2017-2018学年高中数学人教A版必修三课下能力提升:(九) Word版含解析
- 格式:doc
- 大小:47.00 KB
- 文档页数:4
2017-2018学年高中数学人教A版必修三课下能力提升:(十)[学业水平达标练]题组1 系统抽样的概念1.为了了解某地参加计算机水平测试的5 008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为( ) A.24 B.25 C.26 D.282.下列抽样试验中,最适宜用系统抽样法的是( )A.某市的4个区共有2 000名学生,4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.从某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样3.某商场想通过检查发票及销售记录的2%来快速估计每月的销售金额,采用如下方法:从某本发票的存根中随机抽一张如15号,然后按顺序往后将65号,115号,165号,……发票上的销售金额组成一个调查样本.这种抽取样本的方法是( )A.抽签法 B.随机数表法C.系统抽样法 D.其他的抽样法4.为了了解参加某次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为( )A.2 B.3 C.4 D.55.(2014·广东高考)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50 B.40 C.25 D.20题组2 系统抽样设计6.“五一”国际劳动节期间,某超市举办了一次有奖购物促销活动.期间准备了一些有机会中奖的号码(分段为001~999),在公证部门的监督下按照随机抽样方法进行抽取,确定后两位为88的号码为本次的中奖号码.则这些中奖号码为:________.7.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1~160分段,按分段顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为126,求第一组中用抽签方法确定的号码.8.为了了解某地区今年高一学生期末考试数学学科的成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请用系统抽样写出抽取过程.9.某校有2 008名学生,从中抽取20人参加体检,试用系统抽样进行具体实施.[能力提升综合练]1.某牛奶生产线上每隔30分钟抽取一袋进行检验,该抽样方法记为①;从某中学的30名数学爱好者中抽取3人了解学业负担情况,该抽样方法记为②.那么( )A .①是系统抽样,②是简单随机抽样B .①是简单随机抽样,②是简单随机抽样C .①是简单随机抽样,②是系统抽样D .①是系统抽样,②是系统抽样2.(2016·衡阳高一检测)将参加夏令营的600名学生分段为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,93.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机分段,则抽取的42人中,分段落入区间[481,720]的人数为( )A .11B .12C .13D .144.某学校从高三全体500名学生中抽50名学生做学习状况问卷调查,现将500名学生从1到500进行分段,求得间隔数k =50050=10,即每10人抽取一个人,在1~10中随机抽取一个数,如果抽到的是6,则从125~140中应取的数是( )A .126B .136C .126或136D .126和1365.人们打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌,这时,开始按次序搬牌,对每一家来说,都是从52张总体中抽取一个13张的样本.则这种抽样方法是________.6.一个总体中有100个个体,随机分段为00,01,02,…,99,依分段顺序平均分成10个小组,组号分别为1,2,3,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是________.7.下面给出某村委会调查本村各户收入情况作的抽样,阅读并回答问题.本村人口: 1 200,户数300,每户平均人口数4人;应抽户数:30;抽样间隔:1 200/30=40;确定随机数字:取一张人民币,其分段后两位数为12;确定第一样本户:分段12的住户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户.……(1)该村委会采用了何种抽样方法?(2)抽样过程存在哪些问题,试修改;(3)何处用了简单随机抽样?8.某工厂有工人1 021人,其中高级工程师20人,现抽取普通工人40人,高级工程师4人组成代表队去参加某项活动,应怎样抽样?答 案[学业水平达标练]1. 解析:选B 5 008除以200的整数商为25,∴选B.2. 解析:选C A 项中总体有明显层次,不适宜用系统抽样法;B 项中样本容量很小,适宜用随机数法;D 项中总体容量很小,适宜用抽签法.故选C.3. 解析:选C 上述抽样方法是将发票平均分成若干组,每组50张,从第一组中抽出了15号,即各组抽15+50n (n 为自然数)号,符合系统抽样的特点.4. 