当前位置:文档之家› 圆锥曲线测试题

圆锥曲线测试题

圆锥曲线测试题
圆锥曲线测试题

圆锥曲线周考试卷

姓名:___________班级:____________得分:_______________

一、选择题:(5*4=20分)

1.已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63

,则椭圆C 的方程为( ). A.x 23+y 2=1 B .x 2+y 23=1 C.x 23+y 22=1 D.x 22+y 2

3

=1 2. 曲线225x +2

9y =1与曲线225k x -+2

9k y -=1(k <9 )的( ) A.长轴长相等 B.短轴长相等 C.离心率相等 D.焦距相等

3. 已知抛物线y =2ax 2(a>0),则它的准线方程是( )

A.2a y =-

B.12y a =-

C.14y a =

D.18y a

=- 4. 已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为

( )

A .(±13,0)

B .(0,±10)

C .(0,±13)

D .(0,±69)

5. 过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条

A. 1

B.2

C. 3

D.4

二、填空题:(5*4=20分)

6. 已知双曲线的渐近线方程为y=±34

x ,则此双曲线的离心率为__________. 7. 设双曲线 的虚轴长是实轴长的2倍,则实数m 的值是___________.

8. 如果抛物线28y x =的弦AB 被点(4,1)平分,则这条弦所在的直线方程是 ____________. 9. 对于椭圆191622=+y x 和双曲线19

72

2=-y x 有下列命题: (1)椭圆的焦点恰好是双曲线的顶点; (2)双曲线的焦点恰好是椭圆的顶点;

(3)双曲线与椭圆共焦点;

其中正确命题的序号是 .

10. 已知O 为坐标原点,F 为抛物线y 2

=4x 的焦点,A 是抛物线上一点,若OA →·AF →=-4,则点A 的坐标是________.

三、解答题:(3*10=40分)

11. 求与双曲线2224x y

-=有公共渐近线,且过点M(2,-3)的双曲线的标准方程和渐近线

方程以及离心率。

12. 已知抛物线x y 42=,焦点为F ,顶点为O ,点P 在抛物线上移动,Q 是OP 的中点,

(1)求点Q 的轨迹方程;

(2)若倾斜角为60?,且过点F 的直线交Q 的轨迹于A ,B 两点,求弦长||AB 。

13. 已知双曲线C :x 2-y 2=1及直线l :y=kx-1,当k 为何值时,直线与双曲线只有一个公共点,两个公共点,没有公共点?

圆锥曲线经典练习题及答案(供参考)

圆锥曲线经典练习题及解答 大足二中 欧国绪 一、选择题 1. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的4 1 ,则该椭圆的离心率为 (A )31 (B )21(C )32(D )4 3 2. 设F 为抛物线C :y 2=4x 的焦点,曲线y =k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = (A ) 12 (B )1 (C )3 2 (D )2 3.双曲线C:22 221(0,0)x y a b a b -=>>的离心率为2C 的 焦距等于( ) A. 2 B. 4.已知椭圆C :22 221(0)x y a b a b +=>>的左右焦点为F 1,F 2,离心率为3,过F 2的直线l 交C 与A 、B 两点,若△AF 1B 的周长为C 的方程为( ) A. 22132x y += B. 22 13x y += C. 221128x y += D. 221124 x y += 5. 已知双曲线)0,0(122 22>>=-b a b y a x 的一条渐近线平行于直线,102:+=x y l 双曲 线的一个焦点在直线l 上,则双曲线的方程为( ) A.120522=- y x B.152022=-y x C.1100325322=-y x D.125 310032 2=-y x 6.已知F 为抛物线2 y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ?=(其中O 为坐标原点),则ABO ?与AFO ?面积之和的最小值是( ) A 、2 B 、3 C D 7.抛物线2 4 1x y = 的准线方程是( ) (A) 1-=y (B) 2-=y (C) 1-=x (D) 2-=x

