2012 CCDC中国控制与决策会议须知
- 格式:pdf
- 大小:1017.19 KB
- 文档页数:2
第十二届全国流体力学学术会议会议手册1. 介绍第十二届全国流体力学学术会议会议手册,作为本次会议的重要文献和指南,对于参会者了解会议议程、演讲内容、主题和重要信息具有至关重要的作用。
它是会议的门户和桥梁,为与会者提供了重要的信息和指引。
在这篇文章中,我们将深入探讨第十二届全国流体力学学术会议会议手册,为您解读其中的重要内容和价值。
2. 会议手册内容概述第十二届全国流体力学学术会议会议手册的内容非常丰富,涵盖了会议日程安排、主题演讲、分论坛议程、参会者名单、主办方信息等多个方面。
会议手册通过清晰的布局和详尽的资料,为与会者提供了便利和指导。
在会议手册中,我们可以找到与会学者的学术简介、专业领域、学术成果等重要信息,这对于了解会议参与者的学术背景和动向非常有帮助。
3. 会议手册的深度和广度深度和广度兼具是评价一份会议手册的重要标准。
在深度方面,会议手册提供了对于每个演讲环节的详细介绍和内容概要,涵盖了流体力学领域的前沿研究和重要进展。
会议手册还对分论坛的专题和专家进行了系统的介绍,提供了丰富的学术信息和交流评台。
而在广度方面,会议手册涵盖了从基础理论研究到工程应用的多个领域,展现了流体力学学术的全面性和多样性。
4. 个人观点和理解作为我个人对第十二届全国流体力学学术会议会议手册的观点和理解,我认为这份会议手册不仅仅是一份指南,更是对于流体力学领域发展现状的重要记录和总结。
通过阅读会议手册,我对于当前流体力学领域的研究热点和未来发展方向有了更清晰的认识。
会议手册也为我提供了与国内外同行学者交流的机会和窗口,有助于我拓展学术视野,促进学术交流和合作。
总结第十二届全国流体力学学术会议会议手册作为一份重要的学术文献,为流体力学领域的学术交流和发展提供了重要的支持和指导。
它的深度和广度兼具,为与会者提供了丰富的学术内容和交流评台。
我对会议手册的个人观点和理解是,它不仅仅是一份会议指南,更是对流体力学领域研究现状和未来发展的重要记录和反映。
2024年中高层会议制度与议事规则第一章总则第一条为了加强组织的领导,统筹决策,提高工作效率,确保会议的顺利进行,制定本制度。
第二条本制度适用于2024年中高层会议中的会议组织、议事规则等方面的相关内容。
第三条本制度中的中高层会议指的是各个部门、机构、企事业单位等组织中的中高层领导干部参与的会议。
第四条会议制度是中高层会议的基本规范,对会议的组织、议事、决策等环节做出明确规定,保证会议的科学性、民主性和有效性。
第五条会议议事规则是中高层会议中的各项议事活动的基本原则和具体操作规定,包括会议议程的确定、发言顺序、表决方式等内容。
第六条会议组织应遵循集体领导、民主决策、科学决策的原则,做到主体明确、程序规范、责任明确、保密可控。
第七条会议组织应注重会前准备、会中协调、会后总结的有机结合,确保会议顺利进行并取得实际效果。
第八条会议组织应加强对会议的信息化管理,推动会议的数字化、网络化和智能化,提高会议效率和效果。
第二章会议组织第九条中高层会议的召开由主办单位负责,主办单位根据工作需要,确定会议的议题、时间、地点等。
第十条会议的参会人员由主办单位确定,通常包括中高层领导干部、专家学者、代表等。
第十一条会议的组织者应提前制定会议筹备计划,并落实到人员、时间、场地、设备等方面。
第十二条会议组织者应提供与会议内容相关的资料和文件,确保与会人员对会议议题有充分的了解。
第十三条会议组织者应及时邀请各方面的专家学者参与会议,提供专业意见和建议。
第十四条会议组织者应保证会议的资金物资保障,确保会议顺利进行。
第十五条会议组织者应制定好会议的开始时间和结束时间,并严格按照时间安排会议的各项活动。
第十六条会议组织者应对会议的场地进行合理规划和布置,提供必要的设备和技术支持。
第十七条会议组织者应组织会前会议,明确各项工作任务和责任,确保会议的准备工作有序进行。
第十八条会议组织者应对会议的参会人员进行人员安排和签到等工作,确保会议参会人员的到场率。
西南财经大学国际会议管理规定为规范并加强我校国际学术会议的管理工作,根据教育部有关文件精神,结合我校实际情况,特制定本规定。
一、国际会议实行分类管理和预报、申报制度。
国际交流与合作处是我校有关在华举办国际会议的归口管理部门。
二、国际会议按照内容和性质分为三类:1.重大的国际会议1)联合国下属机构和各专门机构的大会与特别会议。
2)联合国系统以外的政府间和非政府间重要国际组织的大会与特别会议。
3)事关我核心利益、涉及重大敏感问题以及重要国际问题的国际会议。
4)外宾人数在100人以上或会议总人数在400人以上的社科类国际会议,以及外宾人数在300人或会议总人数在800人以上的自然科学技术专业领域的专业或学术性国际会议。
5)外国政府正部长及其以上官员或前国家元首、政府首脑出席的高级别国际会议。
6)邀请党和国家领导人出席的国际会议。
2. 一般性国际会议1)外宾人数在100人以下或会议总人数400人以下的一般性国际会议,以及外宾人数在300人以下或会议总人数在800人以下的自然科学技术领域的专业或学术性国际会议。
2)双边会议以及国际合作项目中的工作会议。
3. 小型自然科学技术类国际会议。
不涉及敏感政治问题,外宾人数30人以下的小型自然科学技术类国际会议。
三、预报、申报和审批规定1. 预报:填报一般性国际会议计划表、重大性国际会议计划表1)重大的国际会议必须每年9月底预报下一年度的国际会议计划。
2)一般性国际会议于每年9月底预报下一年度的国际会议计划。
1月底前可再次补充预报。
3)外宾人数30人以下的小型自然科学技术类国际会议。
可不用预报计划,但必须按规定提前4个月报批。
2.申报国际会议的申报:会议举办单位须在对外宣布至少4个月前提交书面申请(不得先对外宣布或对外承诺后再申报)。
书面申请中如有组织机构或会议名称等的英文缩写,须以中文加以准确表述。
凡涉及境外组织机构参加国际会议,须在书面申请中对该组织做背景介绍。
第29届中国控制会议会 议 纪 要第29届中国控制会议(CCC’10)于2010年7月29日至31日在北京国家会议中心成功召开。
会议由中国自动化学会控制理论专业委员会主办,北京理工大学承办。
协办单位包括中国科学院数学与系统科学研究院,IEEE控制系统协会,日本仪器与控制工程师协会,韩国控制、机器人与系统学会,IEEE控制系统协会新加坡分会,IEEE控制系统协会香港分会,IEEE控制系统协会北京分会,清华大学,北京大学及北京航空航天大学。
中国科学院数学与系统科学研究院陈翰馥院士任本届会议总主席,中国科学院数学与系统科学研究院程代展研究员和北京理工大学陈杰教授担任程序委员会主席,北京理工大学付梦印教授、清华大学赵千川教授、北京航空航天大学贾英民教授任组织委员会主席。
中国科学院数学与系统科学研究院黄一研究员和北京理工大学张百海教授担任会议秘书长。
本次会议共收到投稿论文2633篇,其中86篇论文作者来自中国大陆以外的22个国家和地区,包括美国、澳大利亚、英国、加拿大、法国、中国香港、日本、韩国、新加坡、瑞典、中国台湾等。
经过严格评审,1191篇论文被第29届中国控制会议论文集收录。
收录论文涉及到40个研究方向,其中超过40篇的有:非线性系统及其控制(92篇)、模式识别与信号处理(92篇)、故障诊断与可靠控制(55篇)、系统建模与系统辨识(54篇)、系统理论与控制理论(46篇)、控制设计方法(43篇)、运动控制(41篇)。
第29届中国控制会议论文集已进入IEEE会议出版程序(IEEE分类号:CFP1040A)。
本次会议与会人员1200余人,其中正式代表831人,包括海外及港台地区代表38人,控制理论专业委员会顾问、委员60余人;另有130多名志愿者和数百名高校学生、研究生参加了会议。
会议开幕式于7月29日在北京国家会议中心大报告厅举行。
开幕式由大会程序委员会协主席陈杰教授主持,中国科协书记处书记冯长根教授、中国自动化学会理事长戴汝为院士、中国科学院数学与系统科学研究院院长郭雷院士、北京理工大学副校长赵长禄教授、北京大学黄琳院士、北京控制工程研究所吴宏鑫院士、北京理工大学汪顺亭院士、IEEE控制系统协会副主席葛树志教授、中国自动化学会副理事长兼秘书长王飞跃教授、国家自然科学基金信息学部自动化处处长王成红教授等出席了开幕式。