解析:选A 因为1 252=50×25+2,所以应随机剔除2个个体.5. 解析:选C 由1 00040=25,可得分段的间隔为25.故选C. 6. 解析:根据该问题提供的数据信息,可以发现本次活动的中奖号码是每隔一定的距离出现的,根据系统抽样的有关概念,可知该问题中是运用系统抽样法确定中奖号码的,其间隔数为100.所以,中奖号码依次为088,188,288,388,488,588,688,788,888,988.答案:088,188,288,388,488,588,688,788,888,9887. 解:S +15×8=126,得S =6.8. 解:(1)对全体学生的数学成绩进行分段:1,2,3,…,15 000.(2)分段:由于样本容量与总体容量的比是1∶100,所以我们将总体平均分为150个部分,其中每一部分包含100个个体.(3)在第一部分即1号到100号用简单随机抽样,抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14 956,这样就得到一个容量为150的样本.9. 解:(1)将每个人随机编一个号由 0 001 至 2 008;(2)利用随机数表法找到8个号将这8名学生剔除;(3)将剩余的2 000名学生重新随机分段 0 001 至 2 000;(4)分段,取间隔k =2 00020=100,将总体平均分为20段,每段含100个学生;(5)从第一段即0 001号到0 100号中随机抽取一个号l ;(6)按分段将l,100+l,200+l ,…,1 900+l 共20个号码选出,这20个号码所对应的学生组成样本.[能力提升综合练]1. 解析:选A 对于①,因为每隔30分钟抽取一袋,是等间距抽样,故①为系统抽样;对于②,总体容量小,样本容量也小,故②为简单随机抽样.2. 解析:选B 由题意知间隔为60050=12,故抽到的号码为12k +3(k =0,1,…,49),列出不等式可解得:第Ⅰ营区抽25人,第Ⅱ营区抽17人,第Ⅲ营区抽8人.3. 解析:选B 由系统抽样定义可知,所分组距为84042=20,每组抽取一个,因为包含整数个组,所以抽取个体在区间[481,720]的数目为(720-480)÷20=12.4. 解析:选D 根据系统抽样的定义和方法,所抽取的样本的分段都是“等距”的,由于在1~10中随机抽取的数是6,故从125~140中应取的数是126和136,应选D.5. 解析:简单随机抽样的实质是逐个地从总体中随机抽取.而这里只是随机确定了起始张,这时其他各张虽然是逐张起牌的,其实各张在谁手里已被确定.所以不是简单随机抽样,据其等距起牌的特点应将其定位为系统抽样.答案:系统抽样6. 解析:由题意知第7组中的数为“60~69”10个数.由题意知m =6,k =7,故m +k =13,其个位数字为3,即第7组中抽取的号码的个位数是3,综上知第7组中抽取的号码为63.答案:637. 解:(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样.抽样间隔应为300/30=10,其他步骤相应改为确定随机数字:取一张人民币,其分段末位数为 2.(假设)确定第一样本户:分段02的住户为第一样本户;确定第二样本户:2+10=12,12号为第二样本户……(3)确定随机数字:取一张人民币,取其末位数2.8. 解:(1)将1 001名普通工人用随机方式分段.(2)从总体中剔除1人(剔除方法可用随机数法),将剩下的1 000名职工重新分段(分别为0 001,0 002,…,1 000),并平均分成40段,其中每一段包含1 00040=25个个体. (3)在第一段 0 001,0 002,…,0 025 这25个分段中用简单随机抽样法抽出一个(如 0 003)作为起始号码.(4)将分段为 0 003,0 028,0 053,…,0 978 的个体抽出.(5)将20名高级工程师用随机方式分段为1,2, (20)(6)将这20个号码分别写在大小、形状相同的小纸条上,揉成小球,制成号签.(7)将得到的号签放入一个不透明的容器中,充分搅拌均匀.(8)从容器中逐个抽取4个号签,并记录上面的分段.(9)从总体中将与所抽号签的分段相一致的个体取出.以上得到的个体便是代表队成员.。
课下能力提升(三) [学业水平达标练]题组1 三角函数的定义及应用 1.已知角α的终边与单位圆交于点⎝⎛⎭⎫-32,-12,则sin α的值为( ) A .-32B .-12C.32D.122.若角α的终边过点(2sin 30°,-2cos 30°),则sin α的值等于( ) A.12B .-12C .-32D .-333.已知角α的终边经过点P (m ,-6),且cos α=-45,则m =________.4.已知点P (-4a ,3a )(a ≠0)是角α终边上的一点,试求sin α,cos α,tan α的值. 题组2 三角函数值的符号5.已知cos θ·tan θ>0,那么角θ是( ) A .第一、二象限角 B .第二、三象限角 C .第三、四象限角D .第一、四象限角6.已知角α是第二象限角,且⎪⎪⎪⎪cos α2=-cos α2,则角α2是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.若α是第一象限角,则sin 2α,cos α2,tan α2中一定为正值的个数为________.题组3 公式一的应用 8.sin ⎝⎛⎭⎫-19π6的值等于( )A.12B .