平方根立方根习题
- 格式:doc
- 大小:781.00 KB
- 文档页数:11
平方根立方根练习题平方根和立方根练题一、填空题1.如果x=9,那么x=9;如果x=9,那么x=9.2.如果x的一个平方根是7.12,那么另一个平方根是-7.12.3.-2的相反数是2,3-1的相反数是-1/3.4.一个正数的两个平方根的和是它的两倍,一个正数的两个平方根的商是1.5.若一个实数的算术平方根等于它的立方根,则这个数是1.6.算术平方根等于它本身的数有1,立方根等于本身的数有1.7.81的平方根是9,4的算术平方根是2,10-2的算术平方根是2.8.若一个数的平方根是±8,则这个数的立方根是±4.9.当m≠3时,3-m有意义;当m≠1时,3m-3有意义。
10.若一个正数的平方根是2a-1和-a+2,则a=1,这个正数是9.11.已知2a-1+(b+3)2=3,则2ab/3=1.12.a+1+2的最小值是3,此时a的取值是1.13.2x+1的算术平方根是2,则x=3/4.二、选择题14.下列说法错误的是(B)。
A。
(-1)2=1B。
3(-1)3=-3C。
2的平方根是±√215.(-3)2的值是(D)。
A。
-3B。
3C。
-9D。
916.设x、y为实数,且y=4+5-x+x-5,则x-y的值是(A)。
A。
1B。
9C。
4D。
517.下列各数没有平方根的是(A)。
A。
-√2B。
(-3)3C。
(-1)2D。
11.118.计算25-38的结果是(D)。
A。
3B。
7C。
-3D。
-719.若a=-32,b=-2,c=-12,则a、b、c的大小关系是(B)。
A。
a>b>cB。
c>a>bC。
b>a>cD。
c>b>a20.如果3x-5有意义,则x可以取的最小整数为(C)。
A。
0B。
1C。
2D。
321.一个等腰三角形的两边长分别为52和23,则这个三角形的周长是多少?A、102+23B、52+43C、102+23或52+43D、无法确定解:由等腰三角形的性质可知,这个三角形的底边长为23,而两腰长相等,设为x,则有x+x=52,解得x=26.因此,这个三角形的周长为23+26+26=75,所以选B。
初二平方根立方根练习题100道1. 求下列数字的平方根:a) 25b) 64c) 100d) 144e) 2562. 求下列数字的立方根:a) 8b) 27c) 64d) 125e) 2163. 求下列数字的平方根和立方根:a) 81b) 121c) 169d) 729e) 10244. 求下列数字的平方根的结果保留两位小数:a) 5b) 15c) 23d) 36e) 485. 求下列数字的立方根的结果保留两位小数:a) 8b) 27c) 64d) 125e) 2166. 计算下列各式的值:a) √9 × √16b) ∛8 × √9c) √25 ÷ √5d) ∛64 ÷∛4e) ∛27 + ∛647. 当x = 16时,求以下各式的值:a) √xb) x^(1/3)c) ∛xd) x^(1/2)8. 当y = 0.04时,求以下各式的值:a) √yb) y^(2/3)c) ∛yd) y^(1/2)9. 已知a = √16 + ∛64,求a的值。
10. 如果x = √16,y = ∛27,z = √25,分别求x、y、z的平方根和立方根。
11. 如果a = √x,b = ∛y,c = √z,求a、b、c的平方根和立方根。
12. 判断下列各式是否成立:a) √16 + ∛27 = √9 + ∛64b) √25 - ∛8 = 5 - 2c) √100 + ∛125 = 12 + 5d) √36 - ∛64 = 6 - 4e) √81 + ∛125 = 9 + 513. 求下列式子的值:a) (√4 + ∛8)²b) (√9 - ∛27)³c) (√16 + ∛64)⁴d) (√25 - ∛125)⁵e) (√36 + ∛216)⁶14. 已知 x = 0.1,求 x²和 x³的值并保留三位小数。
15. 如果 a² + b² = 25,且 a = 3,b = 4,求 a³和 b³的值。
实数基础练习题(平方根、立方根)一、算术平方根与平方根填空:1、 口算:(1)144的平方根 , 225的平方根 , 169的平方根 ,196的平方根 , 121的平方根 , 289的平方根(2) 100的平方根 , 10000的平方根 , 104的平方根 ,1010的平方根 , 0.01的平方根 , 0.000001的平方根 。
(3) 640000的平方根是 , 12100的算术平方根 ,0.64的平方根 ,1.44的算术平方根 , 0.0255的平方根是 ,1169的平方根是 (4) 7的平方根 ,11的平方根 ,35的算术平方根 ,(5平方根 ,算术平方根 , 225平方根 ,169平方根 ,|-972|的算术平方根是______的平方根是______, (6) 5的平方的平方根是 ,-8的平方的平方根是 ,-0.8的平方的算术平方根是 ,2)8(-= , 2)8(= 。
2、逆运算:(1) 的算术平方根是15, 的算术平方根是0.5; 的平方根是±8, 的平方根是±57. (2)若-21是数a 的一个平方根,则a =_____. (3)若a 的平方根是±5,则a = 。
(4)如果a 的平方根等于2±,那么_____=a ;(5)若a 的算术平方根是2,则a 是2、估算与大小比较:(1) 3介于整数 和 之间,它的整数部分是a ,小数部分是b ,则a = ,b = , (用含3式子表示)(2a 和b 之间,那么ab=(3) 满足x 是(4)在整数 和 之间;(5)在整数 和 之间(6)2-5 0(比大小)3、小数点的移动(1) 2.676=, 26.76=,则a 的值等于 。
(2) 若896=29.933 则8960000=4、其他(1)的相反数是 ;绝对值是 .(2) 的点表示的数是 .(3)一个数的平方根是3a +1和7+a ,则a = .(4)一个数的平方根是4b-5和10+b ,则3b-10= 。
