高三文科数学模拟试题含答案
- 格式:doc
- 大小:1.12 MB
- 文档页数:10
高三文科数学模拟试题含答案高三文科数学模拟试题本试卷共150分,考试时间120分钟。
第Ⅰ卷(选择题,共50分)一、选择题(共10小题,每小题5分,共50分。
在每小题中,只有一项是符合题目要求的)1.复数3+ i的虚部是()。
A。
2.B。
-1.C。
2i。
D。
-i2.已知集合A={-3,-2,0,1,2},集合B={x|x+2<0},则A∩(CRB) =()。
A。
{-3,-2,0}。
B。
{0,1,2}。
C。
{-2,0,1,2}。
D。
{-3,-2,0,1,2}3.已知向量a=(2,1),b=(1,x),若2a-b与a+3b共线,则x=()。
A。
2.B。
11/22.C。
-1.D。
-24.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为()。
A。
4π/3.B。
π。
C。
3π/2.D。
2π5.将函数f(x)=sin2x的图像向右平移π/6个单位,得到函数g(x)的图像,则它的一个对称中心是()。
A。
(π/6,0)。
B。
(π/3,0)。
C。
(π/2,0)。
D。
(π,0)6.执行如图所示的程序框图,输出的s值为()。
开始是否输出结束A。
-10.B。
-3.C。
4.D。
57.已知圆C:x^2+2x+y^2=1的一条斜率为1的切线l1,若与l1垂直的直线l2平分该圆,则直线l2的方程为()。
A。
x-y+1=0.B。
x-y-1=0.C。
x+y-1=0.D。
x+y+1=08.在等差数列{an}中,an>0,且a1+a2+⋯+a10=30,则a5⋅a6的最大值是()。
A。
4.B。
6.C。
9.D。
369.已知变量x,y满足约束条件2x-y≤2,x-y+1≥0,设z=x^2+y^2,则z的最小值是()。
A。
1.B。
2.C。
11.D。
3210.定义在R上的奇函数f(x),当x≥0时,f(x)=2,当x<0时,f(x)=1-|x-3|,则函数F(x)=f(x)-a(0<a<1)的所有零点之和为()。
江西省宜春市2023届高三高考模拟文科数学试题一、单选题1.(2023·江西宜春·统考模拟预测)设全集U =R ,{1A x x =<-或}2x ≥,{}2,1,0,1,2B =--,则()U B A ⋂=ð( )A .{}0,1B .{}1,0-C .{}0,1,2D .{}1,0,1-2.(2023·江西宜春·统考模拟预测)已知复数z 满足()1i 2z +=-,则z 等于( )A .1i--B .1i-C .1i+D .1i-+3.(2023·江西宜春·统考模拟预测)非零向量a r ,b r ,c r 满足()a cb ⊥-r r r ,a r 与b r 的夹角为π3,2b =r ,则c r 在a r 上的投影为( )A .-1B.C .1D4.(2023·江西宜春·统考模拟预测)已知实数,x y 满足约束条件0,30,1,x y x y y -≥⎧⎪+-≤⎨⎪≥⎩则23x yz -+=的最大值是( )A .3B .13CD .1275.(2023·江西宜春·统考模拟预测)从棱长为2的正方体内随机取一点,则取到的点到中心的距离不小于1的概率为( )A .π6B .π4C .π16-D .π14-6.(2023·江西宜春·统考模拟预测)若30.04,ln1.04,log 1.04a b c ===则( )A .c b a <<B .b a c <<C .c a b<<D .b<c<a7.(2023·江西宜春·统考模拟预测)在数学和许多分支中都能见到很多以瑞士数学家欧拉命名的常数,公式和定理,若正整数,m n 只有1为公约数,则称,m n 互质,对于正整数(),n n ϕ是小于或等于n 的正整数中与n 互质的数的个数,函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如:()()32,76ϕϕ==,()96ϕ=.记n S 为数列(){}3nϕ的前n 项和,则10S =( )A .9312-B .931-C .10312-D .1031-8.(2023·江西宜春·统考模拟预测)函数()πsin 6f x x ω⎛⎫=+ ⎪⎝⎭的图象(04)ω<<关于直线π6x =对称,将()f x 的图象向左平移π4个单位长度后与函数()y g x =图象重合,下列说法正确的是( )A .函数()g x 图象关于直线π6x =对称B .函数()g x 图象关于点π,06⎛⎫- ⎪⎝⎭对称C .函数()g x 在π0,3⎛⎫⎪⎝⎭单调递减D .函数()g x 最小正周期为π29.(2023·江西宜春·统考模拟预测)在Rt ABC V 中,1,2CA CB ==.以斜边AB 为旋转轴旋转一周得到一个几何体,则该几何体的内切球的体积为( )ABC .32π81D .4π8110.(2023·江西宜春·统考模拟预测)如图,设1F ,2F 是双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点,点A ,B 分别在两条渐近线上,且满足22133OA OF OB =+u u u r u u u u r u u u r ,20OA BF ⋅=u u u r u u u u r,则双曲线C 的离心率为( )A .B .2CD11.(2023·江西宜春·统考模拟预测)已知数列{}n a 满足1321223n n a a a a n+++++=L ,若数列()21n n n a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和n S ,对任意*N n ∈不等式n S λ<恒成立,则实数λ的取值范围是( )A .1λ>B .1λ≥C .58λ≥D .58λ>12.(2023·江西宜春·统考模拟预测)已知函数()()()ln 1,ln (0)1m xf x xg x x m x m =+-=+>+,且()()120f x g x ==,则()2111em xx -+的最大值为( )A .1B .eC .2eD .1e二、填空题13.(2023·江西宜春·统考模拟预测)已知)114d πa x x -=+⎰,则到点(),0M a 的距离为2的点的坐标可以是___________.(写出一个满足条件的点就可以)14.(2023·江西宜春·统考模拟预测)已知点()()1,1,1,1A B ---,若圆22()(24)1x a y a -+-+=上存在点M 满足3MA MB ⋅=u u u r u u u r,则实数a 的取值的范围是___________.15.(2023·江西宜春·统考模拟预测)已知某线路公交车从6:30首发,每5分钟一班,甲、乙两同学都从起点站坐车去学校,若甲每天到起点站的时间是在6:30--7:00任意时刻随机到达,乙每天到起点站的时间是在6:45-7:15任意时刻随机到达,那么甲、乙两人搭乘同一辆公交车的概率是___________________16.(2023·江西宜春·统考模拟预测)如图,多面体ABCDEF 中,面ABCD 为正方形,DE ⊥平面,ABCD CF DE ∥,且2,1,AB DE CF G ===为棱BC 的中点,H 为棱DE 上的动点,有下列结论:①当H 为DE 的中点时,GH P 平面ABE ;②存在点H ,使得GH AC ⊥;③直线GH 与BE ④三棱锥A BCF -的外接球的表面积为9π.其中正确的结论序号为___________.(填写所有正确结论的序号)三、解答题17.(2023·江西宜春·统考模拟预测)在ABC V 中,角,,A B C 所对的边分别为,,a b c ,且2cos a b c B +=.(1)求证:2C B =;(2)求3cos a bb B+的最小值.18.(2023·江西宜春·统考模拟预测)如图1,在直角梯形ABCD 中,//,90,224AB CD DAB CD AB AD ∠====o ,点E ,F 分别是边,BC CD 的中点,现将CEF △沿EF 边折起,使点C 到达点P 的位置(如图2所示),且2BP =.(1)求证:平面APE ⊥平面ABD ;(2)求点B 到平面ADP 的距离.19.(2023·江西宜春·统考模拟预测)为了缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的基本规则是:①“盲拍”,即所有参与竞拍的人都是网络报价,每个人不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞拍人的出价从高到低分配名额.某人拟参加2023年5月份的车牌竞拍,他为了预测最低成交价,根据竞拍网站的公告,统计了最近5个月参与竞拍的人数(见表):月份2022.122023.12023.22023.32023.4月份编号t12345竞拍人数y (万人)1.72.12.52.83.4(1)由收集数据的散点图发现可用线性回归模型拟合竞拍人数y (万人)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:ˆˆˆy bt a =+,并预测2023年5月份参与竞拍的人数.