-12C.32D .-329.tan 405°-sin 450°+cos 750°=________. 10.化简下列各式:(1)a cos180°+b sin 90°+c tan 0°; (2)p 2cos 360°+q 2sin 450°-2pq cos 0°; (3)a 2sin π2-b 2cos π+ab sin 2π-ab cos 3π2.[能力提升综合练]1.给出下列函数值:①sin(-1 000°);②cos ⎝⎛⎭⎫-π4;③tan 2,其中符号为负的个数为( )A .0B .1C .2D .32.已知点P (tan α,cos α)在第三象限,则α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.设△ABC 的三个内角为A ,B ,C 则下列各组数中有意义且均为正值的是( ) A .tan A 与cos B B .cos B 与sin C C .sin C 与tan A D .tan A2与sin C4.若tan x <0,且sin x -cos x <0,则角x 的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5.sin 13π6+cos 13π3-tan ⎝⎛⎭⎫-23π4的值为________.6.若角α的终边落在直线x +y =0上,则sin α|cos α|+|sin α|cos α=________.7.求下列各三角函数值:(1)cos ⎝⎛⎭⎫-11π6;(2)tan 9π4;(3)sin 1 140°.8.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点是M ⎝⎛⎭⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.答 案[学业水平达标练]1. 解析:选B sin α=-121=-12.2. 解析:选C ∵角α的终边过点(2sin 30°,-2cos 30°), ∴角α终边上一点的坐标为(1,-3),故sin α=-312+(-3)2=-32. 3. 解析:由题意r =|OP |=m 2+(-6)2=m 2+36,故cos α=m m 2+36=-45,解得m =-8.答案:-84. 解:由题意得r =(-4a )2+(3a )2=5|a |.当a >0时,r =5a ,角α在第二象限,sin α=y r =3a 5a =35,cos α=x r =-4a 5a =-45,tan α=y x =3a -4a =-34;当a <0时,r =-5a ,角α在第四象限,sin α=-35,cos α=45,tan α=-34. 5. 解析:选A 由cos θ·tan θ>0可知cos θ,tan θ同号,从而θ为第一、二象限角,选A.6. 解析:选C 由α是第二象限角知,α2是第一或第三象限角,又∵⎪⎪⎪⎪cos α2=-cos α2,∴cos α2<0.∴α2是第三象限角. 7. 解析:由α是第一象限角,得2k π<α<π2+2k π,k ∈Z ,所以k π<α2<π4+k π,k ∈Z ,所以α2是第一或第三象限角,则tan α2>0,cos α2的正负不确定;4k π<2α<π+4k π,k ∈Z ,2α的终边在x 轴上方,则sin 2α>0.故一定为正值的个数为2.答案:28. 解析:选A sin ⎝⎛⎭⎫-19π6=sin ⎝⎛⎭⎫-24π-5π6 =sin ⎝⎛⎭⎫-4π+5π6=sin 5π6=12.故选A.9. 解析:原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32. 答案:3210. 解:(1)因为cos 180°=-1,sin 90°=1,tan 0°=0,所以原式=-a +b ; (2)因为cos 360°=cos 0°=1,sin 450°=sin(360°+90°)=sin 90°=1,cos 0°=1, 所以原式=p 2+q 2-2pq =(p -q )2;(3)因为sin π2=1,cos π=-1,sin 2π=sin 0=0,cos3π2=0,原式=a 2+b 2. [能力提升综合练]1. 解析:选B ∵-1 000°=-3×360°+80°, ∴-1 000°是第一象限角,则sin(-1 000°)>0; ∵-π4是第四象限角,∴cos ⎝⎛⎭⎫-π4>0;∵2 rad =2×57°18′=114°36′是第二象限角,∴tan 2<0.2. 解析:选B ∵点P 在第三象限,∴tan α<0,cos α<0,∴α为第二象限角.3. 解析:选D ∵0<A <π,∴0<A 2<π2,∴tan A2>0;又∵0<C <π,∴sin C >0.4. 解析:选D ∵tan x <0,∴角x 的终边在第二、四象限,又sin x -cos x <0, ∴角x 的终边在第四象限.5. 解析:原式=sin ⎝⎛⎫2π+π6+cos ⎝⎛⎫4π+π3-tan ⎝⎛⎭⎫-6π+π4=sin π6+cos π3-tan π4=12+12-1=0.答案:06. 解析:当α在第二象限时,sin α|cos α|+|sin α|cos α=-sin αcos α+sin αcos α=0;当α在第四象限时,sin α|cos α|+|sin α|cos α=sin αcos α-sin αcos α=0.综上,sin α|cos α|+|sin α|cos α=0. 答案:07. 解:(1)cos ⎝⎛⎭⎫-11π6=cos ⎝⎛⎭⎫-2π+π6=cos π6=32;(2)tan9π4=tan ⎝⎛⎭⎫2π+π4=tan π4=1; (3)sin 1 140°=sin(3×360°+60°)=sin 60°=32. 8. 解:(1)由1|sin α|=-1sin α,可知sin α<0,由lg(cos α)有意义可知cos α>0,所以角α是第四象限角.(2)∵|OM |=1,∴⎝⎛⎭⎫352+m 2=1,解得m =±45. 又α是第四象限角,故m <0,从而m =-45.由正弦函数的定义可知sin α=yr=m |OM |=-451=-45.。