2013 Ninth International Conference on Natural Computation (ICNC) Measuring Low Sediment Concentrations and Vertical Distributions Based on B-Mode UltrasoundImagingZhimin Ma, Xianjian Zou, Shan SuSchool of Electronic Information, Wuhan UniversityWuhan, ChinaAbstract—Using B-mode ultrasound diagnostic apparatus in the silt carrying flow, a new method of measuring low sediment concentrations and their vertical distributions is proposed in the model experimentation. Through the research of imaging signals of suspended sediment obtained directly by B-mode ultrasound in the water, the features of images such as imaging area concentration and grayscale area concentration of sand imaging spots are gotten, and a good relationship existed between the features and the actual sediment concentration is proved within certain realms, and then the relationship is used to measure unknown sediment concentrations after a rating curve is established by calibration test. The results demonstrate that the method is suitable for the measurement of sediment when volume concentration below 4.0 ‰ or about 10 kg/m3 by weight. With the advantages of direct observation, high sensitivity, good real-time and no disturbance, this method is especially suitable for the measurements of low sediment concentrations and the analysis of sediment dynamic migration in the river and port engineering model test.Keywords-B-mode ultrasound image; suspended sediment concentration; vertical distribution; grayscale area concentration, image measurement;I.I NTRODUCTIONThe measurement of suspended sediment concentration (SSC) in a water column has long been important in the fluvial hydraulics, and the analysis of its vertical distribution is becoming more important in the research of sediment and model test [1-3]. Recently, some methods and their applications have made it possible to measure the sediment concentration and its vertical distribution in natural rivers and model tests. For example, the research of using Acoustic Doppler Velocimeter (ADV) to measure suspended cohesive sediment concentration, and the use of Optical Back Scatter (OBS) in practice have aroused widespread interest [4]. Traditional methods of measuring sediment concentration do not work well for unsteady flow, and make it difficult to accurately reflect the sediment dynamic migration in real-time, especially the measurement of low sediment concentration and its vertical distribution.With the development of modern B-mode ultrasound imaging technology, the possibility of focusing images for small sands in the silt carrying flow has come true by using B-mode ultrasound diagnostic apparatus. It can show suspended sediment clearly in the water with the advantages of direct observation, high sensitivity, good real-time and no disturbance [5]. Consequently, a new method is put forward to measure the sediment concentration and its vertical concentration based on B-mode ultrasound image after kinds of experiments. And a new experimental system is described to measure and analysis the suspended sediment in the river and port engineering model test.In this paper, our purpose is to give you a new idea that using B-mode ultrasound diagnostic apparatus to observe the silt carrying flow. It is an easy way to solve the problem of measuring low sediment concentrations and their vertical distributions. This idea will be described clearly about how to work and how to use in the model river engineering test, and then