(2)某市场调研机构对200位拟参加2023年5月份车牌竞拍人员的报价进行抽样调查,得到如下一份频数表:报价区间(万元)[)1,2[)2,3[)3,4[)4,5[)5,6[]6,7频数206060302010(i )求这200位竞拍人员报价X 的平均数x 和样本方差2s (同一区间的报价可用该价格区间的中点值代替);(ii )假设所有参与竞价人员的报价X 可视为服从正态分布()2,N μσ,且μ与2σ可分别由(i )中所求的样本平均数x 及方差2s 估值.若2023年5月份实际发放车牌数是5000,请你合理预测(需说明理由)竞拍的最低成交价.附:()()()121ˆ 1.3niii nii x x y y bx x ==--=≈-∑∑,若()0,1Y N :,则( 1.11)0.8660<=P Y ,( 1.12)0.8686P Y <=.20.(2023·江西宜春·统考模拟预测)已知函数()ln 2f x x x =--.(1)求函数的最小值;(2)若方程()f x a =有两个不同的实数根1x ,2x 且12x x <,证明:1223x x +>.21.(2023·江西宜春·统考模拟预测)在平面直角坐标系xoy 中,已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,左、右焦点分别是12,F F ,以1F 为圆心,6为半径的圆与以2F 为圆心,2为半径的圆相交,且交点在椭圆C 上.(1)求椭圆C 的方程;(2)设过椭圆C 的右焦点2F 的直线12,l l 的斜率分别为12,k k ,且122k k =-,直线1l 交椭圆C 于,M N 两点,直线2l 交椭圆C 于,G H 两点,线段,MN GH 的中点分别为,R S ,直线RS 与椭圆C 交于,P Q 两点,,A B 是椭圆C 的左、右顶点,记PQA △与PQB △的面积分别为12,S S ,证明:12S S 为定值.22.(2023·江西宜春·统考模拟预测)在平面直角坐标系xoy 中,曲线C 的参数方程11222122t t t t x y ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎪=-⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程cos 2sin 10m ρθρθ+-=.(1)求曲线C 的普通方程;(2)若直线l 与曲线C 有两个不同公共点,求m 的取值范围.23.(2023·江西宜春·统考模拟预测)已知函数()244f x x x =++-.(1)求不等式24410x x ++-≥的解集;(2)若()f x 的最小值为m ,正实数a ,b ,c 满足a b c m ++=,求证:11192a b b c c a m++≥+++.参考答案:1.D【分析】先计算得到U A ð,进而求出交集.【详解】{}12U A x x =-≤<ð,故(){}1,0,1U B A =-I ð故选:D 2.A【分析】利用复数的除法运算和共轭复数的定义求解.【详解】由题可得2(1i)1i 1iz -==--=-++,所以1i z =--,故选:A.3.C【分析】根据投影公式计算出正确答案.【详解】由于()a c b ⊥-r r r,所以()0,a c a b a c a a b b c ⋅-=⋅-⋅=⋅=⋅r r r r r r r r r r r ,由于a r 与b r 的夹角为π3,所以πcos 3a c a b a b a ⋅=⋅=⋅⋅=r r r r r r r,c r 在a r 上的投影为1a a c a a⋅==rr r r r .故选:C 4.B【分析】画出可行域,向上平移基准直线20x y -+=到可行域边界位置,由此求得23x y z -+=的最大值.【详解】画出可行域如下图所示,向上平移基准直线20x y -+=到可行域边界点()1,1B 的位置,此时z 取得最大值为1max 12111,3z z --⨯+=-==,.故选:B.5.C【分析】根据几何概型概率问题的计算公式求得正确答案.【详解】点到中心距离小于等于1的几何体是以中心为球心,1为半径的球体.所以,取到的点到中心的距离不小于1的概率为334π1π31126⨯-=-.故选:C 6.A【分析】构造函数()()ln 1f x x x =+-,利用导数判断函数单调性,再结合对数的性质即可判断大小关系.【详解】因为0.04a =,ln1.04b =,3log 1.04c =,当()0,1x ∈时,设()()ln 1f x x x =+-,则()11011xf x x x -'=-=<++,所以()f x 在()0,1上单调递减且()00f =,所以()()()0.04ln 10.040.0400f f =+-<=,即()0.04ln 10.04>+,所以a b >;又因为3e >,所以ln 3ln e 1>=,3ln1.04log 1.03ln1.04ln 3=<,即b c >,所以c b a <<.故选:A.7.D【分析】根据题意分析可得()1323nn ϕ-=⋅,结合等比数列求和公式运算求解.【详解】由题意可知:若正整数3nm ≤与3n不互质,则m 为3的倍数,共有1333n n -=个,故()1133332n n n n ϕ---=⋅=,∵()()113233233n n n n ϕϕ+-⋅==⋅,即数列(){}3n ϕ是以首项()32ϕ=,公比3q =的等比数列,故()1010102133113S -==--.故选:D.8.C【分析】由对称性求得ω,由图象平移变换求得()g x ,然后结合正弦函数的对称性,单调性,周期判断各选项.【详解】由已知ππππ662k ω+=+,62k ω=+,Z k ∈,又04ω<<,∴2ω=,ππ2π()sin[2()sin(2463g x x x =++=+,π2ππ2ππ,Z 632k k ⨯+=≠+∈,A 错;π2ππ2()π,Z 633k k ⨯-+=≠∈,B 错;π(0,3x ∈时,2π2π4ππ3π2(,)(,)33322x +∈⊆,C 正确;()g x 的最小正周期是2ππ2T ==,D 错.故选:C .9.C【分析】根据旋转体的概念得出该旋转体是两个共底面的圆锥的组合体,作出轴截面,得出内切球于心O 位于对称轴AB 上,由平行线性质求得球半径r 后可得球体积.【详解】由题意该几何体是两个共底面的圆锥的组合体,如图是其轴截面,由对称性知其内切球球心O 在AB 上,O 到,CA CB 的距离,OE OF 相等为球的半径,设其为r ,因为C 是直角,所以OECF 是正方形,即CF CE r ==,由//OF CA 得OF BF CA BC =,即212r r -=,解得23r =,球体积为3344232ππ(π33381V r ==⨯=.故选:C .10.C【分析】先求出AB 所在的直线方程,分别与两条渐近线联立方程组,求出,A B 两点的坐标,再根据22133OA OF OB =+u u u r u u u u r u u u r,求出,a c 之间的关系,从而可得双曲线的离心率【详解】由题意:OA b k a = ,20OA BF =u u u r u u u u r Q g ,2OA BF ∴⊥ ,2BF ak b ∴=-所以直线2BF 的方程为:()ay x c b=-- ①直线OA 的方程为:by x a =②直线OB 的方程为:by x a=-③联立①②可得:2a x cab y c⎧=⎪⎪⎨⎪=⎪⎩ ,即2(,)a ab A c c 联立①③可得22222a c x a babcy a b ⎧=⎪⎪-⎨-⎪=⎪-⎩,即22222(,a c abc B a b a b ---又22133OA OF OB =+u u u r u u u u r u u u r Q 22222221(,)(,0)(,)33a ab a c abcc c c a b a b-∴=+--可得222222233()3()a a c c c a b ab abcc a b ⎧=+⎪-⎪⎨-⎪=⎪-⎩ ,化简可得223a c = ,即2e 3=,e ∴= 故选:C 11.C【分析】根据1321223n n a a a a n+++++=L 求得 n a ,再因为对任意*N n ∈不等式n S λ<恒成立,()max n S λ>,求出实数λ的取值范围.【详解】1321223n n a a a a n+++++=L ①,31212231n n a a a a n -++++=-L ②,由①-②可得,当 2n ≥ 时,2n na n=,当211,2n a ==,当2n ≥,()()()122211222111n n n n n n n a n n n n +⎛⎫++==- ⎪ ⎪++⨯⨯+⨯⎝⎭,当1,n =()2318n n n a +=+,所以()()2312131111311228223221282212n n n n S n n n ++⎡⎤⎛⎫⎛⎫⎛⎫=+-++-=+-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⨯⨯⨯+⨯⨯+⨯⎝⎭⎢⎥⎝⎭⎝⎭⎣⎦L ,对任意*N n ∈不等式n S λ<恒成立,所以 ()max n S λ>,()21332528882221181n n S n +⎛⎫=+<+=⎪ ⎪-⨯+⎝⎭⨯.所以58λ≥.故选:C.12.A【分析】根据题意表示出()()21121ln 1e ,x x x x m ++==从而推导出21e 1,xx =+将问题转化为()21111e em m x x m--+=,利用导数求得函数的最值.