课下能力提升(十二) [学业水平达标练]题组1 列频率分布表、画频率分布直方图1.用样本频率分布估计总体频率分布的过程中,下列说法正确的是( ) A .总体容量越大,估计越精确 B .总体容量越小,估计越精确 C .样本容量越大,估计越精确 D .样本容量越小,估计越精确2.在画频率分布直方图时,某组的频数为10,样本容量为50,总体容量为600,则该组的频率是( )A.15B.16C.110D .不确定 3.调查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位: cm)如下:171 163 163 166 166 168 168 160 168 165 171 169 167 169 151 168 170 168 160 174 165 168 174 159 167 156 157 164 169 180 176 157 162 161 158 164 163 163 167 161 (1)作出频率分布表; (2)画出频率分布直方图. 题组2 茎叶图及应用4.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )A .0.2B .0.4C .0.5D .0.65.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53题组3频率分布直方图的应用6.(2016·金华高一检测)如图所示是一容量为100的样本的频率分布直方图,则由图形中的数据,样本落在[15,20)内的频数为()A.20 B.30 C.40 D.507.某车站在春运期间为了了解旅客购票情况,随机抽样调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min),下面是这次调查统计分析得到的频率分布表和频率分布直方图(如图所示).解答下列问题:(1)这次抽样的样本容量是多少?(2)在表中填写出缺失的数据并补全频率分布直方图;(3)旅客购票用时的平均数可能落在哪一组?[能力提升综合练]1.将容量为100的样本数据,按由小到大排列分成8个小组,如下表所示:第3A.0.14和0.37 B.114和1 27C.0.03和0.06 D.314和6 372.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()A BC D3.为了解电视对生活的影响,一个社会调查机构就平均每天看电视的时间对某地10 000名居民进行了调查,并根据所得数据画出了样本的频率分布直方图(如图),为了分析该地居民平均每天看电视的时间与年龄、学历、职业等方面的关系,要从10 000人中再用分层抽样的方法抽出100人做进一步调查,则在[2.5,3)(小时)时间段内应抽出的人数是()A.25 B.30 C.50 D.754.某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A.90 B.75 C.60 D.455.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名教师中抽取20名,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如图:据此可估计该校上学期200名教师中,使用多媒体进行教学次数在[15,25)内的人数为________.6.在我市2016年“创建文明城市”知识竞赛中,考评组从中抽取200份试卷进行分析,其分数的频率分布直方图如图所示,则分数在区间[60,70)上的人数大约有________.7.在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,你会得到什么结论?8.某市2016年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49, 45.(1)完成频率分布表;(2)作出频率分布直方图;(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.答 案[学业水平达标练]1. 解析:选C 由用样本估计总体的性质可得.2. 解析:选A 该组的频率为1050=15,故选A.3. 解:(1)最低身高151 cm ,最高身高180 cm ,它们的差是180-151=29,即极差为29;确定组距为4,组数为8,列表如下:(2)4. 解析:选B ∵数据总个数n =10,又落在区间[22,30)内的数据个数为4,∴所求的频率为410=0.4.故选B.5. 解析:选A 直接列举求解.