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

08届高考数学二轮复习圆锥曲线测试题

2 9 江苏省徐州市 08届高考数学二轮复习圆锥曲线测试题 一、填空题(共14小题,每题5分,计70分) 1.称焦距与短轴长相等的椭圆为"黄金椭圆” ,则黄金椭圆的离心率为 __________ . y = . 2x ,其离心率是 的距离为 2 4. 抛物线y= 4x 的焦点坐标为 X 2 2 5. 已知△ ABC 的顶点B C 在椭圆 + y = 1上,顶点A 是椭圆的一个焦点,且椭圆的另 3 外一个焦点在 BC 边上,则△ ABC 的周长是 _______________ x 2 y 2 6. 椭圆 + = 1的焦点F 1、F 2, P 为椭圆上的一点,已知PF 1 A PF 2,则△ F 1PF 2的 25 9 面积为 ______________ (3, 1),F 是抛物线的焦点,点 P 是抛物线上一点, 2. 中心在原点,焦点在坐标轴的双曲线的一条渐近线方程为 2 2 3. 已知双曲线—--=1的焦点为 6 3 F 、F 2,点M 在双曲线上且 MF i A x 轴,则F i 到直线F 2M 7.已知抛物线y 2 = 4x ,一定点A |AP|+|PF|的最小值_______________ 。 &正四棱锥的侧棱长和底面边长都是 9.以下同个关于圆锥曲线的命题中①设 则动点P 的轨迹为双曲线;②过定圆 1,则侧棱和底面所成的角为 _ A 、 B 为两个定点,k 为非零常数,|PA C 上一定点 A 作圆的动点弦 卜 | PB |= k , AB, O 为坐标原点,若 1 2 OP= (OA+OB),则动点P 的轨迹为椭圆;③方程 2x 2- 5x + 2 2= 0的两根可分别作为 2 2 2 椭圆和双曲线的离心率;④双曲线 ——y = 1与椭圆 —+ y 2 25 9 35 。(写出所有真命题的序号) 1有相同的焦点?其中真 命题的序号为 ____ __ 2 2 10 .方程一x y 1表示椭圆的充要条件是 9—k k -1 2 x 11.在区间[1,5]和[2,4]分别各取一个数,记为 m 和n ,则方程二 m 2 ■ 丫2 = 1表示焦点在x n 轴上的椭圆的概率是 _________________ . 12.嫦娥一号奔月前第一次变轨后运行轨道是以地球中心 F 为焦点的椭圆,测得近地点 A 距 离地面m(km),远地点B 距离地面n(km),地球半径为 R(km),关于这个椭圆有以下四 种说法:①焦距长为 n - m ;②短半轴长为;(m ' R)(n ' R):③离心率e = 其中正确的序号为 2 2 13.以椭圆x - 1内的点 16 4 M (1,1)为中点的弦所在直线方程为 14.设F 1, F 2分别是双曲线x 2 y 1的左、右焦点.若点P 在双曲线上,且PF 1 PF 2 =0 ,

-圆锥曲线基础练习题

圆锥曲线基础练习题 一、选择题 1. 椭圆15 32 2=+y x 的焦距是( ) .A 22 .B 24 .C 2 .D 2 2. 抛物线y x =2的准线方程是( ) (A )014=+x (B )014=+y (C )012=+x (D )012=+y 3.椭圆5522=+ky x 的一个焦点是(0,2),那么k 等于 ( ) .A 1- .B 5 .C 1 .D 5- 4.在平面直角坐标系xOy 中,双曲线中心在原点,焦点在y 轴上,一条渐近线方程为20x y -=,则它 的离心率为( ) A .2 B .52 C .3 D .5 5. 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( ) (A) 2 (B) 3 (C) 4 (D) 5 6.双曲线122=+y mx 的虚轴长是实轴长的2倍,则m 等于 ( ) .A 4 1- .B 4- .C 4 .D 41 7. 双曲线)0(12 2≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为 ( ) A .163 B . 83 C .316 D .38 8. 抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( ) ( A ) 16 17 ( B ) 1615 ( C ) 87 ( D ) 0 二.填空 9.抛物线)0(22>=p px y 上一点M 到焦点的距离为a ,则点M 到准线的 距离是 10.过点)2,3(-A 的抛物线的标准方程是 11.在抛物线)0(22>=p px y 上,横坐标为4的点到焦点的距离为5,则p 的值是