【详解】()()()()()ln 10,ln 10,1ln 1,11m mf x x x m x x x x =+-=+-==++++()ln0,e ,x xg x x m x m=+==由题意知,()()21121ln 1e ,x x x x m ++==即()()2221121ln 1e e ln e ,x x xx x x m ++===因为0m >,所以21e 1,11xx >+>,设()ln ,1p x x x x =>,则()1ln 0p x x '=+>,()()211e ,xp x p m +==所以211e x x +=,所以()22121111e e e e x m m m x x x m---+==,1(),0e m m t m m -=>,则11(),em mt m --'=当01m <<时,()0;t m '>当1m >时,()0;t m '<所以()t m 在()0,1时单调递增,在()1,+∞时单调递减,所以max ()(1)1,t m t ==故选:A.13.22(2)4x y -+=上的任意一点都可以【分析】根据定积分的几何意义先求出a ,再写出到点(),0M a 的距离为2的点表示一个圆.【详解】由于11d x -⎰表示以()0,0为圆心,1为半径且在第一、二象限的圆弧与坐标轴围成的面积,其面积是半径为1的圆的面积的一半,即为π2.所以)111144π4d d 202ππ2πa x x x x --==⨯+=+=⎰⎰,到点()2,0M 的距离为2的点是圆22(2)4x y -+=上的点.故答案为:22(2)4x y -+=上的任意一点.14.120,5⎡⎤⎢⎥⎣⎦【分析】设(,)M x y ,由数量积的坐标表示求得M 点轨迹是一个圆,然后由圆与圆的位置关系可得a 的范围.【详解】设(,)M x y ,则(1,1),(1,1)MA x y MB x y =----=---u u u r u u u r,2(1)(1)(1)3MA MB x x y ⋅=---+--=u u u r u u u r,即22(1)4x y ++=,M 在以(0,1)-为圆心,2为半径的圆上,由题意该圆与圆22()(24)1x a y a -+-+=有公共点,所以2121-≤≤+,解得1205a ≤≤.故答案为:12[0,]5.15.112【分析】由题意知本题是一个几何概型,设甲和乙到达的分别为6时x +分、6时y +分,则3060x ……,4575y ……,他们能搭乘同一班公交车,则4560x ……,4560y …….试验包含的所有区域是{(,)|3060x y x Ω=……,4575}y ……,他们能搭乘同一班公交车所表示的区域为A ,由此能求出结果.【详解】解:由题意知本题是一个几何概型,设甲和乙到达的分别为6时x +分、6时y +分,则3060x ……,4575y ……,则试验包含的所有区域是{(,)|3060x y x Ω=……,4575}y ……,他们能搭乘同一班公交车所表示的区域为4550{(,)|4550x A x y y ⎧=⎨⎩…………或50555055x y ⎧⎨⎩…………或5560}5560x y ⎧⎨⎩…………,则他们能搭乘同一班公交车的概率5531303012P ⨯⨯==⨯.故答案为:11216.①④【分析】根据线面平行的判定定理,以及线线垂直的判定,结合异面直线所成角,以及棱锥外接球半径的求解,对每一项进行逐一求解和分析即可.【详解】对①:当H 为DE 的中点时,取EA 中点为M ,连接,MH MB ,因为,H M 分别为,ED EA 的中点,故可得MH //AD ,12MH AD =,根据已知条件可知:BG //1,2AD BG AD =,故MH //,BG MH BG =,故四边形HMBG 为平行四边形,则H G //MB ,又MB ⊂平面,ABE HG ⊄平面ABE ,故H G //面ABE ,故①正确;对②:因为ED ⊥平面ABCD ,,⊂DA DC 平面ABCD ,故,DE DA DE DC ⊥⊥,又四边形ABCD 为矩形,故DA DC ⊥,则,,DE DA DC 两两垂直,以D 为坐标原点,建立空间直角坐标系如图所示:则()()()()()2,0,0,0,2,0,2,2,0,0,0,2,1,2,0A C B E G ,设()0,0,H m ,[]0,2m ∈,若GH AC ⊥,则()()1,2,2,2,020GH AC m ⋅=--⋅-=-≠u u u r u u u r,不满足题意,故②错误;对③:()1,2,GH m =--u u u r,()2,2,2BE =--u u u r ,()()()()1222262GH BE m m ⋅=-⨯-+-⨯-+=+u u u r u u u r,GH ==u u u r,BE =u u u r []0,2m ∈,,cos GH =u u u r u=[]0,2m ∈,令2325m y m +=+,设32t m =+,[]2,4t ∈,23t m -=,则29492453ty t t t==-⎛⎫+-+ ⎪⎝⎭,当[]2,4t ∈时,根据对勾函数的性质得4949454,42t t ⎡⎤+-∈⎢⎥⎣⎦,则236,549y ⎡⎤∈⎢⎥⎣⎦,当25y =时,cos ,GH BE u u u r u u u r有最小值,最小值为,故③错误;对④:由题可得CF ⊥平面ABCD ,又面ABCD 为正方形,∴,,AB BC CF AB BC CF C ⊥⊥⋂=,∴AB ⊥平面BCF ,则AB ,BC ,CF 两两垂直,∴AF 为三棱锥A BCF -的外接球的直径,又22222212219AF AB BC CF =++=++=,∴三棱锥A BCF -的外接球表面积为9π,故④正确.故答案为:①④.17.(1)证明见解析(2)最小值为【分析】(1)根据正弦定理边角互化和两角和差正弦化简即可证明.(2)将问题转化32cos 2cos cos a b c B b b B b B++=24cos cos B B =+,根据第一问解得π10,,cos ,132B B ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,然后结合不等式求解.【详解】(1)在ABC V 中,2cos a b c B +=,由正弦定理得sin sin 2sin cos A B C B +=,又()πA B C =-+,因为()sin sin 2sin cos B C B C B ++=⋅,所以sin cos sin cos sin C B B C B ⋅-⋅=,所以()sin sin C B B -=,又sin 0B >,所以0πC B C <-<<,且πB C B C +-=<,所以B C B =-,故2C B =.(2)由(1)2C B =得()30,πB C B +=∈,所以π10,,cos ,132B B ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,因为2cos ,2a b c B C B +==,所以32cos 2cos cos a b c B b b B b B++=2sin cos 2sin 2sin2cos 2sin sin cos sin cos C B B B B BB B B B⋅+⋅+==⋅⋅24cos cos B B=+≥当且仅当24cos cos B B =即cos B =π0,3B ⎛⎫∈ ⎪⎝⎭,即当且仅当π4B =时等号成立,所以当π4B =时,3cos a bb B +的最小值为18.(1)证明见解析【分析】(1)连接,BD BF ,由等腰三角形的性质和勾股定理,证明PE EF ⊥,PE BE ⊥,可证得PE ⊥平面ABD ,即可证得平面APE ⊥平面ABD .(2)取AD 的中点O ,连接,,OE DE PO ,由勾股定理求,,PD PA PO ,又B PAD P ABD V V --=,利用体积法求点B 到平面ADP 的距离.【详解】(1)证明:由题意,连接,BD BF ,因为224CD AB AD ===,//AB CD ,90,DAB F ∠=o 是边CD 的中点,所以2BF CF ==,则BC =又E 是边BC 的中点,则EF BC ⊥,在折起中PE EF ⊥.又222224BE PE BP +=+==,所以PE BE ⊥,又BE EF E =I ,BE ⊂平面ABD ,EF ⊂平面ABD ,故PE ⊥平面ABD ,又PE ⊂平面APE ,所以平面APE ⊥平面ABD .(2)由(1)中取AD 的中点O ,连接,,OE DE PO ,由(1)可知,PE ⊥平面ABD ,所以,,PE DE PE AE PE OE ⊥⊥⊥,而()132OE AB DC =+=,112OD AD ==,所以DE =同理AE =所以PD PA PO ======所以PAD V 是等腰三角形,所以1122PAD S AD PO =⋅=⨯=V 又B PAD P ABD V V --=,即1133PAD ABD S h S PE ⋅=⋅V V ,所以ABD PADS PE h S ⋅==VV =,即点B 到平面ADP19.(1)0.41.7ˆ12=+yt ,预测2023年5月份参与竞拍的人数为3.73万人(2)(i ) 3.5x =,2 1.7s =;(ii )预测竞拍的最低成交价为4.943万元【分析】(1)由已知公式求得线性回归方程,6t =代入回归方程可得预测值;(2)(i )由均值与方差公式计算出均值与方差;(ii )由预测值求得报价在最低成交价以上人数占总人数比例,然后由正态分布的性质求得预测竞拍的最低成交价.