由题意知各数为12,15,20,22,23,23,31,32,34,34,38,39,45,45,45,47,47,48,48,49,50,50,51,51,54,57,59,61,67,68,中位数是46,众数是45,最大数为68,最小数为12,极差为68-12=56.6. 解析:选B 样本数据落在[15,20]内的频数为100×[1-5×(0.04+0.1)]=30.7. 解:(1)样本容量是100. (2)①50 ②0.10所补频率分布直方图如图中的阴影部分.(3)设旅客平均购票用时为t min ,则有 0×0+5×10+10×10+15×50+20×30100≤t <5×0+10×10+15×10+20×50+25×30100,即15≤t <20.所以旅客购票用时的平均数可能落在第四组.[能力提升综合练]1. 解析:选A 由表可知,第三小组的频率为14100=0.14,累积频率为10+13+14100=0.37.2. 解析:选A 由分组可知C ,D 两项一定不对;由茎叶图可知[0,5)有1人,[5,10)有1人,∴第一、二小组频率相同,频率分布直方图中矩形的高应相同,可排除B.故选A.3. 解析:选A 抽出的100人中平均每天看电视的时间在[2.5,3)(小时)时间段内的频率是0.5×0.5=0.25,所以这10 000人中平均每天看电视时间在[2.5,3)(小时)时间段内的人数为10 000×0.25=2 500,又抽样比为10010 000=1100,故在[2.5,3)(小时)时间段内应抽出人数为2 500×1100=25.4. 解析:选A ∵样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36,∴样本总数为360.3=120.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.5. 解析:在抽取的20名教师中,在[15,25)内的人数为6,据此可估计该校上学期200名教师中,使用多媒体进行教学的次数在[15,25)内的人数为60.答案:606. 解析:根据频率分布直方图,分数在区间[60,70)上的频率为0.04×10=0.4,∴分数在区间[60,70)上的人数为200×0.4=80.答案:80 7. 解:(1)(2)电脑杂志上每个句子的字数集中在10~30之间;而报纸上每个句子的字数集中在20~40之间.还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为科普读物更加通俗易懂、简单明了.8. 解:(1)频率分布表:(2)(3)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的115;有26天处于良的水平,占当月天数的1315;处于优或良的天数为28,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115;污染指数在80以上的接近轻微污染的天数15,加上处于轻微污染的天数2,占当月天数的1730,超过50%.说明该市空气质量有待进一步改善.。
一、选择题1.想泡茶喝,当时的情况是:火已经生起了,凉水和茶叶也有了,开水没有,开水壶要洗,茶壶和茶杯要洗,下面给出了四种不同形式的算法过程,你认为最好的一种算法是( )A .洗开水壶,灌水,烧水,在等待水开时,洗茶壶、茶杯、拿茶叶,等水开了后泡茶喝B .洗开水壶,洗茶壶和茶杯,拿茶叶,一切就绪后,灌水,烧水,坐等水开后泡茶喝C .洗开水壶,灌水,烧水,坐等水开,等水开后,再拿茶叶,洗茶壶、茶杯,泡茶喝D .洗开水壶,灌水,烧水,再拿茶叶,坐等水开,洗茶壶、茶杯,泡茶喝3.下列叙述能称为算法的个数为( )①植树需要运苗、挖坑、栽苗、浇水这些步骤.②顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100.③从枣庄乘火车到徐州,从徐州乘飞机到广州.④3x >x +1.⑤求所有能被3整除的正数,即3,6,9,12,….A .2B .3C .4D .54.下列所给问题中:①二分法解方程x 2-3=0(精确到0.01);②解方程⎩⎪⎨⎪⎧ x +y +5=0,x -y +3=0;③求半径为2的球的体积;④判断y =x 2在R 上的单调性.其中可以设计一个算法求解的个数是( )A .1B .2C .3D .45.已知算法:1.输入n ;2.判断n 是否是2,若n =2,则n 满足条件;若n >2,则执行第3步;3.依次检验从2到n -1的整数能不能整除n ,若不能整除n ,满足条件.上述满足条件的数是( )A .质数B .奇数C .偶数D .4的倍数二、填空题6.下列关于算法的说法,正确的个数有________.①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.7.给出下列算法:1.输入x 的值.2.当x >4时,计算y =x +2;否则执行下一步.3.计算y =4-x .4.输出y .当输入x =10时,输出y =__________.8.已知直角三角形的两条直角边长分别为a ,b ,写出求斜边c 的算法步骤.1.________________________________________________________________________;2.________________________________________________________________________;3.