平方根与立方根演习题 【1 】一.选择题 1.-81的立方根是( ) A,-81 B,±21 C,-21D,212.当x=-8时,则32x 的值是( )A,-8 B,-4 C,4 D,±43.若一个数的平方根与它的立方根完整雷同,则这个数是( ) A, 1 B, -1 C, 0 D,±1, 04.下列说法:①一个数的平方根必定有两个;②一个正数的平方根必定是它的算术平方根;③负数没有立方根.个中准确的个数有( )A, 0个 B,1个 C,2个 D,3个 二..填空题1.0的算术平方根是___,立方根是____.a =2,则(2a-5)2-1的立方根是____.3.64的平方根的立方根是_____.4.盘算:327191-=______. b a -+-331=0,则3ab =____.6. 121的平方根是____,算术平方根_____. 7×103的算术平方根是______.8.(-2)2的平方根是_____,算术平方根是____. 9. 0的算术平方根是___,立方根是____.10.-3是____的平方根.6.64的平方根的立方根是_____. 11.假如9=x ,那么x =________;假如92=x ,那么=x ________12.一个正数的两个平方根的和是_____.一个正数的两个平方根的商是________. 13.算术平方根等于它本身的数有____,立方根等于本身的数有_____. 10.若一个实数的算术平方根等于它的立方根,则这个数是________; 14.81的平方根是_____,4的算术平方根是______,210-的算术平方根是;15.若一个数的平方根是8±,则这个数的立方根是;16.当______m 时,m -3有意义;当______m 时,33-m 有意义;17.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是; 18.已知0)3(122=++-b a ,则=332ab ;19.21++a 的最小值是________,此时a 的取值是________.20.12+x 的算术平方根是2,则x =________.二.选择题1. 169的平方根是( )A,13 B,-13 C, ±13 D,±132.0.49的算术平方根是( )A,0.49 B,-0.7 C,0.7 D,7.03.81的平方根是( )A, 9 B,-9 C,±9 D,±3 4.下列等式准确的是( )A,9-=-3B,144=±12 C,()27-=-7 D,()22-=25.-81的立方根是( ) A,-81 B,±21C,-21 D,216.当x=-8时,则32x的值是( )A,-8 B,-4 C,4 D,±4 7.下列语句,写成式子准确的是( ) A,3是9的算术平方根,即39±=B,-3是-27的立方根,327-=±3C,2是2的算术平方根,即2=2 D,-8的立方根是-2,即38-=-28.下列说法:①一个数的平方根必定有两个; ②一个正数的平方根必定是它的算术平方根; ③负数没有立方根.个中准确的个数有( ) A, 0个 B,1个 C,2个 D,3个 9.若一个数的平方根与它的立方根完整雷同,则这个数是()A, 1 B, -1 C, 0 D,±1 10.下列说法错误的是( ) A.1)1(2=- B.()1133-=- C.2的平方根是2± D.81-的平方根是9±11.2)3(-的值是( ).A .-3B .3C .-9D .9 12.假如53-x 有意义,则x 可以取的最小整数为().A .0B .1C .2D .3 13.下列各数没有平方根的是( ). A .-﹙-2﹚ B .3)3(- C .2)1(-14.盘算3825-的成果是( ).A.3B.7 C15.若a=23-,b=-∣-2∣,c=33)2(--,则a.b.c 的大小关系是( ).A.a >b >cB.c >a >bC.b >a >cD.c >b >a 16.设x .y 为实数,且554-+-+=x x y ,则y x -的值是( )A.1B.9C.4D.5 三.解方程 1.0252=-x 2.8)12(3-=-x 3.4(x+1)2=8盘算4.求下列各数的平方根和算术平方根:(1)121;(2)(-3)2;(3)3161;(4)361-;(5)625.5.求下列各数的立方根:1.-271;(2)0.064;(3)1-87;(4)64; (5)512169-1.。
平方根立方根练习题及答案1. 计算下列各数的平方根:- √9- √16- √252. 计算下列各数的立方根:- ∛8- ∛27- ∛643. 判断下列说法是否正确,并给出理由:- √144 = 12- ∛-8 = -24. 计算下列表达式的值:- √(2^2)- ∛(3^3)5. 解下列方程:- √x = 4- ∛y = 56. 一个数的平方根是2,求这个数。
7. 一个数的立方根是3,求这个数。
8. 一个数的平方根是它本身,求这个数。
9. 一个数的立方根是它本身,求这个数。
10. 计算下列表达式的值:- √(√81)- ∛(∛125)答案1. √9 = 3√16 = 4√25 = 52. ∛8 = 2∛27 = 3∛64 = 43. √144 = 12 是错误的,因为√144 = 12 的平方根是√12,而不是 12。
∛-8 = -2 是错误的,因为负数没有实数立方根。
4. √(2^2) = √4 = 2∛(3^3) = ∛27 = 35. √x = 4 时,x = 4^2 = 16∛y = 5 时,y = 5^3 = 1256. 一个数的平方根是2,这个数是 2^2 = 4。
7. 一个数的立方根是3,这个数是 3^3 = 27。
8. 一个数的平方根是它本身,这个数是0或1。
9. 一个数的立方根是它本身,这个数是0,1,或-1。
10. √(√81) = √9 = 3∛(∛125) = ∛ 5 = 5请注意,这些练习题和答案仅供学习和练习之用,实际应用中可能需要更复杂的计算和理解。