【详解】(1)11(12345)3,(1.7 2.1 2.5 2.8 3.4) 2.555t y =++++==++++=,55211149162555, 1.7 4.27.511.21741.6,ii i i i tt y ===++++==++++=∑∑,241.653 2.5ˆˆ0.41, 2.50.413 1.275553ba -⨯⨯∴===-⨯=-⨯,y 关于t 的线性回归方程0.41.7ˆ12=+y t 2023年5月份对应6t =,所以0.416 1.27 3.73ˆ=⨯+=y所以预测2023年5月份参与竞拍的人数为3.73万人.(2)(i )由题意可得:1.50.12.50.33.50.34.50.155.50.16.50.05 3.5x =⨯+⨯+⨯+⨯+⨯+⨯=22222(1.5 3.5)0.1(2.5 3.5)0.3(3.5 3.5)0.3(4.5 3.5)0.15s =-⨯+-⨯+-⨯+-⨯22(5.5 3.5)0.1(6.5 3.5)0.05 1.7+-⨯+-⨯=(ii )2023年5月份实际发放车牌数是5000,设预测竞拍的最低成交价为a 万元,根据竞价规则,报价在最低成交价以上人数占总人数比例为5000100%13.40%37300⨯≈根据假设报价X 可视为服从正态分布()22,, 3.5, 1.7, 1.3===≈N μσμσσ,令 3.51.3--==X X Y μσ,由于( 1.11)0.8660<=P Y ,1( 1.11)0.1340P Y ∴-<=,3.5() 1.110.86601.3a P Y a P Y -⎛⎫∴<=<== ⎪⎝⎭,所以 3.5 1.111.3a -=得 4.943=a ,所以预测竞拍的最低成交价为4.943万元.20.(1)1-(2)证明见解析【分析】(1)利用导数法求函数最值的步骤解求解;(2)根据题意构造函数()()()2F x f x f x =--,()0,1x ∈.对函数求导,利用导函数的正负判断函数的单调性,进而利用函数的最值得出()()212f x f x >-,再结合(1)中函数的单调性即可得证.【详解】(1)由题意可知:函数()ln 2f x x x =--的定义域为:()0,∞+.则()11f x x'=-,令()0f x '=,解得1x =.当()0,1x ∈,()0f x '<,函数()f x 单调递减;当()1,x ∈+∞,()0f x ¢>,函数()f x 单调递增.所以1x =为极小值点,且()()min 11f x f ==-.所以函数()f x 的最小值为1-.(2)根据题意可知:()()12f x f x =,根据(1)设101x <<,21x >,构造函数()()()2F x f x f x =--,()0,1x ∈.()()()()()221202x F x f x f x x x -'''=+-=<-,所以()F x 在()0,1上单调递减.则有()()10F x F <=,也即()()1120f x f x -->.因为()()12f x f x =,所以()()2120f x f x -->,也即()()212f x f x >-因为121x ->,21x >,由(1)可知()f x 在()1,+∞上单调递增,所以212x x >-,也即122x x +>.由已知21x >,所以1223x x +>.21.(1)2211612x y +=;(2)证明见解析.【分析】(1)根据离心率的定义和椭圆定义求得,a c ,再计算出b 后得椭圆方程;(2)设()()1122,,,M x y N x y ,直线方程代入椭圆方程,利用韦达定理求得中点,R S 的坐标,当直线PQ 斜率存在时,设直线:PQ y mx n =+,点,R S 在直线PQ 上,代入整理得12,k k 是一个一元二次方程的根,由韦达定理得12k k ,从而得出,m n 关系,得出直线PQ 过定点E ,再确定直线PQ 斜率不存在时也过这个定点E ,然后结合该定点得出三角形面积比.【详解】(1)依题意得12622c a a⎧=⎪⎨⎪+=⎩,则4,2,a c =⎧⎨=⎩则22212b a c =-=,所以椭圆C 的方程为2211612x y +=;(2)直线()11:2l y k x =-,设()()1122,,,M x y N x y ,由122(2)11612y k x x y =-⎧⎪⎨+=⎪⎩得()2222111341616480k x k x k +-+-=,所以2112211634k x x k +=+,211221164834k x x k -=+,且0∆>,则中点211221186,3434k k R k k ⎛⎫- ⎪++⎝⎭,同理可算222222286,3434k k S k k ⎛⎫- ⎪++⎝⎭①当直线斜率存在时,设直线:PQ y mx n =+,点,R S 在直线PQ 上,点,R S 坐标代入整理得()()21122284630,84630,m n k k n m n k k n ⎧+++=⎪⎨+++=⎪⎩易知12,k k 为方程()284630m n k k n +++=的两个根,则123284n k k m n==-+,所以1611n m =-,所以直线16:11PQ y mx m =-,则直线恒过点16,011E ⎛⎫⎪⎝⎭②当直线的斜率不存在时,由对称性可知12k k =-,由122k k =-,不妨设12k k ==,所以221222128816343411k k k k ==++,直线16:11PQ x =过16,011⎛⎫⎪⎝⎭,根据①②可知,直线PQ 恒过点16,011E ⎛⎫⎪⎝⎭,因为PQA △的面积11212S AE y y =⋅-,PQB △的面积21212S BE y y =⋅-,所以121641511167411AE S S BE +===-.【点睛】方法点睛:椭圆中的直线过定点问题的解决方法:斜率存在时,设出直线方程为y mx n =+,根据已知条件确定,m n 的关系后,由直线方程得出定点坐标.本题中,动直线PQ 是由点,R S 确定的,因此可由已知直线12,l l 确定,R S 的坐标,再把坐标代入所设直线方程,发现12,k k 是一个一元二次的两根,这样可由韦达定理求得,m n 的关系,得出结论.22.(1)()22441x y x -=≥(2)4m <<【分析】(1)在曲线C 的参数方程中消去参数t ,可得出曲线C 的普通方程,利用基本不等式求出x 的取值范围,即可得解;(2)求出直线l 的普通方程,分析可知直线l 与双曲线2214y x -=的右支有两个交点,将直线l 与双曲线2214y x -=方程联立,利用直线与双曲线的位置关系可得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】(1)因为112122t t x ⎛⎫=+≥ ⎪⎝⎭()222222221422,2441122,2t t t t x x y x y ⎧=++⎪⎪-=≥⎨⎪=+-⎪⎩则则曲线的普通方程为()22441x y x -=≥(2)cos 2sin 10m ρθρθ+-=则210mx y +-=由得()22210,1,14mx y y x x +-=⎧⎪⎨-=≥⎪⎩得()22162170m x mx -+-=有两个不等正根()22222160,Δ468160,20,1617016m m m m m m ⎧-≠⎪=+->⎪⎪⎨->⎪-⎪⎪->-⎩则4m <<23.(1)[)10,2,3∞∞⎛⎤--⋃+ ⎥⎝⎦(2)证明见解析【分析】(1)利用零点分段法分类讨论,分别求出不等式的解集,即可得解;(2)利用绝对值三角不等式求出()f x 的最小值,即m 的值,再利用柯西不等式证明即可.【详解】(1)不等式24410x x ++-≥,所以224410x x x ≤-⎧⎨---+≥⎩,解得103x ≤-,或2424410x x x -<<⎧⎨+-+≥⎩,解得24x ≤<,或424410x x x ≥⎧⎨++-≥⎩,解得4x ≥,所以原不等式解集为[)10,2,3∞∞⎛⎤--⋃+ ⎥⎝⎦.(2)()244242f x x x x x x =++-=++-++()2406x x ≥+--+=,当且仅当2x =-时取得,即min ()6f x =,所以6a b c m ++==,因为()1112a b c a b b c a c ⎛⎫++⨯++ ⎪+++⎝⎭()111a b b c c a a b b c c a ⎛⎫=+++++++ ⎪+++⎝⎭()()()111a b b c c a a b b c c a ⎛⎫=+++++++⎡⎤ ⎪⎣⎦+++⎝⎭222222⎡⎤⎡⎤⎢⎥=++++⎢⎥⎣⎦⎢⎥⎣⎦2≥()21119=++=,当且仅当12a b c ===时取等号,所以()1119922a b b c c a a b c m ++≥=+++++成立.。