________________________________________________________________________.三、解答题9.请设计求18的所有正约数的算法.10.已知函数y =⎩⎪⎨⎪⎧ 2x -1 x ≤-,log 2x +-1<x ,x 2 x,试设计一个算法,输入x 的值,求对应的函数值.答 案1. 解析:选A 解决一个问题可以有多种算法,可以选择其中最优、最简单、步骤尽可能少的算法.选项中的四种算法中都符合题意,但算法A 运用了统筹法原理,因此这个算法要比其余的三种算法科学.2. 解析:选C 算法指的是解决一类问题的方法或步骤,选项C只是一个纯数学问题,没有解问题的步骤,不属于算法.3. 解析:选 B 根据算法的含义和特征:①②③都是算法.④⑤不是算法.其中④,3x>x +1不是一个明确的逻辑步骤,不符合逻辑性;⑤的步骤是无穷的,与算法的有穷性矛盾.4. 解析:选C 由算法的特征可知①②③都能设计算法.对于④,当x>0或x<0时,函数y=x2是单调递增或单调递减函数,但当x∈R时,由函数的图像可知在整个定义域R上不是单调函数,因此不能设计算法求解.5. 解析:选A 由质数的定义知,满足条件的是质数.6. 解析:由算法的特征(有限性、确定性、有序性等)可知②③④正确,但解决某一类问题的算法不一定是唯一的,故①错.答案:37. 解析:∵x=10>4,∴计算y=x+2=12.答案:128. 解析:先输入a、b的值,再根据勾股定理算出斜边c的长,最后输出c的结果.答案:输入两直角边长a、b的值计算c=a2+b2输出斜边长c的值9. 解:1.18=2×9;2.18=2×32;3.列出18的所有正约数:1,2,3,32,2×3,2×32.10. 解:算法如下:1.输入x的值.2.当x≤-1时,计算y=2x-1;否则执行第三步.3.当x<2时,计算y=log2(x+1),否则执行第四步.4.计算y=x2.5.输入y.。
课下能力提升(十九) [学业水平达标练]题组1 向量数量积的运算 1.下列命题:(1)若a ≠0,a ·b =a ·c ,则b =c ;(2)(a ·b )·c =a·(b ·c )对任意向量a ,b ,c 都成立; (3)对任一向量a ,有a 2=|a |2.其中正确的有( ) A .0个 B .1个 C .2个 D .3个2.已知|b |=3,a 在b 方向上的投影是32,则a ·b 为( )A.92B .3 C .2 D.12A.49B.43 C .-43 D .-49题组2 向量的模5.若非零向量a 与b 的夹角为2π3,|b |=4,(a +2b )·(a -b )=-32,则向量a 的模为( )A .2B .4C .6D .126.已知向量a ,b 的夹角为120°,|a|=1,|b |=3,则|5a -b |=________.7.已知非零向量a ,b ,满足a ⊥b ,且a +2b 与a -2b 的夹角为120°,则|a||b|=________.题组3 两向量的夹角与垂直问题8.若非零向量a ,b 满足|a |=|b |,(2a +b )·b =0,则a 与b 的夹角为( ) A .30° B .60° C .120° D .150°9.已知|a |=|b |=1,a 与b 的夹角是90°,c =2a +3b ,d =k a -4b ,c 与d 垂直,则k 的值为( )A .-6B .6C .3D .-310.设向量a ,b 满足|a |=1,|b |=1,且|k a +b |=3|a -k b |(k >0).若a 与b 的夹角为60°,则k =________.11.已知|a |=1,a ·b =14,(a +b )·(a -b )=12.(1)求|b |的值;(2)求向量a -b 与a +b 夹角的余弦值.[能力提升综合练]1.已知|a |=3,|b |=5,且a 与b 的夹角θ=45°,则向量a 在向量b 上的投影为( ) A.322B .3C .4D .52.设向量a ,b 满足|a +b |=10,|a -b |=6,则a·b =( ) A .1 B .2 C .3 D .5A .2 3 B.32 C.33D. 35.已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________. 6.已知a ,b 是两个非零向量,同时满足|a |=|b |=|a -b |,求a 与a +b 的夹角. 7.已知a ,b 是非零向量,t 为实数,设u =a +t b . (1)当|u |取最小值时,求实数t 的值; (2)当|u |取最小值时,向量b 与u 是否垂直?答 案[学业水平达标练]1. 解析:选B (1)(2)不正确,(3)正确.2. 解析:选A ∵|a |cos 〈a ,b 〉=32,|b |=3,∴a ·b =|a |·|b |cos 〈a ,b 〉=3×32=92.3.4.5. 解析:选A 由已知得,a 2+a ·b -2b 2=-32,∴|a |2+|a |×4×cos 2π3-2×42=-32.解得|a |=2或|a |=0(舍).6. 解析:|5a -b |=|5a -b |2=(5a -b )2 =25a 2+b 2-10a ·b =25+9-10×1×3×⎝⎛⎭⎫-12=7. 答案:77. 解析:(a +2b )·(a -2b )=a 2-4b 2,∵a ⊥b , ∴|a +2b |=a 2+4b 2,|a -2b |=a 2+4b 2.