平方根立方根解答题专项练习60题(有答案)1.求下列各式中的x:①(x+1)2+8=72;②3(2x﹣1)2﹣27=0.2.求下列各式中x的值.(1)4x2=9(2)(x﹣1)2=25.3.求x的值:2(x+1)2=984.已知a﹣1与5﹣2a是m的平方根,求a和m的值.5.求正数x的值:3(2x﹣1)2=27.6.一个正数x的平方根是a﹣1和a+3,求x和a的值.7.已知(x+1)2﹣1=24,求x的值.8.已知a+3与2a﹣15是m的两个平方根,求m的值.9.已知x+3与2x﹣15是正数y的两个不同平方根,试求y的值.10.求下列各式中的x的值.(1)x2=25(2)(x﹣3)2=4(3)=3.11.已知x没有平方根,且|x﹣3|=6,求x的值.12.求下列各数的平方根:(2)(3).13.解下列关于x的方程:.14.已知(x﹣1)2+|y﹣5|=0,求的平方根.15.(4x﹣1)2=225.16.计算下列各式中x的值:(1)16x2﹣49=0;(2)(x﹣1)2=100.17.已知2x﹣1的平方根为±3,3x+y﹣1的平方根为±4,求x+2y的平方根.18.﹣a是否有平方根?为什么?19.解方程:x2﹣=0.20.求下列各式中的x:(1)x2=16;(2);(3)x2=15;(4)4x2=18;(5)2x2=10;(6)3x2﹣75=0.21.某数的平方根为和.22.已知实数a,b,c满足:b=+4,c的平方根等于它本身.求的值.23.求值:已知y=x2﹣5,且y的算术平方根是2,求x的值.24.计算:25.小明家的客厅是用正方形地板砖铺成的,面积为21.6㎡,小明数了一下地面所铺的地板砖正好是60块,请你帮小明计算他家地板砖的边长是多少?26.研究下列算式,你会发现有什么规律?==2;==3;==4;==5;…请你找出规律,并用公式表示出来.27.小文房间的面积为10.8m2,房间地面恰巧由120块相同的正方形地砖铺成,每块地砖的边长是多少?28.有一个正方体的集装箱,原体积为216m2,现准备将其扩容用以盛放更多的货物,若要使其体积达到343m2,则它的棱长需增加多少m?29.半径为R的圆的面积恰好是半径为5与半径为2的两个圆的面积之差,求R的值.30.我们来看下面的两个例子:,,和都是9×4的算术平方根,而9×4的算术平方根只有一个,所以.,和都是5×7的算术平方根,(2)运用以上结论,计算:的值.31.求下列各式中的x的值:(1)25x2=36(2)(x+1)3=832.(1)X2﹣7=0(2)X3+27=0(3)(x﹣3)2=64(4)(2x﹣1)3=﹣833.34.一个非零实数的平方根式3a+1和a+11,求这个数及它的立方根.35.求下列各式中的x(2)(x﹣2)3=3.36.求下列各式中的x:(1)4x2﹣24=25(2)(x﹣0.7)3=﹣0.027.37.已知,a是的平方根,b=,c是﹣8的立方根,试求a+b﹣c的值.38.已知M=是m+3的算术平方根,是n﹣2的立方根,试求M+N的算术平方根.39.(1)化简:+﹣(2)求x的值:x2+23=25.40.(1)﹣+;(2)﹣+.41.已知x、y都是实数,且,求:(1)3x﹣y的平方根(2)x+3y的立方根.42.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.43.已知:一个正方体的棱长是5cm,要再做一个正方体,它的体积是原正方体积的8倍,求新的正方体的棱长.44.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求1﹣的值.45..46.已知立方根为x﹣,求x的平方根.47.小明买了一箱苹果,装苹果的纸箱的尺寸为50×40×30(长度单位为厘米),现小明要将这箱苹果分装在两个大小一样的正方体纸箱内,问这两个正方体纸箱的棱长为多少厘米?(结果精确到1cm)48.计算:+(﹣2)3×.49.已知A=是m+2n的立方根,B=是m+n+3的算术平方根、求m+11n的立方根.50.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?51.学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人十分惊奇,忙问计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:(1)103=1000,1003=1000000,你能确定59319的立方根是几位数吗?答:_________位数.(2)由59319的个位数是9,你能确定59319的立方根的个位数是几吗?答:_________.(3)如果划去59319后面的三位319得到数59,而33=27,43=64,由此你能确定59319的立方根的十位数是几吗?答:_________.因此59319的立方根是_________.(4)现在换一个数185193,你能按这种方法说出它的立方根吗?答:①它的立方根是_________位数,②它的立方根的个位数是_________,③它的立方根的十位数是_________,④185193的立方根是_________.52.问题:(1);(2);(3).探究1,判断上面各式是否成立.(1)_________(2)_________(3)_________探究2:并猜想=_________.探究3:用含有n的式子将规律表示出来,说明n的取值范围,并用数学知识说明你所写式子的正确性.拓展,,…根据观察上面各式的结构特点,归纳一个猜想,并验证你的猜想.53.若球的半径为R,则球的体积V与R的关系式为V=πR3.已知一个足球的体积为6280cm3,试计算足球的半径.(π取3.14,精确到0.1)54.若是一个正整数,则满足条件的最小正整数x=_________.55..56.一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.57.求下列各数的立方根:(1)(2)(3)﹣(4)58.计算(1)用计算器计算:(结果精确到0.01);(2)计算:;59.用计算器求下列各式的值:(结果精确到0.01)(1)﹣;(2).60.利用计算器计算,把答案填在横线上:(1)=_________;(2)=_________;(3)=_________;(4)=_________;(5)=_________;(6)猜想=_________.(用含n的式子表示)参考答案:1.①∵(x+1)2=64∴x+1=±8∴x=7或﹣9;②∵3(2x﹣1)2=27∴(2x﹣1)2=9∴2x﹣1=±∴x=2或x=﹣1.2.(1)x2=,∴x=±,x=±;(2)x﹣1=±,∴x﹣1=±5,∴x﹣1=5或x﹣1=﹣5,∴x1=6,x2=﹣4.3.原方程可化为:(x+1)2=49,∴x+1=±7,解得:x1=6,x2=﹣84.a﹣1与5﹣2a是同一个数的平方根,a﹣1+5﹣2a=0,解得a=4;∴a﹣1=4﹣1=3∴m=32=9 ∴a的值为4,m的值为95.方程的两边同除以3得:(2x﹣1)2=9,∴2x﹣1=3或2x﹣1=﹣3,∴x1=2,x2=﹣1(不符合题意,舍去),∴x=26.