高三数学模拟试题(一)一、选择题(5×10=50分)1. 设集合{}2|230A x x x =--<,{}|14B x x =≤≤,则AB =( )A .{}|13x x ≤<B .{}|13x x ≤≤C .{}|34x x <≤D . {}|34x x ≤≤ 2.若命题:|1|4p x +≤,命题2:56q x x <-,则p q ⌝⌝是的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 3.已知向量(1,),(1,),a n b n a b b ==--若2与垂直,则||a =( ) A .1B .2C .2D .44.过点)2,1(与圆221x y +=相切的直线方程是( ) A .1x =B .3450x y -+=C .34501x y x -+==或D .54301x y x -+==或5.已知函数⎩⎨⎧=x x x f 3log )(2 00≤>x x ,则))41((f f = ( )A .9B .19C .9-D .91-6.ABC ∆中,三边之比4:3:2::=c b a ,则最大角的余弦值等于( ) A .41 B .87 C .21- D .41-7.已知焦点在x 轴上的椭圆22219x y a +=的离心率是12e =,则a 的值为( ) A .23 B .3 C .32 D .12 8.若不等式4)2(2)2(2<-+-x a x a 的解集为R ,则实数a 的取值范围是( ) A .)2,2(- B .]2,2(- C .),2()2,(+∞--∞ D .)2,(-∞9.函数236()(04)1x x f x x x ++=≤≤+的最小值为( ) A .2 B .1 C .6 D .510. 已知函数()2sin()f x x ωϕ=+(0,0π)ωϕ><<的图象如图所示,则ω等于( )A .13 B .1 C .32D .2二、填空题(5×5=25分)11.若点(),9a 在函数3xy =的图象上,则tan6a π= 12.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是13.设y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥-≥+,1,1,1x y x y x 则y x z 2-=的最小值是_______14.已知数列{}n a 为等差数列,且28143,a a a ++=则()2313log a a +=_______ 15.若扇形的面积和弧长都是10,则这个扇形中心角的弧度数是____三、解答题(75分)16.(本题满分13分)已知集合{}|||2A x x a =-<,26|12x B x x +⎧⎫=>⎨⎬+⎩⎭. (1)求集合A 和集合B(2)若A B R =,求a 的取值范围17.(本小题满分13分)等比数列{}n a 中,已知142,16a a == (1)求数列{}n a 的通项公式(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和n S18.(本小题满分12分)已知向量a =(sin ,cos())x x π-,b =(2cos ,2cos )x x ,函数()1f x =⋅a b+.(1)求π()4f -的值;(2)求()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值,并求出相应的x 的值.19.(本小题满分13分)如图所示,已知三棱锥BPC A -中,,,AP PC AC BC M ⊥⊥为AB 中点D 为PB 中点,且PMB ∆为正三角形。
文科数学试卷参考答案及评分标准一、选择题:1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2xy = B . ()2lg 1y x x =++C . 22xxy -=+ D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 若抛物线1262222=+=y x px y 的焦点与椭圆的右焦点重合,则p 的值为 A .-4 B .4 C .-2 D .26. 已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=xC .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x2 2 222 2 正视图侧视图7. 一空间几何体的三视图如图所示,则该几何体的表面积为A.223π+ B .4232π+- C .627π+ D .6272π+- 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为A .5B .5C .25D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10. 已知数列{}n x 满足3n n x x +=,21||()n n n x x x n N *++=-∈,若11x =,2 (1,0)x a a a =≤≠,则数列{}n x 的前2010项的和2010S 为 A .669B .670C .1338D .134011. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====b a b OB a OA 其中若10,≤≤≤+=μλμλ且b a OC ,C 点所有可能的位置区域用阴影表示正确的是12.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A B 、两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的A .B .C .D .取值范围是A . ()1,+∞B .()1,2C.(1,1D.(2,1+二、填空题:本大题共4小题,每小题4分,共16分. 13. 对任意非零实数a b 、,若a b ⊗的运算原理如图所示,则()221log 82-⎛⎫⊗= ⎪⎝⎭___1___.14.在ABC ∆中,已知41AB AC ==u u u r u u u r,,ABCS AB AC ∆=⋅u u u r u u u r则的值为 ±2 .15. 设n S 表示等差数列{}n a 的前n 项和,且918S =,240n S =,若()4309n a n -=>,则n = 15 .16. 已知两个不相等的实数a b 、满足以下关系式:204a sin a cos πθθ⋅+⋅-=,204b sin b cos πθθ⋅+⋅-=,则连接A ()2a ,a 、 B ()2b ,b 两点的直线与圆心在原点的单位圆的位置关系是 相交 . 三、解答题:本大题共6个小题,共74分. 17.(本小题满分12分)已知函数2()sin cos f x x x x =+.(Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵2()sin cos f x x x x =+)12sin cos cos 212x x x =⋅++(第13题图)1sin 222x x =++ ……………3分sin 232x π⎛⎫=++ ⎪⎝⎭ ……………5分 ∴ 函数()f x 的最小正周期22T ππ==. ……………6分 (Ⅱ)∵ 62x ππ-≤≤,40233x ππ≤+≤∴sin 213x π⎛⎫≤+≤ ⎪⎝⎭, ……………9分 ∴20sin 213222x π⎛⎫≤++≤+= ⎪⎝⎭, ∴ ()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦,最小值为0.……………12分18.(本小题满分12分)如图,已知AB ⊥平面ACD ,DE ∥AB ,ACD ∆是正三角形,2AD DE AB ==,且F 是CD 的中点. (Ⅰ)求证:AF ∥平面BCE ; (Ⅱ)求证:平面BCE ⊥平面CDE . 解:(Ⅰ)取CE 中点P ,连结FP 、BP ,∵F 为CD 的中点,∴FP ∥DE ,且FP =.21DE又AB ∥DE ,且AB =.21DE∴AB ∥FP ,且AB =FP ,∴ABPF 为平行四边形,∴AF ∥BP .…………4分 又∵AF ⊄平面BCE ,BP ⊂平面BCE ,ABCD EF(第18题图)ABCDEFP (第18题图)∴AF ∥平面BCE …………6分(Ⅱ)∵△ACD 为正三角形,∴AF ⊥CD∵AB ⊥平面ACD ,DE //AB∴DE ⊥平面ACD 又AF ⊂平面ACD ∴DE ⊥AF又AF ⊥CD ,CD ∩DE=D∴AF ⊥平面CDE …………10分 又BP ∥AF ∴BP ⊥平面CDE 又∵BP ⊂平面BCE∴平面BCE ⊥平面CDE …………12分 19.(本小题满分12分)已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(Ⅰ)设1n n b a =+,求数列{}n b 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S . 解:(Ⅰ)由125n n S S n +=++()n N *∈得 ()1215n n S S n -=+-+(,2)n N n *∈≥两式相减得 121n n a a +=+ ……………………………… 3分 ∴ ()1121n n a a ++=+即 n n b b 21=+(,2)n N n *∈≥ …………………………………… 4分 又1165111122=+=++=-=a S S S a ∴ 12122=+=a b ,6111=+=a b∴ 122b b = …………………………………… 6分∴ 数列{}n b 是首项为6,公比为2的等比数列∴ nn n b 23261⋅=⋅=- ………………………………… 8分(Ⅱ)法一由(Ⅰ)知321nn a =⋅- ……………………………… 9分∴ 12n n S a a a =++⋅⋅⋅+2323232nn =⨯+⨯+⋅⋅⋅+⋅-()221321n n -=⨯--1626326n n n n +=⋅--=⋅--. ……………………… 12分(Ⅱ)法二由已知125n n S S n +=++()n N *∈ ① 设()()112n n S c n d S cn d ++++=++ 整理得 12n n S S cn d c +=++- ②对照① 、②,得 1,6c d == ……………………………………8分 即①等价于 ()()11626n n S n S n ++++=++∴ 数列{}6n S n ++是等比数列,首项为11161612S a ++=++=,公比为2q =∴ 11612232n n n S n -+++=⋅=⋅∴ 1326n n S n +=⋅--. …………………………………… 12分20.