圆锥曲线单元测试题含复习资料

圆锥曲线与方程单元测试(高二高三均适用) 一、选择题 1.方程x = ( ) (A )双曲线 (B )椭圆 (C )双曲线的一部分 (D )椭圆的一部分 2.椭圆14222=+a y x 与双曲线122 2=-y a x 有相同的焦点,则a 的值是 ( ) (A )12 (B )1或–2 (C )1或12 (D )1 3.双曲线22 221x y a b -=的两条渐近线互相垂直,那么该双曲线的离心率是 ( ) (A )2 (B )3 (C )2 (D ) 2 3 4、已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 为 ( ) A 、1 B 、2 C 、3 D 、4 5、过抛物线x y 42 =的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A 、有且仅有一条 B 、有且仅有两条 C 、有无穷多条 D 、不存在 6、一个椭圆中心在原点,焦点12F F 、在x 轴上,P (2)是椭圆上一点,且1122|||||| PF F F PF 、、成等差数列,则椭圆方程为 ( ) A 、22186x y += B 、221166x y += C 、22184x y += D 、22 1164 x y += 7.设0<k <a 2, 那么双曲线x 2a 2–k – y 2b 2 + k = 1与双曲线 x 2a 2 – y 2 b 2 = 1有 ( ) (A )相同的虚轴 (B )相同的实轴 (C )相同的渐近线 (D )相同的焦点 8.若抛物线y 2= 2p x (p >0)上一点P 到准线及对称轴的距离分别为10和6, 则p 的值等于 ( ) (A )2或18 (B )4或18 (C )2或16 (D )4或16 9、设12F F 、是双曲线2 214 x y -=的两个焦点,点P 在双曲线上,且120PF PF ?=u u u r u u u u r ,则12||||PF PF ?u u u r u u u u r 的 值等于 ( ) A 、2 B 、 C 、4 D 、8 10.若点A 的坐标为(3,2),F 是抛物线x y 22 =的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为 ( )

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题及详细答案 一、选择题: 1、双曲线 22 1102x y -=的焦距为( ) 2.椭圆14 22 =+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( ) A . 2 3 B .3 C .27 D .4 3.已知动点M 的坐标满足方程|12512|132 2-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对 4.设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( ) A. 1或5 B. 1或9 C. 1 D. 9 5、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三 角形,则椭圆的离心率是( ). A. B. C. 2 D. 1 6.双曲线)0(12 2≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( ) A . 163 B .83 C .316 D .3 8 7. 若双曲线22 21613x y p -=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( ) (A)2 (B)3 (C)4 8.如果椭圆 19 362 2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 9、无论θ为何值,方程1sin 22 2=?+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对

圆锥曲线基础测试题大全

圆锥曲线基础测试题大 全 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

(北师大版)高二数学《圆锥曲线》基础测试试题 一、选择题 1.已知椭圆116 252 2=+ y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 2. 椭圆32x 2+16 y 2 =1的焦距等于( )。 A .4 B 。8 C 。16 D 。123 3.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程 为 ( ) A .116922=+ y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 4.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 5.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( ) A .2 B .3 C .2 D .3 6.抛物线x y 102=的焦点到准线的距离是 ( ) A .2 5 B .5 C . 2 15 D .10 7. 抛物线y 2=8x 的准线方程是( )。 (A )x =-2 (B )x =2 (C )x =-4 (D )y =-2 8.已知抛物线的焦点是F (0,4),则此抛物线的标准方程是( ) (A )x 2=16y (B )x 2=8y (C )y 2=16x (D )y 2=8x 9.经过(1,2)点的抛物线的标准方程是( ) (A )y 2=4x (B )x 2=21y (C ) y 2=4x 或x 2=2 1y (D ) y 2=4x 或x 2=4y 10.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-± 11.椭圆mx 2+y 2=1的离心率是 2 3 ,则它的长半轴的长是( ) (A )1 (B )1或2 (C )2 (D )2 1 或1 13. 抛物线y =-8 x 2 的准线方程是( )。