故cos 120°=(a +2b )·(a -2b )|a +2b ||a -2b |=a 2-4b 2(a 2+4b 2)2=a 2-4b 2a 2+4b 2=-12,得a 2b 2=43,即|a ||b |=233. 答案:2338. 解析:选C 因为(2a +b )·b =2a ·b +b ·b =0,所以a ·b =-12|b |2.设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=-12|b |2|b |2=-12,故θ=120°. 9. 解析:选B 由c ⊥d 得c·d =0,即(2a +3b )·(k a -4b )=0,即2k |a |2+(3k -8)a ·b -12|b |2=0,所以2k +(3k -8)×1×1×cos 90°-12=0,即k =6.故选B.10. 解析:∵|k a +b |=3|a -k b |, ∴k 2a 2+b 2+2k a ·b =3(a 2+k 2b 2-2k a ·b ).∴k 2+1+k =3(1+k 2-k ).即k 2-2k +1=0,∴k =1. 答案:111. 解:(1)(a +b )·(a -b )=a 2-b 2=12.∵|a |=1,∴1-|b |2=12,∴|b |=22.(2)∵|a +b |2=a 2+2a ·b +b 2=1+2×14+12=2,|a -b |2=a 2-2a ·b +b 2=1-2×14+12=1,∴|a +b |=2,|a -b |=1. 令a +b 与a -b 的夹角为θ,则cos θ=(a +b )·(a -b )|a +b ||a -b |=122×1=24,即向量a -b 与a +b 夹角的余弦值是24. [能力提升综合练]1. 解析:选A 由已知|a |=3,|b |=5,cos θ=cos 45°=22,而向量a 在向量b 上的投影为|a |cos θ=3×22=322. 2. 解析:选A ∵|a +b |=10, ∴(a +b )2=10, 即a 2+b 2+2a ·b =10.① ∵|a -b |=6,∴(a -b )2=6, 即a 2+b 2-2a ·b =6.②由①②可得a ·b =1,故选A. 3.4.解析:画出图形知△ABC 为直角三角形,且∠ABC =90°,=0+4×5×⎝⎛⎭⎫-45+5×3×⎝⎛⎭⎫-35=-25. 答案:-255. 解析:|α|=1,|β|=2,由α⊥(α-2β),知α·(α-2β)=0,2α·β=1, 所以|2α+β|2=4α2+4α·β+β2=4+2+4=10,故|2α+β|=10. 答案:106. 解:根据|a |=|b |,有|a |2=|b |2,又由|b |=|a -b |,得|b |2=|a |2-2a ·b +|b |2, ∴a ·b =12|a |2.而|a +b |2=|a |2+2a ·b +|b |2=3|a |2, ∴|a +b |=3|a |.设a 与a +b 的夹角为θ. 则cos θ=a ·(a +b )|a ||a +b |=|a |2+12|a |2|a |·3|a |=32.∴θ=30°.7. 解:(1)|u |2=|a +t b |2=(a +t b )·(a +t b )=|b |2t 2+2(a ·b )t +|a |2=|b |2⎝⎛⎭⎫t +a ·b|b |22+|a |2-(a ·b )2|b |2. ∵b 是非零向量,∴|b |≠0,∴当t =-a ·b|b |2时,|u |=|a +t b |的值最小.(2)∵b ·(a +t b )=a ·b +t |b |2=a·b +⎝⎛⎭⎫-a·b|b |2·|b |2=a ·b -a ·b =0, ∴b ⊥(a +t b ),即b ⊥u .。
课下能力提升(三)[学业水平达标练]题组1数(式)中的归纳推理 1. 已知数列 1,a + a 2, a 2 + a 3 + a 4, a 3 + a 4 + a 5 + a 6,…,则数列的第‘kk +12klk — 1k2k — 1A. a + a +…+ a B . a + a +…+ ak — 1k2kk — 1k2k — 2C. a + a +…+ a D . a + a +…+ a2. 如图所示,n 个连续自然数按规律排列如下:0 3一47—& L1 …1 II I! I1—25— 6 9— 10根据规律,从2 014到2 016的箭头方向依次为( )A.7 B .— C .— D .7 3. 根据给出的等式猜测123 456 X 9+ 7等于()1X 9+ 2 = 11 12X 9+ 3= 111 123X 9+ 4= 1 111 1 234 X 9+ 5 = 11 111 12 345 X 9+ 6 = 111 111 A. 1 111 110 B . 1 111 111 C. 1 111 112 D . 1 111 113x4.设函数f (x ) = (x > 0),观察:x + 2xxf i (x ) = f (x ) = x ^2,f2(x) = f(f 1(x))= 3x + 4,xf 3(X )=f (f 2(X )) = 7x 7^,根据以上事实,由归纳推理可得:f 4(x ) = f (f 3(x ))x15x +16,k 项是(当n€Nf且n》2 时,f n(x) = f(f n—1(x)) = __________题组2图形中的归纳推理5. 