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3=AB 米,2=AD 米.(I )要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (II )当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(I )设DN 的长为x (0x >)米,则2AN x =+米∵AMDC ANDN =,∴()32x AM x+=, ……………………2分 ∴ ()232AMPNx S AN AM x +=⋅=由32>AMPN S 得 ()23232x x+> ,又0x >,得 2320120x x -+>,解得:2063x x <<> 或 即DN 长的取值范围是2(0)(6)3∞U ,,+ ……………………7分(II )矩形花坛AMPN 的面积为()22323121212312x x x y x x x x+++===++12231224x x≥⋅= ……………………10分 当且仅当1232x x ,x==即时矩形花坛AMPN 的面积取得最小值24. 故,DN 的长度是2米时,矩形AMPN 的面积最小,最小值为24平方米.…12分(第20题图)21.(本小题满分12分)已知函数22()ln ()f x x a x ax a R =-+∈.(Ⅰ)当1a =时,证明函数()f x 只有一个零点;(Ⅱ)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围. 解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞∴ 2121()21x x f x x x x --'∴=-+=- …………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ……………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+== ………7分① 当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ② 当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a≥ 此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.………10分③ 当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a≥- 此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩得12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 法二:①当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数,只需()0f x '≤在区间()1,+∞上恒成立,0x >Q ∴只要22210a x ax --≥恒成立,2214210aaa a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤- 综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 22.(本小题满分14分)已知椭圆C :()222210x y a b a b +=>>过点3(1,)2A ,且离心率12e =.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、,且线段MN 的垂直平分线过定点1(,0)8G ,求k 的取值范围.解:(Ⅰ)由题意12e =,即12c e a ==,2a c =, ∴ ()22222223b a c c c c =-=-=∴ 椭圆C 的方程可设为2222143x y c c +=………………………………… 3分代入3(1,)2A ,得222312143c c ⎛⎫ ⎪⎝⎭+= 解得21c =∴ 所求椭圆C 的方程是22143x y +=. ……………………………………… 6分 (Ⅱ)法一由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k x kmx m +++-= ……… 4分 由题意,△()()()22284344120km km=-+->整理得:22340k m +->① …… 7分设()()1122,,M x y N x y 、,MN 的中点为00(,)P x y ,则12024234x x km x k +==-+, 002334my kx m k=+=+ ………………… 8分 由已知,MN GP ⊥ 即1MN GP k k ⋅=-即 223034141348mk k km k -+⋅=---+;整理得:2348km k +=-………… 10分 代入①式,并整理得:2120k >, 即||k >………………………12分∴,1010k ⎛⎛⎫∈-∞-+∞ ⎪ ⎪⎝⎭⎝⎭U ……………… 14分 (Ⅱ)法二,由方程组221,43x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k x kmx m +++-= ……… 4分由题意,△()()()22284344120km km =-+-> 整理得:22340k m +-> ① …… 7分设()()1122,,M x y N x y 、,MN 的中点为00(,)P x y ,则22112222143143x y x y ⎧+=⎪⎨⎪+=⎩ 整理得: 00314y x k =-⋅ ② 又MN GP ⊥ ∴ 00118y k x =-- ③ …………9分 由②、③解得 001238x y k ⎧=⎪⎨⎪=-⎩代入()0y kx m k =+≠,得 2348k m k+=- ……………………… 12分 代入①式,并整理得: 2120k >, 即||10k > ∴,k ⎛⎫∈-∞+∞ ⎪ ⎪⎝⎭⎝⎭U ……………… 14分 法三:由00(,)P x y 在椭圆内部,得:221328143k ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭+< 整理得: 2120k >, 即||k > ∴,k ⎛⎫∈-∞+∞ ⎪ ⎪⎝⎭⎝⎭U ……………… 14分。
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x + 2,则f(x)的对称中心为()A. (0, 2)B. (1, 0)C. (0, -1)D. (1, -1)答案:A2. 若等差数列{an}的公差为d,且a1 + a2 + a3 = 9,a4 + a5 + a6 = 27,则d 的值为()A. 2B. 3C. 4D. 6答案:D3. 在直角坐标系中,点P(2, 3)关于直线y = x的对称点为()A. (2, 3)B. (3, 2)C. (3, 3)D. (2, 2)答案:B4. 若复数z满足|z - 1| = |z + 1|,则z的取值范围是()A. 实轴上B. 虚轴上C. 第一象限D. 第二象限答案:A5. 已知向量a = (1, 2),向量b = (2, -1),则向量a·b的值为()A. 5B. -3C. 0D. -5答案:A6. 函数y = log2(x + 1)的图像与函数y = 2x的图像在第一象限的交点个数为()A. 1B. 2C. 3D. 4答案:A7. 若等比数列{an}的首项为a1,公比为q,且a1 + a2 + a3 = 6,a4 + a5 + a6 = 54,则q的值为()A. 2B. 3C. 4D. 6答案:B8. 在△ABC中,若∠A = 60°,∠B = 45°,则sinC的值为()A. 1/2B. √3/2C. √2/2D. 1答案:C9. 若函数f(x) = x^2 - 4x + 4在区间[1, 3]上的最大值为()A. 0B. 1C. 4D. 9答案:C10. 已知函数f(x) = ax^2 + bx + c的图像开口向上,且f(1) = 3,f(2) = 7,f(3) = 13,则a、b、c的值分别为()A. 1, 2, 1B. 1, 3, 1C. 1, 4, 1D. 1, 5, 1答案:B二、填空题(本大题共5小题,每小题10分,共50分)11. 若等差数列{an}的公差为d,且a1 + a2 + a3 = 9,a4 + a5 + a6 = 27,则d = __________。
高三下学期数学(文科)模拟考试卷(带参考答案与解析)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.答选择题时,则选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,则将答案写在答题卡上。