some advice is given.II.M EASURING SYSTEM AND ITS PRINCIPLE An experimental system of B-mode ultrasound diagnostic apparatus for the SSC is established, and it is made up of an Apogee1100 ultrasound diagnostic apparatus, an image acquisition card, a system computer, a mixer, a measuring volume and the software of analysis of SSC, as shown in Fig.1. In order to keep suspended sediment distribute equally as much as possible, the mixer should be kept run smoothly and suitable for the actual suspended sediment needs. The ultrasound detector of B-mode ultrasound diagnostic apparatus touches the water at the surface of sand carrying flow, and collects imaging data of suspended sediment. The imaging data is transmitted by image acquisition card, and sent to the software for the analysis of SSCs. The software, which is written according to B-mode ultrasound images, receives the imaging data, and shows theresults by analyzing and processing as soon as possible.Figure 1. Experimental systemAs we all known, B-mode ultrasound diagnostic apparatus is widely used in the medical world, and our hearts and kidneys and even the blood vessels are clearly shown by using it. The principle of measurement in this paper is the same. What makes it different is that the observed object is changed into suspended sediment in the water. The suspended sediment can be monitored very well with the help of modern B-mode ultrasound imaging technology. As high frequency ultrasound is sensitive to tiny particles with strong penetrability, it is possible to get images of sands in the water, and can follow the change of suspended sediment with direct observation, high sensitivity, good real-time and no disturbance if necessary, justas shown in Fig.2 and Fig.3.Figure 2.Volume concentration 1.0‰Figure 3. Volume concentration 3.0‰Fig.2 and Fig.3 show the change of volume concentration of suspended sediment from 1.0‰ to 3.0‰, and the particle size is about 0.21mm. There is an increasing trend of sand imaging area in the picture with the increase of volume concentration. From them, the message that using B-mode ultrasound diagnostic apparatus can capture particles in the water and reflect the change of suspended sediment can be sure, and it can be used to measure the SSCs in the next section.III. E XTRACTING IMAGE FEATURESIn order to deeply understand the image features of suspended sediment obtained by B-mode ultrasound diagnostic apparatus, this section gives a comprehensive description of how to extract the features of B-mode ultrasound images, and also how to use them to measure the SSCs and their verticaldistribution based on kinds of model experiments. After a large number of experiments performed in the laboratory and river engineering model, two features, one is the imaging area concentration (IAC) and the other is the grayscale area concentration (GAC) in the pictures, clearly reflect a certain relationship with the actual SSC. They are extracted and used to establish the relationship between the features and the actual SSC through calibration tests.Facing with the image signals collected by B-mode ultrasound diagnostic apparatus, the signals are translated into images and then a whole preprocessing is necessary before extracting images features. The original image is processed by threshold segmentation, as shown in Equation (1), and then the objective image is gotten.