圆锥曲线基础测试题大全

(北师大版)高二数学《圆锥曲线》基础测试试题 一、选择题 1.已知椭圆 116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 2. 椭圆32x 2+16 y 2 =1的焦距等于( )。 A .4 B 。8 C 。16 D 。123 3.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( ) A . 116922=+y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 4.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 5.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于 ( ) A .2 B .3 C .2 D .3 6.抛物线x y 102=的焦点到准线的距离是 ( ) A .25 B .5 C .2 15 D .10 7. 抛物线y 2=8x 的准线方程是( )。 (A )x =-2 (B )x =2 (C )x =-4 (D )y =-2 8.已知抛物线的焦点是F (0,4),则此抛物线的标准方程是( ) (A )x 2=16y (B )x 2=8y (C )y 2=16x (D )y 2=8x 9.经过(1,2)点的抛物线的标准方程是( ) (A )y 2=4x (B )x 2= 21y (C ) y 2=4x 或x 2=2 1 y (D ) y 2=4x 或x 2=4y 10.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-±

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高考数学-圆锥曲线练习题

高考数学-圆锥曲线 1. 已知椭圆116252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点 距离为( ) A .2 B .3 C .5 D .7 2. 若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( ) A .116922=+y x B .1 162522=+y x C .1162522=+y x 或1 25162 2=+y x D .以上都不对 3 .动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 4、 抛物线x y 102 =的焦点到准线的距离是( ) A .25 B .5 C .215 D .10 5. 若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )。 A .(7, B .(14, C .(7,± D .(7,-± 6. 如果22 2=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,0 7. 以椭圆1 16252 2=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A .1481622=-y x B .12792 2=-y x C .1481622=-y x 或1 2792 2=-y x D .以上都不对

8. 过双曲线的一个焦点F 2作垂直于实轴的弦PQ ,F 1是另一焦点,若∠PF 1Q=2 π, 则双曲线的离心率e 等于( ) A .12- B .2 C .12+ D .22+ 9. F 1 ,F 2是椭圆1792 2=+y x 的两个焦点,A 为椭圆上一点,且∠0 2145=F AF ,则 Δ 12 AF F 的面积为( ) A .7 B .47 C .27 D .257 10. 抛物线x y 62=的准线方程为_____. 11. 双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________ 12. 若曲线22 141x y k k +=+-表示双曲线,则k 的取值范围是 。 13. 若椭圆 221x my += 的离心率为2,则它的长半轴长为_______________. 14. 椭圆552 2=+ky x 的一个焦点是)2,0(,那么=k 。 15. 求在抛物线2 4y x =上一点,到直线45y x =-的距离最小值_________。 16: 椭圆221 89x y k +=+的离心率为12,则k 的值为______________ 17: 双曲线 22 88kx ky -=的一个焦点为(0,3),则k 的值为______________ 18: 抛物线220y x =的焦点到准线的距离是( ) A .52 B .5 C . 15 2 D .10 19: 双曲线 2241x y -=的渐近线方程是( ) A .2y x =± B . 4y x =± C . 14y x =± D . 1 2y x =±

圆锥曲线基础练习题及答案

圆锥曲线基础练习题及答案 一、选择题: x2y2 ??1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为 1.已知椭圆2516 A.2B. C.D.7 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 x2y2x2y2x2y2x2y2 ??1B.??1 C.??1或??1 D.以上都不对A.916251625161625 3.动点P到点M及点N的距离之差为2,则点P的轨迹是 A.双曲线 B.双曲线的一支 C.两条射线D.一条射线 4.抛物线y2?10x的焦点到准线的距离是 51 B.C. D.102 5.若抛物线y2?8x上一点P到其焦点的距离为9,则点P的坐标为 A. A .,那么k? 三、解答题

11.k为何值时,直线y?kx?2和曲线2x2?3y2?6有两个公共点?有一个公共点?没有公共点? 12.在抛物线y?4x上求一点,使这点到直线y?4x?5的距离最短。 13.双曲线与椭圆有共同的焦点F1,F2,点P是双曲线的渐近线与椭圆的一个交点, 求渐近线与椭圆的方程。 2 2214.已知双曲线x?y?1的离心率e?2,过A,B的直线到原点的距离是.223ab 求双曲线的方程;已知直线y?kx?5交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值. 2y2 1 经过坐标原点的直线l与椭圆?1相交于A、B两2 点,若以AB为直径的圆恰好通过椭圆左焦点F,求直线l的倾斜角. 16.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭 圆交于P和Q,且OP⊥OQ,|PQ|= ,求椭圆方程. 参考答案 1.D 点P到椭圆的两个焦点的距离之和为