由题意,得:a﹣1+a+3=0,解得a=﹣1;所以正数x的平方根是:2和﹣2,故正数x的值是4 7.移项得:(x+1)2=25,∴x+1=±5,即x=4或﹣68.由题意得:a+3+(2a﹣15)=0,解得:a=4.所以m=(a+3)2=72=49.9.由题意,得x+3+2x﹣15=0,解得x=4,则y=(4+3)2=49.故y的值为4910.(1)x2=25,x=±5;(2)(x﹣3)2=4,则x﹣3=2或x﹣3=﹣2,故x=5或1;(3)=3,两边平方得:x=911.由题意得,x为负数,又∵|x﹣3|=6,∴x﹣3=±6,解得:x1=9(不合题意舍去),x2=﹣3.故x=﹣312.(1)∵(±0.7)2=0.49,∴0.49的平方根是±0.7;(2)∵=1,(±1)2=1,∴的平方根是±1;(3)∵(±)2=,∴的平方根是±.13.原方程即:(x﹣2)2=6,则(x﹣2)2=12,x﹣2=±2,则x=2+2或x﹣214.∵(x﹣1)2+|y﹣5|=0,∴x﹣1=0,y﹣5=0,x=1,y=5,∴x+y=1+×5=2,∴的平方根是±15.4x﹣1=±15,则4x﹣1=15,解得x=4;或4x﹣1=﹣15,解得x=﹣.16.(1)16x2﹣49=0,x2=,∵(±)2=,∴x=±;(2)∵(±10)2=100,∴x﹣1=10或x﹣1=﹣10,解得x=11或x=﹣9.故答案为:(1)±,(2)x=11或﹣917.∵2x﹣1的平方根为±3,3x+y﹣1的平方根为±4,∴2x﹣1=9,3x+y﹣1=16,解得:x=5,y=2,∴x+2y=5+4=9,∴x+2y的平方根为±318.当a≤0时,﹣a有平方根;当a>0时,﹣a没有平方根.理由是:∵一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,19.移项得,x2=,所以,x=±20.(1)x2=16,x=±4;(2),x=±;(3)x2=15,x=±;(4)4x2=18,x2=,x=±;(5)2x2=10,x2=5,x=±;(6)3x2﹣75=0,x2=25,x=±521.(1)依题意得+=0,解得a=3;(2)==1,==﹣1.故答案为:(1)3,(2)1、﹣122.∵﹣(a﹣3)2≥0,∴a=3把a代入b=+4得:∴b=4∵c的平方根等于它本身,∴c=0∴=23.∵y的算术平方根是2,∴∴y=4;又∵y=x2﹣5∴4=x2﹣5∴x2=9∴x=±3.24.原式=7+5﹣15=﹣3.25.设他家地板砖的边长是a,∵地板砖是正方形,∴一块地板砖的面积是a2,∴60a2=21.6,得,a=0.6(m)26.第n项a n===n+1,即a n=n+127.设每块地砖的边长是x,则120x2=10.8,解得x=0.3,即每块地砖的边长是0.3m28.∵正方体的集装箱,原体积为216m2,∴棱长为=6m,要使其体积达到343m2,则棱长为=7m,∴正方体的棱长需增加=1(m).答:正方体的棱长需增加1m29.根据题意可知:πR2=π(25﹣4),解得R2=21,即R=30.根据题意,有=;(1)根据题意,有=;(2)=×=8×15=120.故答案为:=31.(1)25x2=36两边同时除以25得∴.(2)(x+1)3=8 开立方,得,∴x+1=2解得x=132.(1)∵x2=7,∴x=±;(2)∵x3=﹣27 ∴x=﹣3;(3)∵(x﹣3)2=64 ∴x﹣3=±8 ∴x=11或﹣5;(4)∵(2x﹣1)3=﹣8∴2x﹣1=﹣2 ∴x=﹣.33.原式=()2﹣3=5﹣2﹣3=2﹣.35.(1)由原方程,得2x﹣1=±,∴x=±,∴x1=,x2=;(2)由原方程,得(x﹣2)3=,∴x﹣2=,解得,x=36.(1)4x2﹣24=25,∴4x2=25+24,x2=,x=±;(2)(x﹣0.7)3=﹣0.027,∵(﹣0.3)3=﹣0.027,∴x﹣0.7=﹣0.3,∴x=0.437.∵a是的平方根,b=,c是﹣8的立方根,∴a=±2,b=3,c=﹣2,∴当a=2时,a+b﹣c=7,当a=﹣2时,a+b﹣c=338.解:根据题意,得:解得,所以,所以M+N=4,故M+N算术平方根是239.(1),=5﹣1﹣3,=1;(2)移项、合并得,x2=2,∴x=±40.解:(1)原式=0.5﹣2+2,=0.5;(2)解:原式=0.5﹣+,=﹣41.∵,∴x﹣3=0,8﹣y=0,解得x=3,y=8,∴(1)3x﹣y=3×3﹣8=1,∵1的平方根=±1,∴±=±1;(2)∵x=3,y=8,∴x+3y=3+3×8=27,∵=3,∴=342.∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27 把x的值代入解得:y=8,∴x2+y2的算术平方根为10.43.设新正方形的棱长为x cm,则新正方体体积为x3cm3,依题意得:x3=8×53=(2×5)3,∴x=10(cm).答:新正方体的棱长为10cm.44.(1)∵2+(﹣2)=0,而且23=8,(﹣2)3=﹣8,有8﹣8=0,∴结论成立;∴即“若两个数的立方根互为相反数,则这两个数也互为相反数.”是成立的.(2)由(1)验证的结果知,1﹣2x+3x﹣5=0,∴x=4,∴1﹣=1﹣2=﹣145.原式==046.∵立方根为x﹣,而的立方根为,∴x﹣=,解得x=4∴4的平方根为±2,∴x的平方根±247.设正方体的棱长为x,由题意知,2x3=50×40×30,解得x≈31,故这两个正方体纸箱的棱长31厘米48.原式=2+4+0.1+8×0.4=4+5.349.由题意,有,解得.∴m+11n=5+22=27,=3,∴m+11n的立方根是350.设截得的每个小正方体的棱长xcm,依题意得1000﹣8x3=488,∴8x3=512,∴x=4,答:截得的每个小正方体的棱长是4cm.51.(1)103=1000,1003=1000000,你能确定59319的立方根是2位数.故答案是:2;(2)由59319的个位数是9,你能确定59319的立方根的个位数是9.故答案是9.(3)如果划去59319后面的三位319得到数59,而33=27,43=64,∵103=1000,1003=1000000,1000<185193<1000000,∴185193的立方根是一个两位数,∵185193的最后一位是3,∴它的立方根的个位数是7,185193去掉后3位,得到185,∵53<185<63,∴立方根的十位数是5,则立方根一定是:57.