色素,其含量的变化可以反映光合作用的活性。
叶片相对含水量能够反映水稻幼苗对干旱和胁迫的耐受性。
根系活力是水稻幼苗适应根系对逆境胁迫的适应能力的重要指标。
SOD和POD是水稻幼苗抗氧化系统中的重要酶,能够清除自由基,维持细胞内稳定环境。
最后,通过对水稻幼苗生理指标的分析可以了解逆境胁迫对水稻幼苗的影响程度。
例如,逆境胁迫会使水稻幼苗叶绿素含量下降,说明光合作用受到抑制;叶片相对含水量降低,说明水分胁迫对水稻幼苗的影响较大;根系活力降低,说明逆境环境对水稻幼苗的根系发育和功能产生了不利影响;SOD和POD活性的变化能够反映水稻幼苗的抗氧化能力。
综上所述,逆境胁迫环境对水稻幼苗的生理指标有一定的影响。
通过对这些指标的分析,可以评估逆境胁迫对水稻幼苗生长和发育的影响程度,并为后续的逆境胁迫抗性育种提供科学依据。
设计实验不同植物材料抗逆性比较逆境条件下,植物会受到不同程度的伤害,如:蛋白质变性、膜损伤。
但是、植物也可以通过本身的代谢变化,如:吸水力降低、蒸腾减弱、光合下降、呼吸增高或降低、激素改变、保护性酶增多、渗透物质(可溶性糖、脯氨酸)增加等来适应逆境。
农业生产上,可通过选育高抗品种、逆境锻炼、化学诱导和农业措施提高植物的抗逆性。
本组综合实验采用不同品种或对植物进行化学诱导和锻炼的方式研究逆境条件下的生理生化变化,为逆境生理研究打下基础,并培养综合分析能力和科研能力。
[研究方案]一、研究题目1、不同品种抗逆性生理指标比较2、几种外源物质浸种对种子萌发、幼苗生长和抗性的影响3、生长调节剂处理对植物抗逆性生理指标的影响4、逆境(低温、高温、干旱等)预处理对植物抗逆性的效应可在上述几个大题目下具体确定小题目。
二、实验材料准备实验材料主要采用幼芽和幼苗。
可用培养皿和瓷盘培养发芽材料1~2周。
三、实验内容根据不同研究题目,可在以下测定项目中选择:1、生长测量:芽长、根长、根数、地上部鲜重、地下部鲜重。
2、生理生化指标测定:植物抗逆性的鉴定(电导仪法);丙二醛含量的测定;脯氨酸含量的测定(酸性茚三酮法);过氧化氢酶活性测定(高锰酸钾滴定法);超氧物歧化酶活性测定(NBT还原法);植物蒸腾速率的测定(快速称重法);叶绿体色素的定量测定(分光光度法);植物体内可溶性糖的测定,(蒽酮法);植物组织中游离氨基酸总量的测定,(茚三酮显色法);植物组织中可溶性蛋白含量的测定(考马斯亮蓝G-250染色法)。
各研究题目的生理生化指标测定,根据教学安排和研究内容选做3~4个。
[实验安排]自由组合小组,选出组长,由组长安排实验材料和重复。
9~12学时、分3~4次进行。
[数据处理和结果统计]一、数据记录实验中要及时记载原始数据,以便计算和核对。
每个研究题目应设计专门的记录表。
二、结果统计通过实验获取的原始数据要及时照各实验方法计算出结果,并将结果统一列于结果统计表中,每个研究题目应设计专门的结果统计表,便于分析与比较。
可以作为表征植物受逆境伤害指标对植物产生伤害的环境称为逆境,又称胁迫。
常见的逆境有寒冷、干旱、高温、盐渍等。
逆境会伤害植物,严重时会导致植物死亡。
逆境对植物的伤害主要表现在细胞脱水、膜系统受破坏,酶活性受影响,从而导致细胞代谢紊乱。
有些植物在长期的适应过程中形成了各种各样抵抗或适应逆境的本领,在生理上,以形成胁迫蛋白、增加渗透调节物质(如脯氨酸含量)、提高保护酶活性(等方式提高细胞对各种逆境的抵抗能力。
植物细胞膜起调节控制细胞内外物质交换的作用,它的选择透性是其最重要的功能之一。
当植物遭受逆境伤害时,细胞膜受到不同程度的破坏,膜的透性增加,选择透性丧失,细胞内部分电解质外渗。
膜结构破坏的程度与逆境的强度、持续的时间、作物品种的抗性等因素有关。
因此,质膜透性的测定常可作为逆境伤害的一个生理指标,广泛应用在植物抗性生理研究中。