写在本试卷上无效。
3.本试卷共22题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中只有一项是符合题目要求的。
1.已知向量(2,1)a =和(3,2)b =,则()a a b ⋅-=( ) A .-5 B .-3C .3D .52.不等式312x >+的解集为( ) A .{1,2}x x x <≠- B .{1}x x >C .{21}x x -<<D .{21}x x x <->或3.直线x +ay -3=0与直线(a +1)x +2y -6=0平行,则a =( )A .-2B .1C .-2或1D .-1或24.古希腊科学家阿基米德发明了享誉世界的汲水器,称为阿基米德螺旋泵,两千多年后的今天,左图所示的螺旋泵,仍在现代工农业生产中使用,其依据是“阿基米德螺线”.在右图所示的平面直角坐标系xOy 中点A 匀速离开坐标系原点O ,同时又以固定的角速度绕坐标系原点O 逆时针转动,产生的轨迹就是“阿基米德螺线”,该阿基米德螺线与坐标轴交点依次为A 1(-1,0),A 2(0,-2),A 3(3,0),A 4(0,4),A 5(-5,0),…按此规律继续,若四边形123n n n n A A A A +++的面积为220,则n =( )A .7B .8C .9D .105.△ABC 中AC =,BC =和60A =︒,则cos B =( )A .2±B .12±C .12D .26.设函数()f x 满足(1)()0f x f x ++=,当0≤x <1时,则1()2xf x -=,则()0.5log 8f =( ) A .-2B .12-C .12D .27.若cos 0,2(sin 2)1cos2αααα≠+=+,则tan2α=( ) A .43-B .34-C .34D .438.设函数()y f x =由关系式||||1x x y y +=确定,函数(),0,()(),0.f x xg x f x x -≥⎧=⎨-<⎩,则( )A .g (x )为增函数B .g (x )为奇函数C .g (x )值域为[1,)-+∞D .函数()()y f x g x =--没有正零点二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分。
一、选择题(本大题共10小题,每小题5分,共50分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a、b、c之间的关系为()A. a+b+c=0B. a+b+c=1C. 2a+b=0D. 2a+b=1答案:C解析:因为函数f(x) = ax^2 + bx + c在x=1时取得极值,所以f'(1)=0,即2a+b=0。
2. 已知等差数列{an}的公差为d,首项为a1,第n项为an,则an = ()A. a1 + (n-1)dB. a1 - (n-1)dC. a1 + ndD. a1 - nd答案:A解析:等差数列的通项公式为an = a1 + (n-1)d。
3. 下列各式中,等式成立的是()A. sin(α+β) = sinαcosβ + cosαsinβB. cos(α+β) = cosαcosβ - sinαsinβC. tan(α+β) = tanαtanβD. cot(α+β) = cotαcotβ答案:B解析:根据三角函数的和角公式,cos(α+β) = cosαcosβ - sinαsinβ。
4. 已知复数z = a + bi(a,b∈R),若|z| = 1,则复数z的实部a和虚部b之间的关系为()A. a^2 + b^2 = 1B. a^2 - b^2 = 1C. a^2 + b^2 = 0D. a^2 - b^2 = 0答案:A解析:复数z的模|z| = √(a^2 + b^2),由|z| = 1,得a^2 + b^2 = 1。
5. 已知函数f(x) = x^3 - 3x,则f(x)的图像关于点()A. (0,0)B. (1,0)C. (-1,0)D. (0,1)答案:B解析:由f(1) = 1^3 - 31 = -2,f(0) = 0^3 - 30 = 0,得f(x)的图像关于点(1,0)。
6. 下列各式中,正确的是()A. loga(b^2) = 2logabB. loga(b^3) = 3logabC. loga(ab) = 1D. loga(a^2) = 2答案:B解析:根据对数的运算法则,loga(b^3) = 3logab。
一、选择题(每小题5分,共50分)1. 下列函数中,定义域为实数集R的是()A. y = √(x+1)B. y = 1/xC. y = |x|D. y = x^2 - 4x + 4答案:C解析:选项A的定义域为x≥-1,选项B的定义域为x≠0,选项D的定义域为R。
只有选项C的定义域为实数集R。
2. 已知等差数列{an}的首项a1=3,公差d=2,则第10项an=()A. 19B. 20C. 21D. 22答案:C解析:根据等差数列的通项公式an = a1 + (n-1)d,代入a1=3,d=2,n=10,得an = 3 + (10-1)×2 = 3 + 18 = 21。
3. 下列命题中,正确的是()A. 函数y = x^2在定义域内单调递增B. 等差数列的任意三项成等比数列C. 函数y = log2x在定义域内单调递减D. 平面向量a与b垂直,则a·b=0答案:D解析:选项A错误,函数y = x^2在x<0时单调递减;选项B错误,等差数列的任意三项不一定成等比数列;选项C错误,函数y = log2x在定义域内单调递增;选项D正确,根据向量点积的性质,a·b=|a||b|cosθ,当a与b垂直时,cosθ=0,故a·b=0。
4. 若复数z满足|z-1|=|z+1|,则z的实部为()A. 0B. 1C. -1D. 不存在答案:A解析:设复数z=a+bi,则|z-1|=|a-1+bi|,|z+1|=|a+1+bi|。
根据复数的模的定义,有(a-1)^2+b^2=(a+1)^2+b^2,化简得a=0,即z的实部为0。
5. 已知函数f(x) = x^3 - 3x,则f(x)的图像在x轴上交点的个数是()A. 1B. 2C. 3D. 4答案:B解析:令f(x) = 0,得x^3 - 3x = 0,因式分解得x(x^2 - 3) = 0,解得x=0或x=±√3。
高三数学文科模拟考试 (含答案)高三模拟考试数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共4页,满分150分,考试时间120分钟。
考生作答时,请将答案涂在答题卡上,不要在试题卷和草稿纸上作答。
考试结束后,请将答题卡交回。
第Ⅰ卷(选择题,共60分)注意事项:请使用2B铅笔在答题卡上涂黑所选答案对应的标号。
第Ⅰ卷共12小题。
1.设集合A={x∈Z|x+1<4},集合B={2,3,4},则A∩B的值为A.{2,4}。
B.{2,3}。
C.{3}。
D.空集2.已知x>y,且x+y=2,则下列不等式成立的是A.x1.D.y<-113.已知向量a=(x-1,2),b=(x,1),且a∥b,则x的值为A.-1.B.0.C.1.D.24.若___(π/2-θ)=2,则tan2θ的值为A.-3.B.3.C.-3/3.D.3/35.某单位规定,每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费。
某职工某月缴水费55元,则该职工这个月实际用水为()立方米。
A.13.B.14.C.15.D.166.已知命题p:“存在实数x使得e^x=1”,命题q:“对于任意实数a和b,如果a-1=b-2,则a-b=-1”,下列命题为真的是A.p。
B.非q。
C.p或q。
D.p且q7.函数f(x)满足f(x+2)=f(x),且当-1≤x≤1时,f(x)=|x|。
若函数y=f(x)的图象与函数y=log_a(x)(a>0且a≠1)的图象有且仅有4个交点,则a的取值集合为A.(4,5)。
B.(4,6)。
C.{5}。
D.{6}8.已知函数f(x)=sin(θx)+3cos(θx)(θ>0),函数y=f(x)的最高点与相邻最低点的距离是17.若将y=f(x)的图象向右平移1个单位得到y=g(x)的图象,则函数y=g(x)图象的一条对称轴方程是A.x=1.B.x=2.C.x=5.D.x=6删除了格式错误的部分,对每段话进行了简单的改写,使其更流畅易懂。