答:①它的立方根是2位数,②它的立方根的个位数是7,③它的立方根的十位数是5,④185193的立方根是57.故答案是:2,7,5,5752.探究1:(1)成立;(2)成立;(3)成立;探究2:5;探究3:=n(n≥2的整数).理由如下:===n;拓展:=n.理由如下:===n53.由已知6280=π•R3∴6280≈×3.14R3,∴R3=1500∴R≈11.3cm54.∵128=27,∴128x=29=27×4时,是一个正整数,即最小的正整数x=4.故答案为:455.﹣1=﹣,∵(﹣)3=﹣,∴=﹣.56.设书的高为xcm,由题意得:(4x)3=216,解得:x=1.5.答:这本书的高度为1.5cm.57.(1)=﹣2;(2)=0.4;(3)﹣=﹣;(4)=958.(1)解:原式=3×1.414213562+0.745355992﹣3.141592654+5×0.2=2.8446404026≈2.84;(2)解:原式=2+0﹣=59.(1)原式≈﹣8.59;(2)原式≈﹣1.66.60.用计算器计算并猜想:(1)=3,(2)=6,(3)=10,(4)=15,(5)=21,(6)1+2+3+…+n=n(n+1).故本题的答案是3,6,10,15,21,n(n+1)平方根立方根解答题60题---- 11。
平方根与立方根练习题一、选择题1. 求下列各数的平方根:a) 16 b) 36 c) 49 d) 1212. 求下列各数的立方根:a) 8 b) 27 c) 64 d) 1253. 如果√a = b,那么a的值是多少?a) 9 b) b² c) b³ d) b² + b4. 如果∛a = b,那么a的值是多少?a) 8 b) b² c) b³ d) b² + b5. 下列哪个数是完全平方数?a) 12 b) 15 c) 25 d) 306. 下列哪个数是完全立方数?a) 8 b) 11 c) 27 d) 32二、填空题1. 5² = ______2. 7² = ______3. 10² = ______4. 2³ = ______5. 4³ = ______6. 6³ = ______三、计算题1. 求下列各数的平方根,并保留两位小数:a) 25b) 64c) 144d) 4002. 求下列各数的立方根,并保留两位小数:a) 125b) 216c) 343d) 10003. 判断下列各数是否为完全平方数:a) 49b) 81c) 100d) 1214. 判断下列各数是否为完全立方数:a) 8b) 27c) 64d) 125四、解答题1. 将完全平方数的概念进行解释,并举例说明。
2. 将完全立方数的概念进行解释,并举例说明。
3. 对于非完全平方数和非完全立方数,是否存在平方根与立方根的概念?请说明原因。
4. 使用平方根和立方根的概念,如何判断一个数是否为完全平方数和完全立方数?五、综合题小明的爸爸给他出了一个综合题:找出1到100之间的完全平方数和完全立方数,并将它们分别按照从小到大排列后,求出所有这些数的平均值。
请根据小明的要求,计算出这个平均值。
最终答案:(请在下方空白区域回答)以上为平方根与立方根练习题,希望能够帮助你巩固对平方根与立方根的理解和计算能力。
算术平方根平方根立方根测试题一.选择题1,在数5,(-3)2,-32,x2+1,-a2,-x2-4,中,也许有平方根旳个数( )A. 2 B. 3 C. 4 D.52,4旳算术平方根是( )A. 2B. 2 C. 4 D. 163,若1m故意义,则m能取旳最小整数为( )4+A.-1 B. 0 C. 1 D. -44,如果a200是一种整数,那么最小正整数a应取( )A. 20B. 5C. 1 D.25,2+a=2,则(a+2)2旳平方根是()A. 16 B. ±16 C. ±4 D. ±26.若a是(-4)2旳平方根,b旳一种平方根是2,则代数式a+b 旳值为( )A.8 B. 0 C. 8或0 D. -4或47.①一种自然数旳算术平方根是X,则它背面旳一种数旳算术平方根()A. X+1 B. X2+1 C. X+1 D. 12+X②一种自然数旳算术平方根是X,则和这个自然数相邻旳下一种自然数是( )A.X+1 B. X2+1 C. X+1 D. 12+X8. 若a2=4,b2=9,且ab<0,则a-b旳值为()A.-2 B.±5C.5D. -59. 33)2(K-=2-K,那么K旳取值范畴是( )A. K≤2 B. K≥2 C. 0≤K≤2 D. K为任意实数10. 一种数旳平方根和立方根相等,则这个数是( )A . 1 B. ±1 C. 0D.-111.若31+X=2,则(X+1)3等于( )A. 8 B. ±8C.512D. -51212. 364旳平方根是()A. 4B. ±8 C. 2 D.±213. a23-等于最大旳负整数,则a=( )9A. ±5 B.-5 C. 5 D.不存在14.下列推理不对旳旳是( )A.若a=b则3a=3b B.若a=b则a=bC.若a=b则a=b D.若3a=3b则a=b二.填空题15.若X2=(-4)2,则X=___.16.若1+X=2,则2X-1=___.17.若X+Y=0,则3X+3Y=___.18.(m-2n)3旳立方根等于___。
平方根立方根计算题50道一、平方根计算题(25道)1. 计算√(4)- 解析:因为2^2 = 4,所以√(4)=2。
2. 计算√(9)- 解析:由于3^2 = 9,所以√(9)=3。
3. 计算√(16)- 解析:因为4^2 = 16,所以√(16)=4。
4. 计算√(25)- 解析:由于5^2 = 25,所以√(25)=5。
5. 计算√(36)- 解析:因为6^2 = 36,所以√(36)=6。
6. 计算√(49)- 解析:由于7^2 = 49,所以√(49)=7。
7. 计算√(64)- 解析:因为8^2 = 64,所以√(64)=8。
8. 计算√(81)- 解析:由于9^2 = 81,所以√(81)=9。
9. 计算√(100)- 解析:因为10^2 = 100,所以√(100)=10。
10. 计算√(121)- 解析:由于11^2 = 121,所以√(121)=11。
11. 计算√(144)- 解析:因为12^2 = 144,所以√(144)=12。