(,),(,)(,)0,(,)f i j f i j T g i j f i j T ≥⎧=⎨<⎩ (1)As shown in (1), the threshold value T is f 90, it means avalue that 90 percent of pixels’ values in the imaging region are less than or equal to this value T. {f (i, j )} is the original image while {g (i, j )} is the objective image, f (i, j ) is the gray value of point (i , j ) in the original picture, g (i, j ) is the gray value of point (i , j ) in the objective picture.Taking plastic sands (PS) which is usually used in the model test and natural sands (NS) in the Yangtze River as examples, the calibration tests are carried out in the laboratory, as shown in the Fig.1. The frequency of B-mode ultrasound diagnostic apparatus sets 5MHz while others keep the same as the first time when the sands images are clear and able to analyze. The measuring volume is 10L. After adding PS or NS 5ml to it each time, it becomes the volume concentration from 0.0‰ (tap water) to 5.0‰ when it is full of sands in the image. At the same time, keeping the mixer running smoothly is necessary for a well-distributed flow. The PS’s particle size is about 0.32mm while the NS’s is about 0.21mm in average. And the computed IAC or GAC per time in the next tables is the result of 50 images.A. The imaging area concentration (IAC)Described as above, the rate between the sand imaging area and the total area of per image is called as imaging area concentration (IAC). It is a percentage in per imaging area, and the IAC is calculated at the basis of objective image, as shown in Equation (2).00100%sd sd sd i all all allS N S NC S N S N ===× (2) Where C i is the IAC, S sd is the sand imaging area while S all is the total imaging area. N sd is the number of pixels in the sand imaging area while N all is the number of pixels in the total imaging area. S 0 is the area of per pixel.Tab.I is the computed results of the IAC about the plastic sands (PS) and the natural sands (NS) among the 50 images according to (2). The IAC is a percentage (%) while the suspended sediment concentration (SSC) is a permillage (‰). Fig.4 is the rating curve drawn according to Tab.I, showing the relationship between the IAC and the SSC of Tab.ITABLE I. R ELATIONSHIP BETWEEN THE IAC AND THE SSCSSC/‰PS/% NS/% SSC/‰ PS/% NS/% 0.0 0.01 0.05 3.0 94.1 88.8 0.5 28.9 10.1 3.5 95.2 91.3 1.0 57.1 30.2 4.0 96.1 92.3 1.5 74.2 48.8 4.5 96.3 94.7 2.0 86.8 68.1 5.0 97.7 95.4 2.5 91.5 82.2 / / /Figure 4. Rating curve between the IAC and the SSCAccording to Tab.I and Fig.4, there is an obvious one-to-one correspondence between the IAC and the SSC about the PS and the NS. The increasing tendency of the rating curve is clearer, and also the measuring sensitivity is higher when the SSC is low. However, the increasing tendency will be slow and the measuring sensitivity will be drop quickly when the IAC is up to about 91%. At this time the volume concentration of PS is 2.5‰ while the volume concentration of NS is 3.5‰. As a result, the IAC can be suitable for the measurement of low SSC.B. The grayscale area concentration (GAC)Actually, the message of SSC is conveyed not only from the imaging area but also from the imaging intensity. According to (2), the computed IAC ignores the imaging intensity, and result in a faster IAC saturation and a smaller measuring range. Consequently, this paper takes the imaging intensity into consideration at the basis of the IAC. The imaging intensity is described as grayscale in the picture, and a new method of analysis SSC is called as grayscale area concentration (GAC), just as shown in Equation (3).0110(,)(,)100%255255sdsdN N n n g n n gall all allg i j S g i j S C S N S N =====×∑∑ (3)Where C g is the GAC, S g is the sand imaging intensity asthe same as total grayscale of pixels, n is an ordinal number corresponding to the n th number of marked points, and so g (i, j )n is the grayscale of nth point (i , j ) in the objective picture, S all , N all , N sd and S 0 is the same as above.Tab.II is the computed results of GAC about the PS and the NS among the 50 images according to (3). The GAC is also a percentage (%). Fig.5 is the rating curve drawn according toTab.II, showing the relationship between the GAC and theSSC.TABLE II.R ELATIONSHIP BETWEEN THE GAC AND THE SSCSSC/‰ PS/%NS/% SSC/‰ PS/% NS/% 0.0 0.01 0.03 3.0 42.636.3 0.5 11.5 3.78 3.5 43.5 38.7 1.0 22.7 11.4 4.0 44.1 39.9 1.5 31.6 18.9 4.5 44.9 40.8 2.0 37.4 25.7 5.0 45.3 41.6 2.5 40.4 32.2 // /Figure 5. Rating curve between the GAC and the SSCAccording to Tab.II and Fig.5, a one-to-one correspondence between the GAC and the SSC is also existed about the PS and the NS, and the increasing tendency of the rating curve is clearer, and also the measuring sensitivity is higher when the SSC is low. Compared with the IAC, the increasing tendency will be slow and the measuring sensitivity will be drop quickly when the GAC is up to about 42%, at this time the volume concentration of PS is 3.0‰ while the volume concentration of NS is 5.0‰. However, the meaning of GAC 42% is not same as the IAC 91%, and they need a further analysis.C. The comparison of featuresIn this section, in order to get some insight into the difference between the IAC and the GAC, the date in the Tab.I and Tab.II are normalized and shown in the Fig.6. It will give us a better understanding about them because of the date uniformity and comparability.Figure 6. Comparison diagram of normalized featuresThrough analysis and comparison in the Tab.I, Tab.II and Fig.6, the relationship between the SSC and the two characters is clearer. When the normalized value is up to 95% in the Fig.5, we can think it is saturated in the picture. For this reason, we can see the corresponding actual volume concentrations of SSC are 3.0‰, 3.5‰, 3.5‰ and 4.0‰ when the IAC of PS, the IAC of NS, the GAC of PS and the GAC of NS are up to about 95%. It is obvious that the measurement range of GAC is wider than the IAC’s, and also the measurement sensitivity of GAC is better.Thus, the method whose corresponding relationship established between the SSC and the GAC is obviously better than the one whose relationship established between SSC and IAC, and it has a higher sensitivity and a better anti-saturation ability. Therefore, this paper adopts the GAC. According to the corresponding relationship between the SSC and the GAC, the unknown SSC and its vertical distribution can be measured in this paper.IV.R ESULTS AND DISCUSSIONIn this section we present general experimental conditions in the model tests, and show the measuring results of plastic sands (PS) in the laboratory. The PS’s particle size is 0.32mm and has been already described in the above. It is taken as an example to show the application of this method. Fig.1 is the experimental system. Tab.II is the calibration results of grayscale area concentration (GAC). Fig.5 is the rating curve of GAC. The relation of calibration can be described as a fitting formula or a table just as the correspondence between the GAC and the SSC shown in the Tab.II. This paper takes the last one. It is shown as a correspondence table, and the Lagrange interpolation method is used as an addition to calculate