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

圆锥曲线综合测试题

圆锥曲线综合测试题 班别 座号 成绩 一、选择题(每小题5分,共60分。) 1.双曲线1322 2=-y x 的离心率为 ( ) A .13 2 B .13 3 C .102 D .103 2.在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( ) A .(-2,1) B .(1,2) C .(2,1) D .(-1,2) 3. 已知1F 、2F 为双曲线C:14x 2 2=-y 的左、右焦点,点P 在曲线C 上,∠21PF F =060, 则P 到x 轴的距离为( )A .55 B .155 C .2155 D .15 20 4. 已知动点(,)M x y 的坐标满足方程2222 558()()x y x y ++--+=,则M 的轨迹 方程是( ) A.221169x y += B.221169x y -= C. 2210169()x y x -=> D. 22 10169()y x y -=> 5.设椭圆22221(0)x y a b a b +=>>的离心率为1 e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( ) A.必在圆 222x y += B.必在圆 22 2x y +=上 C.必在圆 22 2x y +=外 D.以上三种情形都有可能 6. 设双曲线)0,0(122 2 2>>=-b a b y a x 的虚轴长为2,焦距为32,则双曲线的渐近线方 程为( )A x y 2±= B x y 2±= C x y 22± = D x y 21 ±= 7.已知等边△ABC 中,D 、E 分别是CA 、CB 的中点,以A 、B 为焦点且过D 、E 的椭圆和双曲线的离心率分别为1e 、2e ,则下列关于1e 、2e 的关系式不正确的是( )

北师大版高二数学选修圆锥曲线方程测试题及答案

北师大版高二数学选修圆锥曲线方程测试题及 答案 SANY GROUP system office room 【SANYUA16H-

高二数学选修1-1圆锥曲线方程检测题 斗鸡中学 强彩红 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设定点 () 10,3F -, () 20,3F ,动点 () ,P x y 满足条件 a PF PF =+21(a >)0,则动点 P 的轨迹是( ). A. 椭圆 B. 线段 C. 不存在 D.椭圆或线段或不存在 2、抛物线 2 1y x m = 的焦点坐标为( ) . A .??? ??0,41m B . 10,4m ?? ??? C . ,04m ?? ??? D .0,4m ?? ? ?? 3、双曲线 221mx y +=的虚轴长是实轴长的2倍,则m 的值为( ). A .14- B .4- C .4 D .1 4 4、设双曲线的焦点在x 轴上,两条渐近线为y=±x 21 ,则该双曲线的离心率e 为 ( ) (A )5 (B )5 (C ) 25 (D )4 5 5、线段∣AB ∣=4,∣PA ∣+∣PB ∣=6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是( ) (A )2 (B )2 (C ) 5 (D )5 6、若椭圆13 22 2=++y m x 的焦点在x 轴上,且离心率e=2 1,则m 的值为( ) (A ) 2 (B )2 (C )-2 (D )± 2

7、过原点的直线l 与双曲线42x -32 y =-1有两个交点,则直线l 的斜率的取值范围是 A.(-23,23) B.(-∞,-23)∪(23 ,+∞) C.[-23,23] D.(-∞,-23]∪[23 ,+∞) 8、如图,在正方体ABCD -A1B1C1D1中,P 是侧面BB1C1C 内一动点,若P 到直线BC 与直线C1D1的距离相等,则动点P 的轨迹所在的曲线是( ). A.直线 B. 抛物线 C.双曲线 D. 圆 9、已知椭圆x 2sin α-y 2cos α=1(0<α<2π)的焦点在x 轴上,则α的取值范围是( ) (A )(4 3π,π) (B )(4 π,4 3π ) (C )(2 π,π) (D )(2 π,4 3π ) 10、 F 1、F 2是双曲线116 9 2 2 =- y x 的两个焦点,点P 在双曲线上且满足∣P F 1∣·∣P F 2∣=32, 则∠F 1PF 2是( ) (A ) 钝角 (B )直角 (C )锐角 (D )以上都有可能 11、与椭圆125 16 2 2 =+ y x 共焦点,且过点(-2,10)的双曲线方程为( ) (A ) 14522=-x y (B )14522=-y x (C )13522=-x y (D )13 52 2=-y x 12.若点 到点 的距离比它到直线 的距离小1,则 点的轨迹方程 是( ) A . ?????? B . C . ??????? D . 二、填空题:本大题共4小题,每小题4分,共16分. 13、已知双曲线的渐近线方程为y=±34x ,则此双曲线的离心率为________. B D A 1 B 1 C 1 1 P