12. 计算√(169)- 解析:由于13^2 = 169,所以√(169)=13。
13. 计算√(196)- 解析:因为14^2 = 196,所以√(196)=14。
14. 计算√(225)- 解析:由于15^2 = 225,所以√(225)=15。
15. 计算√(0.04)- 解析:因为0.2^2 = 0.04,所以√(0.04)=0.2。
16. 计算√(0.09)- 解析:由于0.3^2 = 0.09,所以√(0.09)=0.3。
17. 计算√(0.16)- 解析:因为0.4^2 = 0.16,所以√(0.16)=0.4。
18. 计算√(0.25)- 解析:由于0.5^2 = 0.25,所以√(0.25)=0.5。
19. 计算√(1frac{9){16}}- 解析:先将带分数化为假分数,1(9)/(16)=(25)/(16),因为((5)/(4))^2=(25)/(16),所以√(1frac{9){16}}=(5)/(4)。
第4讲 算术平方根、平方根、立方根Ⅰ、算术平方根如果一个正数x 的平方等于a ,那个这个正数x 叫做a 的算术平方根,记作_________;0的算术平方根是________Ⅱ、平方根如果一个数的平方等于a ,那个这个数叫做a 的平方根或者二次方根,记作_________;求一个数的________的运算,叫做开平方。
公式补充:①a )a (2= ②|a |a 2=一.练习:(预习自主完成)1. 81的算术平方根是( ) A .9± B .9 C .-9 D .32) A. 49- B. 23 C. 49 D. 23- 3.下列说法不正确的是( )A 、9的算术平方根是3B 、0的算术平方根是0C 、负数没有算术平方根D 、 因为2x a =,所以x 叫做a 的算术平方根4. 如果5.1=y ,那么y 的值是( ) A .2.25 B .22.5 C .2.55 D .25.55. 计算()22-的结果是( ) A .-2 B .2 C .4 D .-46. 下列各式中正确的是( )A .525±=B .()662-=-C .()222-=D .()332=-7. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 的算术平方根是a ;④(π-4)的算术平方根是π-4;⑤算术平方根不可能是负数。
其中,不正确的有( )A. 2个B. 3个C. 4个D. 5个228. 已知5x 2=,则x 为( )A. 5B. -5C. ±5D. 以上都不对9.一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .a+1 B .a2+1 C .a +1 D .1a 2+二、填空题:1. 一个数的算术平方根是25,这个数是______; 算术平方根等于它本身的数有______;81的算术平方根是__________。
2. 144=_____4925=________ 0025.0=_______()=2196________()=-28________3. 当______m 时,m -3有意义; 4.已知0)3b (1a 22=+++,则=32ab ________。
平方根检测题(A )1. 求下列各数的平方根 81 1625124 0.49610 410- 0.0049 2(4)- 232492. 求下列各式的值22(3. 若一个正数的平方根是3x-5和x-3,则x= ,这个正数是 . 4.9的平方根是 ;3-2的算术平方根是 . 5. 若2x+1的平方根是±3,那么x= . 6.-8的立方根与4的算术平方根的和是 . 7.当_______x 时,32-x 有意义;8.设x 、y 为实数,且554-+-+=x x y ,则x = ,y = . 9.如果a 的平方根等于2±,那么_____=a . 10. 已知22m +的平方根是±4,31m n ++的平方根是±5,求2m n +的值.11.已知2(1)50,x y -+-=求15x y +的平方根.12.利用平方根解下列方程. (1)2(25)2890x --=(2)24(21)10x +-=-平方根检测题(B)1.计算:(1)(2(3(4(5|1(6(7(82.求下列各数的平方根.(1)100 (2)0 (3)9 25(4)1 (5)11549(6)0.093.的平方根是_______;9的平方根是_______.4.非负数a的平方根表示为5.35±是的平方根,的平方根是 . 6.在下列各数中0,254,21a+,31()3--,2(5)--,222x x++,|1|a-,||1a-,有平方根的个数是个.7.144的算术平方根是,16的平方根是;8.若0|2|1=-++yx,则x+y= . 9.当________x时,式子21--xx有意义. 10.化简:=-2)3(π .112.676=,26.76=,则a的值等于。
12.代数式3-的最大值为,这是,a b的关系是.13.一个自然数的算术平方根是x,则它后面一个数的算术平方根是 .14.若y=,求2x y+的值.154=,且2(21)0y x-+=,求x y z++的值.16.已知:x-2的平方根是±2, 2 x +y+7的立方根是3,求x 2+ y 2的平方根.17.求下列x的值:(1) 264(3)90x--=(2)2(41)225x-=平方根练习题1. 求下列各数的平方根81 1625124 0.49610 410-2. 求下列各式的值2)2()2.平方根等于本身的数是: ;算术平方根等于本身的数: ;立方根等于本身的数是: ; 立方根等于平方根的数是: .3.25的平方根是 ; (-4)2的平方根是 .4.9的算术平方根是 ;3-2的算术平方根是 .5.若一个正数的平方根是3x-5和x-3,则x= ,这个正数是 .6.21++a 的最小值是_____,此时a 的取值是____. 7.若一个偶数的立方根比2大,平方根比4小,则这个数是 .8.-0.064的立方根的平方等于 . 9.0.64的平方根的立方等于 . 10.若21,a == .11.-8的立方根与4的算术平方根的和是 . 12.当_______x 时,32-x 有意义;13.如果a 的平方根等于2±,那么_____=a 。