the missing data in the table.Therefore, the method of measuring SSCs described in this paper is follow. Firstly, the sands imaging signals are gotten by using B-mode ultrasound diagnostic apparatus, and they are sent to a computer. Secondly, the sands imaging signals are translated into images, and the GAC of images is calculated. Lastly, the measuring result is shown or computed according to the table established by calibration test before and the Lagrange interpolation method.A.Sediment concentrations and their vertical distributionsAbout the measurement of suspended sediment in the model, researchers are more concerned about the vertical distribution and dynamic changing process of the SSC [6]. According to the features of B-mode ultrasound images and the method of calculating the GAC, the space distribution of SSCs in the measured region can be obtained easily and quickly. For example, as shown in the Fig.7, the measured region in images is divided into several layers from top to bottom as needed, the GAC of each layer is calculated, and then we can get the vertical distribution of SSCs according to the table or the rating curve. In the Fig.7, marked pots represent the suspended sediment, on the right of the picture shows the vertical distribution of SSCs. It changes along with the water depth and shows the sediment concentration of each layer. Fig.7 is one of the vertical distributions of the SSCs along with the waterdepth at a time.Figure 7. A vertical distribution of SSCs along with the depth To further illustrate the vertical distribution of SSCs, this paper takes the measured value (MV) according to (3) in comparison with the real value (RV) according to actual volume of sands above, shown in the Tab.III. The data comes from one of above experiments and should be measured at the same time after the silt carrying flow is stable. The Fig.8 is drawn at the basis of Tab.III, and some discuss is given about them.TABLE III. V ERTICAL CONCENTRATIONS ABOUT THE MV AND THE RV Depth/cm MV/‰ RV/‰ Depth/cm MV/‰RV/‰2.5 0.120.11 16.3 0.730.665.3 0.120.13 19.1 0.940.898.0 0.140.17 21.8 1.351.2210.8 0.20 0.25 24.6 1.671.8813.6 0.47 0.41 27.3 4.274.34Figure 8. Comparison of vertical distributions about the MV and the RVFrom the data in the Tab.III, the MV is approximately equalto the RV. According to Fig.8, the curve of MV is nearly the same as the curve of RV. Consequently, the method describedin this paper can well measure sediment concentrations and their vertical distributions, and the measured results can be expressed more quickly and directly.B.Sources of measurement uncertaintyOur proposed method is verified through experimental study in the laboratory, and the measured data need a further study to keep it work as well as described in consideration of various changed situations. In the river engineering model test, the factors which affect the accuracy of measurement are mainly from two aspects. On the one hand, the factors come from the test object’s properties, such as the material quality, the particle size. On the other hand, they come from the conditions of the test itself, such as the water flow rate. Some experiments have been carried out in this paper, as shown inthe Fig.9 and Fig.10.Figure 9.Particle size 0.21mmFigure 10. Particle size 0.37mmThey are some experiments about particle size, and Fig.9 is 0.21mm while Fig.10 is 0.37mm. From them, we can see the bigger the particle size, the larger the imaging spots, and also the greater the corresponding