当质膜的选择透性被破坏时细胞内电解质外渗,其中包括盐类、有机酸等,这些物质进入环境介质中,如果环境介质是蒸馏水,那么这些物质的外渗会使蒸馏水的导电性增加,表现在电导率的增加上。
植物受伤害愈严重,外渗的物质越多,介质导电性也就越强,测得的电导率就越高(不同抗性品种就会显示出抗性上的差异。
)脯氨酸是水溶性最大的氨基酸,具有很强的水合能力,其水溶液具有很高的水势。
脯氨酸的疏水端可和蛋白质结合,亲水端可与水分子结合,蛋白质可借助脯氨酸束缚更多的水,从而防止渗透胁迫条件下蛋白质的脱水变性。
因此脯氨酸在植物的渗透调节中起重要作用,而且即使在含水量很低的细胞内,脯氨酸溶液仍能提供足够的自由水,以维持正常的生命活动。
正常情况下,植物体内脯氨酸含量并不高,但遭受水分、盐分等胁迫时体内的脯氨酸含量往往增加,它在一定程度上反映植物受环境水分和盐度胁迫的情况,以及植物对水分和盐分胁迫的忍耐及抵抗能力。
逆境生理指标的测定要求:选三个指标一、植物组织中超氧物歧化酶活性的测定催化下列反应:2 +2H + → H 2O 2 + O 2反应产物H 2O 2可被过氧化氢酶进一步分解或被过氧化物酶利用。
因此SOD 有保护生物体免受活性氧伤害的能力。
已知此酶活力与植物抗逆性及衰老有密切关系,故成为植物逆境生理学的重要研究对象。
原理本实验依据超氧化物歧化酶抑制氮蓝四唑(NBT )在光下的还原作用来确定酶活性大小。
在有可被氧化物质存在下,核黄素可被光还原,被还原的核黄素在有氧条件下极易再氧化而产生 , 可将氮蓝四唑还原为蓝色的化合物,蓝色化合物在560nm 处有最大吸收,而SOD 可清除 从而抑制了蓝色化合物的形成。
因此光还原反应后,反应液蓝色愈深说明酶活性愈低,反之酶活性愈高。
据此可以计算出酶活性大小。
试剂L 磷酸缓冲液();130mmol/L 甲硫氨酸(Met )溶液:称1.9399g Met 用磷酸缓冲液定容至100ml ;O 2●O 2●O 2●O 2●O 2●750μmol/L氮蓝四唑溶液:称取0.06133g NBT用磷酸缓冲液定容至100ml 避光保存;100μmol/L EDTA-Na2溶液:取0.03721g EDTA-Na2用磷酸缓冲液定容至100ml;20μmol/L核黄素溶液:取0.00753g核黄素用磷酸缓冲液定容至1000ml避光保存(当天配制)。
方法1、酶液提取取一定部位的植物叶片(视需要定,去叶脉)0.5g于预冷的研钵中,加1ml磷酸缓冲液在冰浴下研磨成浆,加缓冲液使终体积为5ml。
取2~3ml于10000rpm下离心10分钟,上清液即为SOD粗提液。
2、显色反应取5ml试管(或指形管,要求透明度好)7支,3支试管为测定管,另4支为对照管,按表1加入各溶液。
混匀后将1支对照管置暗处,其他各管置于4000lx日光灯下反应20min (要求各管受光情况一致,反应室的温度高时反应时间可以缩短,温度低时反应时间可适当延长(温度范围30~37℃)。
表1 各溶液加入量3、蛋白浓度的计算 蛋白浓度=Wa vc ⨯⨯ 单位:mg 蛋白/g 样重 c -通过标准曲线查得的每管中蛋白含量(mg ) v -样液总体积(ml )a -测定时提取液体积用量(ml )W -样重(g )4、SOD 活性测定与计算 至反应结束后,以不照光的对照管作空白,在560nm 下分别测定其它各管的光密度值,SOD 活性单位以抑制NBT 光化还原的50%为一个酶活性单位表示。
按下式计算SOD 活性。
SOD 总活性 =aW A VA A ck E ⨯⨯⨯⨯-5.0)(ck 单位:酶单位/g 鲜重表示;A ck ―照光对照管的光密度值; A E —样品管的光密度值; V —样液总体积(ml ); a —测定时样品用量(ml ); W—样重(g ); 二、氧自由基的测定 原理:与羟胺反应生成NO 2- ,NO 2-在对氨基苯磺酸和α-萘胺作用下,生成粉红色的偶氮染料,染料在λ530nm 有显著吸收,根据OD 530可以算出样品中的 含量。