14. 若2x+1的平方根是±3,那么x= . 15. 若a 和a -都有意义,则a 的值是( ) A.0≥a B.0≤a C.0=a D.0≠a 16.用数学式子表示“169的平方根是43±”应是( )A .43169±= B .43169±=±C .43169= D .43169-=-17.若9,422==b a ,且0ab >,则b a -的值为( )(A)1± (B) 5± (C) 5 (D) 5-18.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、5 19.利用平方根解下列方程.(1)(2x-5)2-289=0; (2)4(2x+1)2-1=0;20. 已知22m +的平方根是±4,31m n ++的平方根是±5,求2m n +的值.21.已知2(1)50,x y -+-=求15x y +的平方根.22.11.091, 3.5071≈≈,求下列各式的值:(1(2(3(423.若2<x<3,24.若5的小数部分为a,5为b ,求a b +的值.立方根练习题一、判断题 1、如果b 是a 的三次幂,那么b 的立方根是a .( ) 2、任何正数都有两个立方根,它们互为相反数.( ) 3、负数没有立方根( )4、如果a 是b 的立方根,那么ab ≥0.( )5、(-2)-3的立方根是-21.( ) 6、3a 一定是a 的三次算术根. ( )7若一个数的立方根是这个数本身,那么这个数一定是零. ( )8 313->413-.( ) 二、.选择题1、如果a 是(-3)2的平方根,那么3a 等于( )A.-3B.-33C.±3D.33或-332、若x <0,则332x x -等于( )A.xB.2xC.0D.-2x 3若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A.0B.±10C.0或10D.0或-104、如图1:数轴上点A 表示的数为x ,则x 2-13的立方根是( ) A.5-13 B.-5-13C.2D.-2 5、如果2(x -2)3=643,则x 等于( )A.21B.27 C.21或27 D.以上答案都不对6.下列说法中正确的是( )A.-4没有立方根B.1的立方根是±1C.361的立方根是61D.-5的立方根是35-7.在下列各式中:327102 =34 3001.0=0.1,301.0=0.1,-33)27(-=-27,其中正确的个数是( ) A.1 B.2 C.3 D.4 8.若m <0,则m 的立方根是( )A.3mB.-3m C.±3m D.3m -9如果36x -是6-x 的三次方根,那么( ) A.x <6 B.x =6 C.x ≤6 D.x 是任意数 10、下列说法中,正确的是( )A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1 二、填空题1、如果一个数的立方根等于它本身,那么这个数是________.2、3271-=________, (38)3=________ 3、364的平方根是________. 4、64的立方根是________. 6.364的平方根是______.7.(3x -2)3=0.343,则x =______. 8.若81-x+有意义,则3x =______.9.若x <0,则2x =______,33x =______.10.若x =(35-)3,则1--x =______.三、解答题1.求下列各数的立方根 (1)729 (2)-42717(3)-216125(4)(-5) 2.求下列各式中的x.(1)125x 3=8(2)(-2+x )3=-216 (3)32-x =-2 (4)27(x +1)3+64=03.已知643+a +|b 3-27|=0,求(a -b )b 的立方根.4.已知第一个正方体纸盒的棱长为6 cm ,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm 3,求第二个纸盒的棱长.5.判断下列各式是否正确成立. 1)3722=2372(2)32633=3·3263(3)36344=43634(4)312455=531245判断完以后,你有什么体会?你能得到更一般的结论?若能,请写出你的一般结论.平方根与立方根练习题1一、填空题1.如果9=x ,那么x =________;如果92=x ,那么=x ________;2.若一个实数的算术平方根等于它的立方根,则这个数是_________;3.算术平方根等于它本身的数有________,立方根等于本身的数有________.4.x ==则,若,x x =-=则 。
5.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;6.当______m 时,m -3有意义;当______m 时,33-m 有意义;7.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;8.21++a 的最小值是________,此时a 的取值是________.9.若一个偶数的立方根比2大,平方根比4小,则这个数是 .10.-0.008的立方根的平方等于 . 11.若21,a == .12.-8的立方根与4的算术平方根的和是 . 二、选择题1. 若2x a =,则( )A.0x > B. 0x ≥ C. 0a > D. 0a ≥2.2)3(-的值是( ).A .3-B .3C .9-D .93.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、5 4.若53-x 有意义,则x 可以取的最小整数为( ). A .0 B .1 C .2 D .3 5.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( ) A 、32210+ B 、3425+C 、32210+或3425+D 、无法确定 6. 若5x -能开偶次方,则x 的取值范围是( ) A .0x ≥ B.5x > C. 5x ≥ D. 5x ≤ 7. 若n 为正整数,则2 )A .-1 B.1 C.±1 D.21n + 8. 若正数a 的算术平方根比它本身大,则( ) A.01a << B.0a > C. 1a < D. 1a > 三、解方程 1. 8)12(3-=-x 2.4(x+1)2=83. 