measurements according to the IAC or GAC. The influences of particle size and grading distribution mainly affect the sand imaging area.As shown in the Tab.II and Fig.5, the data of the GAC is different at the same SSC, and the rating curves of PS and NS are also different under the same experimental conditions. The influences of material quality mainly affect the corresponding and the rating curves. Different materials may match different rating curves and lead to different resultsIn fact, the particle size, grading distribution and material quality have effect on the measured results which contact and contain each other, and it is difficult to sort out their internal connections. These factors are common and also exist in other measuring methods of SSCs. They connect each other and easily change with actual situations. In order to simplify this cumbersome process, we usually adopt the common method in sediment concentration measurement field. That is the specialized object with the specialized calibration test [7]. Consequently, it is necessary for this method to go on a specialized calibration test before measurement, especially when the measuring object is changed.V.C ONCLUSION AND OUTLOOKBy theoretical analysis and experimental validation, a new method of measuring low SSCs and vertical distributions based on B-mode ultrasound imaging technology is feasible within certain realms, and it is easy to reflect the dynamic migration of sediment in the model test with the help of measuring system above.At the same time, this method should be taken more deep experimental study. For example, as shown as the above laboratory experiments, this method is only suitable for the measurement of sediment volume concentration below 4.0 ‰ or about 10 kg/m3 by weight. It is because that the focusing performance of B-mode ultrasound diagnostic apparatus is not as good as optical methods and it leads to a bigger imaging spots of particle and a faster saturation and also a smaller measuring range.In conclusion, the measuring accuracy and stability of this method will be deeply improved with the help of specialized B-mode ultrasound diagnostic apparatus and more effective image processing methods, and also the system of measuring SSCs will be advanced. With the advantages of direct observation, high sensitivity, good real-time and no disturbance, this method will be a new way of measuring SSCs and analyzing vertical distributions in the river and port engineering model test.R EFERENCES[1]Judith A. Bamberger, Margaret S. Greenwood, “Measuring fluid andslurry density and solids concentration non-invasively,” Ultrasonics, vol.42, pp. 563-567, 2004.[2]H.S. Han, S.S. Li, C.J. Zhao, “Experimental study on fine sedimentconcentration under breaking waves,” Journal of Sediment Research,vol. 6, pp. 30-36, 2006.[3]V. Stolojanu, A. Praksh, “Characterization of slurry systems byultrasonic techniques,” Chemical Engineering Journal, vol. 84, pp. 215-222. 2001.[4]H.K. Ha, W.-Y Hsu, J.P.-Y. Maa, Y.Y. Shao, C.W. Holland, “UsingADV backscatter strength for measuring suspended cohesive sedimentconcentration,” Continental Shelf Research, vol. 29, pp. 1310-1316,2009.[5]Judith A. Bamberger, Margaret S. “Greenwood. Using ultrasonicattenuation to monitor slurry mixing in real time”. Ultrasonics, vol. 42,pp. 145-148 , 2004.[6]Yunfeng Xia, Hua Xu, Zhong Chen, Daowen Wu, Shizhan Zhang,“Experimental study on suspended sediment concentration and itsvertical distribution under spilling breaking wave action in silty coast,”China Ocean Eng., vol. 25, No. 4, pp. 565-575, 2011.[7]Jean P.G. Minella, Gustavo H. Merten, Jose M. Reichert, Robin T.Clarke, “Estimating suspended sediment concentration from turbiditymeasurements and the calibration problem,” Hydrological Process, vol.22, pp. 1819-1830, 2008.。