步骤:1、酶液提取 取一定部位的植物叶片(视需要定,去叶脉)0.5g 于预冷的研钵中,加1ml 磷酸缓冲液在冰浴下研磨成浆,加缓冲液使终体积为5ml 。
取2~3ml 于10000rpm 下离心10分钟,上清液即为SOD 粗提液。
O2●O 2●2亚硝酸根标准曲线的制作:1ml系列浓度的NaNO2(0、5、10、15、20、30、40和50mol /L)分别加入l m1对氨基苯磺酸和lmlα-萘胺,于25℃中保温20min,然后测定OD550,以[NO2-]和测得的OD530值互为函数作图,制得亚硝酸根标准曲线。
3 O2-含量测定:0.5m1样品提取液中加入0.5m150mmo1/L磷酸缓冲液,1m1的1mmo1/L盐酸羟胺,摇匀,于25℃中保温l h,然后再加人l m117mmo1/LO2●对氨基苯磺酸(以冰醋酸:水=3:1配制)和1m1 7mmol/Lα-萘胺(以冰醋酸:水=3:1配制),混合,于25℃中保温20min,取出以分光光度计测定波长530nm的OD值。
根据测得的OD530,查NO2—标准曲线,将OD530换算成[NO2-],然后依照羟胺与的反应式:NH2OH十2O2十H+ NO2-十H2O2十H2O从[NO2-]对[O2]进行化学计量,即将 [NO2-]乘以2,得到[O2]根据记录样品与羟胺反应的时间和样品中的蛋白质含量,可求得产生速率(nmo1min-1mg-1蛋白)。
三、植物体内游离脯氨酸含量的测定植物在正常条件下,游离脯氨酸含量很低,但遇到干旱、低温、盐碱等逆境时,游离脯氨酸便会大量积累,并且积累指数与植物的抗逆性有关。
因此,脯氨酸可作为植物抗逆性的一项生化指标。
原理采用磺基水杨酸提取植物体内的游离脯氨酸,不仅大大减小了其他氨基酸的干扰,快速简便,而且不受样品状态(干或鲜样)限制。
在酸性条件下,脯氨酸与茚三酮反应生成稳定的红色缩合物,用甲苯萃取后,此缩合物在波长520nm处有一最大吸收峰。
脯氨酸浓度的高低在一定范围内与其光密度成正比。
试剂3%磺基水杨酸水溶液;甲苯;%酸性茚三酮显色液:冰乙酸和6mol/L磷酸以3:2混合,作为溶剂进行配制,此液在4℃下2~3d有效;脯氨酸标准溶液:称取25mg脯氨酸,蒸馏水溶解后定容至250ml,其浓度为100μg/ml。
再取此液10ml用蒸馏水稀释至100ml,即成10μg/ml的脯氨酸标准液。
方法1.标准曲线制作(1)取7支具塞刻度试管按表1加入各试剂。
混匀后加玻璃球塞,在沸水中加热40min。
(2)取出、冷却后向各管加入5ml甲苯充分振荡,以萃取红色物质。
静置待分层后吸取甲苯层以“0”管为对照在波长520nm下比色。
表1 各试管中试剂加入量管号0123456标准脯氨酸量(ml)H2O(ml)0冰乙酸(ml)显色液(ml)024*******脯氨酸含量(μg)(3)以光密度值为纵坐标,脯氨酸含量为横坐标,绘制标准曲线,求线性回归方程。
2.样品测定(1)脯氨酸提取取不同处理的剪碎混匀叶片~0.5g(干样根据水分含量酌减),分别置于大试管中,加入5ml 3%磺基水杨酸溶液,管口加盖玻璃球塞,于沸水浴中浸提10min。
(2)取出试管,待冷却至室温后,吸取上清液2ml,加2ml冰乙酸和3ml 显色液,于沸水浴中加热40min。
(3)取出冷却后向各管加入5ml甲苯充分振荡,以萃取红色物质。
静置待分层后吸取甲苯层,以空白管为对照,在波长520nm下比色测定。
(4)结果计算:从标准曲线中查出测定液中脯氨酸浓度,按下式计算样品中脯氨酸含量的百分数:脯氨酸(μg/g FW或DW)=(C×V/a)/W式中 C—提取液中脯氨酸含量(μg),由标准曲线求得;V—提取液总体积(ml); a—测定时所吸取提取液的体积(ml);W—样品重(g)。
注意事项:样品测定时若气温较低,萃取物分层不清晰,可将试管置于40℃左右的水浴中快速测定。