高三文科数学模拟试题满分:150分 考试时间:120分钟第Ⅰ卷(选择题 满分50分一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数31ii++(i 是虚数单位)的虚部是( )A .2B .1-C .2iD .i -2.已知集合{3,2,0,1,2}A =--,集合{|20}B x x =+<,则()R A C B ⋂=( ) A .{3,2,0}-- B .{0,1,2} C . {2,0,1,2}- D .{3,2,0,1,2}-- 3.已知向量(2,1),(1,)x ==a b ,若23-+a b a b 与共线,则x =( ) A .2 B .12 C .12- D .2- 4.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为( )A .4πB .32π C .3π D .2π 5.将函数()sin 2f x x =的图象向右平移6π个单位,得到函数()y g x =的图象,则它的一个对称中心是( )A .(,0)2π-B . (,0)6π-C . (,0)6πD . (,0)3π6.执行如图所示的程序框图,输出的s 值为( )A .10-B .3-C . 4D .57. 已知圆22:20C x x y ++=的一条斜率为1的切线1l ,若 与1l 垂直的直线2l 平分该圆,则直线2l 的方程为( ) A. 10x y -+= B. 10x y --= C. 10x y +-= D. 10x y ++=8.在等差数列{}n a 中,0>n a ,且301021=+++a a a , 则65a a ⋅的最大值是( ) A .94B .6C .9D .36正视图 侧视图俯视图1k k =+结束开始1,1k s ==5?k <2s s k =-输出s否 是9.已知变量,x y 满足约束条件102210x y x y x y +-≥⎧⎪-≤⎨⎪-+≥⎩,设22z x y =+,则z 的最小值是( )A.12B. 22C. 1D. 1310. 定义在R 上的奇函数()f x ,当0≥x 时,⎪⎩⎪⎨⎧+∞∈--∈+=),1[|,3|1)1,0[),1(log )(21x x x x x f ,则函数)10()()(<<-=a a x f x F 的所有零点之和为( )A .12-aB .12--aC .a --21D .a 21-第Ⅱ卷(非选择题 满分100分)二、填空题:(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置)11. 命题“若12<x ,则11<<-x ”的逆否命题是_______________________. 12.函数24()1x f x x -=-的定义域是 . 13.抛物线22y x =-的焦点坐标是__________.14.若2423mx x m ≥-+-恒成立,则实数m 的取值范围为__________. 15.某学生对函数()cos f x x x =的性质进行研究,得出如下的结论: ①函数()f x 在[,0]π-上单调递增,在[0,]π上单调递减; ②点(,0)2π是函数()y f x =图象的一个对称中心;③函数()y f x =图象关于直线x π=对称;④存在常数0M >,使|()|||f x M x ≤对一切实数x 均成立;⑤设函数()y f x =在(0,)+∞内的全部极值点按从小到大的顺序排列为12,,x x 则212x x ππ<-<.其中正确的结论是__________.三、解答题:(本大题共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤。
解答写在答题卡上的指定区域内)16.(本小题满分12分)在ABC ∆中,c ,b ,a 分别是角A 、B 、C 的对边,且满足:AcA b sin 2sin 2=(1)求C ;(2)当]0,3[π-∈x 时,求函数()()x B x A y -++=sin sin 3的值域.17. (本小题满分13分)某中学举行了一次“交通安全知识竞赛”, 全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:(1)写出,,,a b x y 的值; (2)若现在需要采用分层抽样的方式从5个小组中抽取25人去参加市里的抽测考试,则第1,2,3组应分别抽取多少人?(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加交通安全知识的志愿宣传活动.求所抽取的2名同学中至少有1名同学来自第5组的概率.18. (本小题满分12分)已知函数2()1x e f x ax =+,其中a 为正实数,12x =是()f x 的一个极值点 (1)求a 的值; (2)当12b >时,求函数()f x 在[,)b +∞上的最小值.19. (本小题满分13分)如图,矩形11A B BA 和矩形11A ADD 所在的平面与梯形ABCD 所在的平面分别相交于直线AB 、CD ,组别 分组 频数 频率 第1组 [50,60)8 0.16 第2组 [60,70)a ▓ 第3组 [70,80)20 0.40第4组 [80,90) ▓ 0.08第5组 [90,100] 2 b合计▓▓50 60 70 80 90 100成绩(分) 0.040 x y 0.008频率组距DC D 1A 1B 1BA其中AB ∥CD ,1112AB BC BB CD ====,60ABC ∠= (1) 证明:平面1BB C 与平面1DD C 的交线平行于平面11A B BA ; (2) 证明:AD ⊥平面1AA C ; (3) 求几何体111A B D ABCD -的体积.20. (本小题满分12分)设等比数列{}n a 的前n 项和为n S ,已知122()n n a S n N *+=+∈(1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成公差为n d 的等差数列,求数列1n d ⎧⎫⎪⎨⎬⎪⎭⎩的前n 项和n T .21.(本小题满分13分)已知椭圆22221(0)x y a b a b+=>>的离心率为63,且过点(0,1)(1)求此椭圆的方程;(2)已知定点)0,1(-E ,直线2y kx =+与此椭圆交于C 、D 两点.是否存在实数k ,使得以线段CD 为直径的圆过E 点.如果存在,求出k 的值;如果不存在,请说明理由.高考模拟数学(文科)试卷参考答案一、选择题:(本大题共10小题,每小题5分,共50分)1. B2. C3. B4. B5. C6. A7. D8. C9. A 10. D 解析: 1. 经计算得321ii i+=-+,故虚部为1-,选B. 2.{|2}R C B x x =≥-,因此(){2,0,1,2}R A C B ⋂=-,选C.3. 2(3,2),3(5,13)x x -=-+=+a b a b ,由向量共线的条件得3(13)5(2)x x +=-,解得12x =,选B. 4. 根据三视图可知这是一个圆柱体,易知选B. 5. 由已知得()sin 2()6g x x π=-,易知(,0)6π为其一个对称中心,选C.6. 经过计算易知选A.7. 由已知得直线2l 的斜率为1-,且直线2l 过圆C 的圆心(1,0)-,根据直线的点斜式可计算得选D. 8. 1101210()10302a a a a a ++++=⨯=,于是1106a a +=,即566a a +=,又0n a >所以25656()92a a a a +⋅≤=,当且仅当563a a ==时等号成立,故选C. 9. 由约束条件可作出可行域可知,z 的最小值就是原点到直线10x y +-=距离的平方,经计算可得选 A. 10. 作出()y f x =的图像如下所示,则()()F x f x a =-的零点即为函数()y f x =与y a =图像交点的横坐标,由图可知共有五个零点,不妨设为12345,,,,x x x x x 且12345x x x x x <<<<,从图中可看出1x 与2x 关于直线3x =-对称,4x 与5x 关于直线3x =对称,故12452(3)230x x x x +++=⨯-+⨯=,当(1,0)x ∈-时12()log (1)f x x =--+,因此由12log (1)x a --+=解得312a x =-,故1234512a x x x x x ++++=-二、填空题:(本大题共5小题,每小题5分,共25分)11. 若1x ≥或1x ≤-,则21x ≥Oxy123-1-2-31y=ax yO12. {|221}x x x -≤≤≠且 13. 108-(,) 14. 5(,]12m ∈-∞ 解析:由题意得2(2)43x m x -≥--恒成立,又22x -≤≤,当2x =时03≥-恒成立;当22x -≤<时20x -<只需2432x m x --≤-即可,令2432x k x --=-,则只需min m k ≤.若设24y x =-,则32y k x -=-,其表示两点(,),(2,3)x y 之间连线的斜率,其中点(,)x y 在半圆224(0)x y y +=≥上,则当过点(2,3)的直线与圆相切时斜率k 有最值,易知其中一条切线为:2x =,不妨设另一条切线方程为3(2)y k x -=-,即230kx y k --+=,由2|23|21k k -+=+得512k =为最小值,故512m ≤. 15. ④⑤ 解析:()cos f x x x =为奇函数,则函数()f x 在[,0]π-和[0,]π上单调性相同,所以①错.由于(0)0f =,()f ππ=-,所以②错.再由(0)0f =,(2)2f ππ=,所以③错. |()||cos ||||cos |||f x x x x x x ==≤,令1M =,则||()|||f x M x ≤对一切实数x 均成立,所以④对.由()cos sin 0f x x x x '=-=得cos sin 0x x x -=,显然cos 0x ≠所以1tan x x =,易知方程1tan x x=的实根就是()f x 的极值点。
在除(,)22ππ-外的正切函数的每一个周期内1tan y y x x===与的图像有且只有一个交点,从下面的图像中易观察得125(,),(,)424x x ππππ∈∈,故212x x ππ<-<,所以⑤对.三、解答题:(本大题共6小题,共75分。