一、概述国家重点实验室作为我国科技创新的重要组成部分,发挥着重要的作用。
为了规范国家重点实验室的管理和运行,保障其科研工作的顺利进行,制定了国家重点实验室章程。
在这个章程中,全体大会作为重要的决策机构,起着至关重要的作用。
本文旨在对国家重点实验室章程中全体大会的功能、职责和运行规则进行深入探讨。
二、全体大会的功能与职责1. 确定重大决策国家重点实验室章程规定,全体大会是国家重点实验室的最高决策机构,具有重大决策的权力。
全体大会可以对重大科研方向、重点科研项目等进行讨论和决策,起到指导和推动科研工作的作用。
2. 监督和评估工作进展全体大会有权对国家重点实验室的运行情况进行监督和评估,包括科研成果、人才培养、实验室建设等方面的工作。
通过全体大会的讨论和评估,可以及时发现问题,提出改进意见,确保实验室的科研工作朝着正确的方向发展。
3. 审议和通过章程修订国家重点实验室章程是实验室的基本管理制度,是实验室科研工作的根本保障。
全体大会有权对章程进行审议和修改,并最终决定章程的通过。
在实验室运行过程中,如果发现章程需要修订的问题,可以通过全体大会来进行讨论和决策。
4. 选举和决定重要人事任免全体大会有权选举实验室的主要领导班子成员,或者决定对实验室的重要人事进行任免。
这些重要的人事任免决定,直接影响着实验室的科研工作和管理工作的开展,因此需要由全体大会进行民主讨论和决策。
三、全体大会的运行规则1. 召开方式和频率全体大会的召开应当按照章程的规定进行,可以根据需要进行常规或者临时召开。
在召开全体大会时,应提前确定会议议程,通知全体成员参加,并严格按照规定的程序进行议事。
2. 议事程序全体大会的议事程序应当严格按照规定的程序进行,包括提案、讨论、表决等环节。
在讨论和表决环节,应当保证全体成员的发言权和表决权,保证决策的民主性和公正性。
3. 决策的效力全体大会的决策具有决定性的效力,所有成员都应当遵守和执行全体大会的决议。
2012中国消化病大会(2012CCDD)通知
佚名
【期刊名称】《胃肠病学》
【年(卷),期】2012(17)7
【摘要】由中华医学会消化病学分会、消化内镜学分会、肝病学分会和外科学分会联合申办成功的2013年世界/亚太胃肠病大会(GASTRO/APDW2013)将在我国上海举办。
届时将有来自109个成员国的2万多名代表参会。
这是在我国召开的医学界规模最大,外宾最多,影响深远的一次国际会议。
为了将这一盛会筹备和组织好,经四个学会商定,2012年作为世界胃肠大会的练兵,定于2012年9月20~23日在上海世博会议中心召开2012CCDD(2012中国消化病大会),旨在加强联系,交流学术,增进合作,推进发展,为筹备2013年大会积累经验和做好准备。
【总页数】1页(P432-432)
【关键词】消化病;中国;中华医学会;国际会议;消化内镜;胃肠病;学分;成员国
【正文语种】中文
【中图分类】R57
【相关文献】
1.2012中国消化病学术大会会议纪要 [J], 胡良皞;杜奕奇;金震东;邹多武;吴开春;李兆申;樊代明
2.2012中国消化病学大会 [J],
3.2012中国消化病大会(2012CCDD)征文通知 [J],
4.2012中国消化病大会征文通知 [J],
5.2012中国饮料工业协会年会 2012中国特殊用途饮料发展研讨会 2012中国饮料工业协会技术工作委员会大会会议预通知 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
2013中国控制会议(CCC)会议注册及终稿投递注意事项1. 注册费标准论文注册作者:2600元(学生、IEEE会员、TCCT委员优惠200元)。
∙每篇论文应至少有一位作者缴纳注册费。
∙有两篇论文的同一作者,第二篇论文加收版面费800元。
同一作者多于3篇的论文,需要另行注册。
∙请在2013年4月30日之前交纳注册费。
我们收到注册费后马上E-mail通知您,并为您开通论文提交系统,同时在“学术会议论文管理系统”()的“CCC2013作者工作区”中发布收到注册费的情况,如果您汇款数日后系统中还没有显示您已交费或提交论文系统仍没有开通,请及时与我们联系(ccc2013@)。
∙非论文作者或非论文注册作者注册费:1800元(4月30日之前)/ 2000元(4月30日之后)。
如果您在“学术会议论文管理系统”()未注册PIN,请注册后登录系统点击CCC2013“会议注册”开始注册。
∙学生旁听:300元,会议现场凭学生证交纳。
会议仅提供代表证、会议程序册、会议论文集光盘。
注册费交纳情况汇总于下表:论文注册作者非论文作者或非论文注册作者4月30日之前4月30日之后4月30日之前4月30日之后普通代表2600元- 1800元2000元TCCT委员、IEEE会员、学生2400元- 1600元1800元控制理论专业委员会顾问委员- - - -旁听学生300元(现场注册)说明:∙有两篇论文的同一作者,第二篇论文加收版面费800元;∙超6页每页加收300元,不得超过8页。
∙IEEE会员需在注册时提供真实有效的IEEE会员号。
学生注册后需要在注册论文终稿提交时提交学生证扫描文件。
2. 注册费缴纳及终稿提交流程3. 终稿要求本届会议出版光盘论文集。
为了做好论文集的出版工作,请您协助做好以下工作:3.1 长度每篇论文限制为A4纸6页以内,系统接收不超过8页的论文,多于6页的部分每页多收版面费300元。
3.2 排版接收MS Word和LaTeX两种排版论文。
会议事项会议时间:2005年6月8至10日会议地点:人民大会堂总参第一招待所(京东宾馆)一、开幕式在北京人民大会堂召开。
拟邀请国家和军队领导人莅临指导,邀请总装备部、国防科工委、科技部、信息产业部、军事科学院、国防大学、军队装备研究院及中国民营科技促进会等部门领导出席会议,就相关政策导向做报告。
二、主题报告1、军事科学院有关领导做关于贯彻“军民结合、寓军于民”方针的报告2、国家科技部有关领导做如何建立“军民融合创新体系”的报告3、国家科技部有关领导做我国2020年中长期科学和技术规划发展报告4、信息产业部有关领导做如何走“民技军用”之路的报告5、总装备部有关部门做装备采购改革及采购程序的报告6、总装备部有关部门做如何取得装备承制单位资格的报告7、国防科工委有关领导做如何取得军品科研生产许可证的报告8、国防科工委有关领导做如何进行保密认证的报告9、中国新时代质量认证中心做如何进行军品质量保证体系认证的报告10、国家科技部有关单位做如何申请中小企业科技创新基金的报告11、已经承担军品科研生产任务的民企介绍进入军品市场的经验三、项目推介民营科技型企业推介具有军事应用前景高新科技项目。
推介项目具备的条件:(1)先进性,要求具有国内领先或国际先进或填补空白;(2)成熟,经过鉴定或已批量生产在民用中广泛应用;(3)有直接军事应用价值或有军事应用潜力的。
要求运用现代声光电手段进行展示,也可带小件样品。
由于时间限制,会议只能安排20家企业(按报名先后选取)在会上推介,其余企业的推介项目由组委会汇编成册提供军方和军工部门。
四、专家服务1、专家评委会在参会的企业中选择条件比较好的100家企业,作为首批“民技军用”的试点单位。
试点单位由“军民两用技术专家委员会”跟踪辅导(另签协议)。
试点企业应该具备的条件:属于科技型企业,具有独立法人资格,经济效益较好,法人代表诚信度高。
2、帮助企业开拓军品市场,参与军工科研生产的竞争,进入高门槛,创造条件得到旱涝保收的军品定单,还可以享受军品的优惠待遇,如减免税收、经费的支持等,努力给企业创造公平的竞争条件。