或过夜静置。
四、植物组织中丙二醛含量的测定植物器官衰老或在逆境下遭受伤害,往往发生膜脂过氧化作用,丙二醛(MDA)是膜脂过氧化的最终分解产物,其含量可以反应植物遭受逆境伤害的程度。
原理丙二醛(MDA)是常用的膜脂过氧化指标,在酸性和高温度条件下,可以与硫代巴比妥酸(TBA)反应生成红棕色的三甲川(3,5,5-三甲基恶唑-2,4-二酮),其最大吸收波长在532nm。
但是测定植物组织中MDA时受多种物质的干扰,其中最主要的是可溶性糖,糖与TBA显色反应产物的最大吸收波长在450nm,532nm处也有吸收。
植物遭受干旱、高温、低温等逆境胁迫时可溶性糖增加,因此测定植物组织中MDA-TBA反应物质含量时一定要排除可溶性糖的干扰。
低浓度的铁离子能够显著增加TBA与蔗糖或MDA显色反应物在532、450nm处的光密度值,所以在蔗糖、MDA与TBA显色反应中需一定量的铁离子,通常植物组织中铁离子的含量为100~300μg/g DW,根据植物样品量和提取液的体积,加入Fe3+的终浓度为μmol/L。
双组分分光光度计法根据朗伯-比尔定律:D=kCL,当液层厚度为1cm时,k=D/C,k称为该物质的比吸收系数。
当某一溶液中有数种吸光物质时,某一波长下的光密度值等于此混合液在该波长下各显色物质的光密度之和。
已知蔗糖与TBA显色反应产物在450nm和532nm波长下的比吸收系数分别为,。
MDA在450nm波长下无吸收,故该波长的比吸收系数为0,532nm波长下的比吸收系数为155,根据双组分分光度计法建立方程组,求解方程得计算公式:C1(mmol/L)=C2(μmol/L)=(D532-D600)式中:C1为可溶性糖的浓度,C2为MDA的浓度,D450、D532、D600分别代表450nm、532nm和600nm波长下的光密度值。
试剂10%三氯乙酸(TCA);%硫代巴比妥酸,先加少量的氢氧化钠(1 mol/L)溶解,再用10%的三氯乙酸定容;石英砂。
方法1. 实验材料受干旱、高温、低温等逆境胁迫的植物叶片或衰老的植物器官。
2. MDA的提取称取剪碎的试材1g,加入2ml 10%TCA和少量石英砂,研磨至匀浆,再加8ml TCA进一步研磨,匀浆在4000rpm离心10min,上清液为样品提取液。
3. 显色反应和测定吸取离心的上清液2ml(空白加2ml蒸馏水),加入2ml %TBA溶液,混匀物于沸水浴上反应15min,迅速冷却后再离心。
取上清液测定532nm、600nm和450nm波长下的光密度。
4. 计算含量双组分分光光度法按公式③可直接求得植物样品提取液中MDA的浓度。
用上述任一方法求得MDA的浓度,根据植物组织的重量计算测定样品中MDA的含量:MDA(μmol/g FW)=)植物组织鲜重()提取液体积()浓度(μg ml/molLMDA五、植物组织中过氧化物酶活性测定原理在过氧化物酶 (peroxidase) 催化下 ,H2O2将愈创木酚氧化成茶褐色产物。
此产物在 470nm 处有最大光吸收, 故可通过测 470nm 下的吸光度变化测定过氧化物酶的活性。
步骤:1. 酶液的制备:取 -5.0g 材料,切碎,放入研钵中,加适量的磷酸缓冲液研磨成匀浆。
将匀浆液全部转入离心管中,于 3000g 离心 l0min,上清液转入25ml 容量瓶中。
沉淀用 5ml 磷酸缓冲液再提取两次,上清液并入容量瓶中,定容至刻度,低温下保存备用。
2. 过氧化物酶活性测定:酶活性测定的反应体系包括:磷酸缓冲液;1.0m1 2%H2O2;愈创木酚和酶液。
用加热煮沸 5min 的酶液为对照,反应体系加入酶液后,立即于37℃水浴中保温15min,然后迅速转入冰浴中,并加入20% 三氯乙酸终止反应,然后,过滤 ( 或 5000g 离心 l0min),适当稀释,470m 波长下测定吸光度。