选修1-1圆锥曲线测试卷(含答案)

第二章测试题 (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知抛物线的准线方程为x =-7,则抛物线的标准方程为( ) A .x 2=-28y B .y 2=28x C .y 2=-28x D .x 2=28y 解析 由条件可知p 2=7,∴p =14,抛物线开口向右,故方程为y 2=28x . 答案 B 2.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于1 2,则C 的方程是( ) A.x 23+y 2 4=1 B.x 24+y 2 3=1 C.x 24+y 2 2=1 D.x 24+y 2 3=1 解析 依题意知c =1,e =c a =1 2,∴a =2,b 2=a 2-c 2=3.故椭圆C 的方程为x 24+y 2 3=1. 答案 D 3.双曲线x 2-y 2m =1的离心率大于2的充分必要条件是( ) A .m >12 B .m ≥1

C .m >1 D .m >2 解析 由e 2 =? ?? ??c a 2=1+m 1=1+m >2,m >1. 答案 C 4.椭圆x 225+y 2 9=1上一点P 到两焦点的距离之积为m ,则m 取最大值时,P 点坐标是( ) A .(5,0)或(-5,0) B .(52,332)或(52,-332) C .(0,3)或(0,-3) D .(532,32)或(-532,32) 解析 |PF 1|+|PF 2|=2a =10, ∴|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2 )2 =25. 当且仅当|PF 1|=|PF 2|=5时,取得最大值, 此时P 点是短轴端点,故选C. 答案 C 5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( ) A.x 236-y 2 108=1 B.x 29-y 2 27=1 C.x 2108-y 2 36=1 D.x 227-y 2 9=1 解析 本题主要考查双曲线与抛物线的几何性质与标准方程,属于容易题.

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

《圆锥曲线》单元测试题

《圆锥曲线》单元测试题 班级 姓名 学号 分数 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、若双曲线x 2a 2-y 2 b 2=1的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A. 5 B .5 C. 2 D .2 2、圆锥曲线y 29+x 2a +8=1的离心率e =1 2 ,则a 的值为( ) A .4 B .-54 C .4或-5 4 D .以上均不正确 3、以椭圆的右焦点F 2为圆心的圆恰好过椭圆的中心,交椭圆于点M 、N ,椭圆的左焦点为 F 1,且直线MF 1与此圆相切,则椭圆的离心率e 为( ) A.3-1 B .2-3 C. 22 D.3 2 4、已知双曲线x 2a 21-y 2b 2=1与椭圆x 2a 22+y 2 b 2=1的离心率互为倒数,其中a 1>0,a 2>b >0,那么以 a 1、a 2、 b 为边长的三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 5、设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为1 2,则此椭 圆的方程为( ) A.x 212+y 216=1 B.x 216+y 212=1 C.x 248+y 264=1 D.x 264+y 2 48 =1 6、已知椭圆E :x 2m +y 2 4=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与l :y =kx +1 被椭圆E 截得的弦长不可能相等的是( ) A .kx +y +k =0 B .kx -y -1=0 C .kx +y -k =0 D .kx +y -2=0 7、过双曲线M :x 2 -y 2 b 2=1的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线 分别相交于点B 、C ,且|AB |=|BC |,则双曲线M 的离心率是( ) A. 52 B.103 C.5 D.10 8、设直线l :2x +y +2=0关于原点对称的直线为l ′,若l ′与椭圆x 2 +y 2 4=1的交点为A 、 B ,点P 为椭圆上的动点,则使△P AB 的面积为1 2的点P 的个数为( ) A .1 B .2 C .3 D .4

高中数学圆锥曲线问题常用方法经典例题(含答案)

专题:解圆锥曲线问题常用方法(一) 【学习要点】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则 有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)

相关主题
文本预览
相关文档 最新文档