2(23)2512x x -=- 4. (2x-5)3=-270.6993,1.507,==3.246,=求下列各式的值.(1(3)平方根立方根练习题21.正数a 的平方根是( ) A..−D .±a2.下列五个命题:①只有正数才有平方根;②−2是4的平方根;③5的平方根是;④±都是3的平方根;⑤(−2)2的平方根是−2;其中正确的命题是( )A .①②③B .③④⑤C .③④D .②④ 3.若= 2.291,= 7.246,那么= ( )A .22.91B . 72.46C .229.1D .724.6 4.一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .a+1 B .a 2+1 C .+1 D .5.下列命题中,正确的个数有( ) ①1的平方根是1 ;②1是1的算术平方根;③(−1)2的平方根是−1;④0的算术平方根是它本身A .1个B .2个C .3个D .4个 6.若= 2.449,= 7.746,= 244.9,= 0.7746,则x 、y 的值分别为( ) A .x = 60000,y = 0.6 B .x = 600,y = 0.6 C .x = 6000,y = 0.06 D .x = 60000,y = 0.06 二、填空题1.①若m 的平方根是±3,则m =______;②若5x+4的平方根是±1,则x =______ 2.要做一个面积为π米2的圆形桌面,那么它的半径应该是______3.在下列各数中,−2,(−3)2,−32,23,1(1)4--,有平方根的数的个数为:______4.在−和之间的整数是____________5.若的算术平方根是3,则a =________三、求解题1.求下列各式中x 的值①x 2 = 361; ②81x 2−49 = 0; ③49(x 2+1) = 50; ④(3x −1)2 = (−5)23、下列计算不正确的是( )A 、24±=B 、981)9(2==-C 、4.0064.03=D 、62163-=-4、下列叙述正确的是( )A 、0.4的平方根是±0.2B 、-(-2)3 的立方根不存在C 、±6是36的算术平方根D 、-27的立方根是-35、不使用计算器,你能估算出126的算术平方根的大小在哪两个整数之间吗?( ) A 、10-11之间 B 、11-12之间 C 、12-13之间 D 、13-14之间6、如果一个数的平方根与立方根相同,那么这个数是( )A 、0B 、±1C 、0和1D 、0或±17、若216a =,则a =________;1.2=,则a =________.82的相反数是________2的绝对值是________.1、下列说法正确的是( ) ①12是1728的立方根;② 127-的立方根是 13③64的立方根是4±; ④0的立方根是0 A 、①④ B 、②③ C 、①③ D 、②④2、下列说法中错误的是( ) A 、 是5的平方根 B 、-16是256的平方根 C 、-15是225的算术平方根 D 、6是36的平方根3、下列说法中错误的是( )A 、负数没有立方根B 、1的立方根是1C 、38的平方根是2± D 、立方根等于它本身的数有3个4、若a 是2)3(-的平方根,则3a =( )5A 、-3B 、33 C 、3333或- D 、3和-35、已知x 的平方根是2a +3和1-3a ,y 的立方根为a ,求x +y 的值6、 的平方根是______________; 9的立方根是_________________8、计算:四、能会用若0||2=++z y x ,则0,0,0===z y x 去解决问题1、已知x ,y 是实数,且0)3(432=-++y x ,则xy 的值是( )A 、4B 、-4C 、49D 、-492、若054=-++-y x x ,则=x ________,=y ________3、已知0)1(|1|352=-+-+-x y x ,求xyz =________9、求下列各数的算术平方根0.0025 2)6(- 0 (-2)×(-6)5、1)0169)12(2=--x ; 2)01)13(42=-+x ;3)024273=-x ; 4)4)3(213=+x无理数常见的三种形式:1)开方开不尽的数,如2,3 2)特定意义的数,如π 3)有特定结构的数,如0.010010001……1、下列各数:23,-3π,3.1415926,25,191,38-,3.101001000……中无理数有( )2、若无理数a 满足不等式1<a<4,请写出两个符合条件的无理数_______________3、下列各数:722,0,-π,8,364,2-3中无理数有__________2、下列各数:23,-722,327-,1.414,-3π,3.12122 ,9-中无理数有_______ ____;有理数有______ _________;负数有______ 整数有______ ____ _;3、设a 是实数,则|a|-a 的值( )A 、可以是负数B 、不可能是负数C 、必是正数D 、可以是正数也可以是负数4、下列实数:191,-2π,8,,39,0中无理数有( )A 、4 B 、3 C 、2 D 、15、下列说法中正确的是( )A 、有限小数是有理数B 、无限小数是无理8116数 C 、数轴上的点与有理数一一对应 D 、无理数就是带根号的数6、下列各数中,互为相反数的是( )A 、-3和3 B 、|-3|与- 31 C 、|-3|与31D 、|-3|与-37、边长为1的正方形的对角线的长是( )A 、整数B 、分数C 、有理数D 、无理数 8、写出一个3和4之间的无理数__________ 9、数轴上表示31-的点到原点的距离是__________ 10、比较大小:(1)52__________25;(2)35-__________3-11、在下列各数中,0.5,54-0.03745,13,1其中无理数的个数为( ) A 、2 B 、3 C 、4 D 、512、一个正方形的面积扩大为原来的n 倍,则它的边长扩大为原来的( )A 、n 倍B 、2n 倍C 、n 倍D 、2n倍6.9的平方根是 A. ±3 B.3C. ±3D. 3 21、x 为何值时,下列各式有意义:①x +5 ②x -22、解下列方程 1) x 2=4 2)x 3-27=035= 4)(x-1)2=493、 81的平方根是 ;27的立方根是 。