如图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色()A.白色 B .黑色C.白色可能性大D •黑色可能性大6•如图所示,着色的三角形的个数依次构成数列{a n}的前4项,则这个数列的一个通项公式为()▲ An —1 nA. a n= 3 B . a n= 3n n—1C.a n= 3 —2n D . a n= 3 + 2n—37•如图所示,在圆内画一条线段,将圆分成两部分;画两条线段,彼此最多分割成4条线段,将圆最多分割成4部分;画三条线段,彼此最多分割成9条线段,将圆最多分割成7部分;画四条线段,彼此最多分割成16条线段,将圆最多分割成11部分.⑴⑵⑶⑷猜想:在圆内画n(n》2)条线段,彼此最多分割成多少条线段?将圆最多分割成多少部分?题组3类比推理&已知{b n}为等比数列,b5= 2, 且bbb3…b9= 29.若{a n}为等差数列,a5= 2,则{a n}的类似结论为()A. a1a2a3…a9 = 299B. a1 + a? + …+ a9 = 2C. a1a2…a9= 2x 9D. a1 + 比+ …+ a9 = 2x9AEC AC9. 在平面中,△ ABC的/ ACB的平分线。
课下能力提升(一)[学业水平达标练]题组1 算法的含义及特征1.下列关于算法的说法错误的是( )A .一个算法的步骤是可逆的B .描述算法可以有不同的方式C .设计算法要本着简单方便的原则D .一个算法不可以无止境地运算下去2.下列语句表达的是算法的有( )①拨本地电话的过程为:1提起话筒;2拨号;3等通话信号;4开始通话或挂机;5结束通话;②利用公式V =Sh 计算底面积为3,高为4的三棱柱的体积;③x 2-2x -3=0;④求所有能被3整除的正数,即3,6,9,12,….A .①②B .①②③C .①②④D .①②③④3.下列各式中S 的值不可以用算法求解的是( )A .S =1+2+3+4B .S =12+22+32+…+1002C .S =1+12+…+110 000D .S =1+2+3+4+…题组2 算法设计4.给出下面一个算法:第一步,给出三个数x ,y ,z .第二步,计算M =x +y +z .第三步,计算N =13M . 第四步,得出每次计算结果.则上述算法是( )A .求和B .求余数C .求平均数D .先求和再求平均数5.(2016·东营高一检测)一个算法步骤如下:S 1,S 取值0,i 取值1;S 2,如果i ≤10,则执行S 3,否则执行S 6;S 3,计算S +i 并将结果代替S ;S 4,用i +2的值代替i ;S 5,转去执行S 2;S 6,输出S .运行以上步骤后输出的结果S =( )A.16 B.25C.36 D.以上均不对6.给出下面的算法,它解决的是( )第一步,输入x.第二步,如果x<0,则y=x2;否则执行下一步.第三步,如果x=0,则y=2;否则y=-x2.第四步,输出y.A.求函数y=错误!的函数值B.求函数y=错误!的函数值C.求函数y=错误!的函数值D.以上都不正确7.试设计一个判断圆(x-a)2+(y-b)2=r2和直线Ax+By+C=0位置关系的算法.8.某商场举办优惠促销活动.若购物金额在800元以上(不含800元),打7折;若购物金额在400元以上(不含400元)800元以下(含800元),打8折;否则,不打折.请为商场收银员设计一个算法,要求输入购物金额x,输出实际交款额y.题组3算法的实际应用9.国际奥委会宣布2020年夏季奥运会主办城市为日本的东京.据《中国体育报》报道:对参与竞选的5个夏季奥林匹克运动会申办城市进行表决的操作程序是:首先进行第一轮投票,如果有一个城市得票数超过总票数的一半,那么该城市将获得举办权;如果所有申办城市得票数都不超过总票数的一半,则将得票最少的城市淘汰,然后进行第二轮投票;如果第二轮投票仍没选出主办城市,将进行第三轮投票,如此重复投票,直到选出一个主办城市为止,写出投票过程的算法.[能力提升综合练]1.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅、盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用( )A.13分钟B.14分钟C.15分钟D.23分钟2.在用二分法求方程零点的算法中,下列说法正确的是( )A.这个算法可以求方程所有的零点B.这个算法可以求任何方程的零点C.这个算法能求方程所有的近似零点D.这个算法并不一定能求方程所有的近似零点3.(2016·青岛质检)结合下面的算法:第一步,输入x.第二步,判断x是否小于0,若是,则输出x+2,否则执行第三步.第三步,输出x-1.当输入的x的值为-1,0,1时,输出的结果分别为( )A.-1,0,1 B.-1,1,0C.1,-1,0 D.0,-1,14.有如下算法:第一步,输入不小于2的正整数n.第二步,判断n是否为2.若n=2,则n满足条件;若n>2,则执行第三步.第三步,依次从2到n-1检验能不能整除n,若不能整除,则n满足条件.则上述算法满足条件的n是( )A.质数B.奇数C.偶数D.合数5.(2016·济南检测)输入一个x值,利用y=|x-1|求函数值的算法如下,请将所缺部分补充完整:第一步:输入x;第二步:________;第三步:当x<1时,计算y=1-x;第四步:输出y.6.已知一个算法如下:第一步,令m=a.第二步,如果b<m,则m=b.第三步,如果c<m,则m=c.第四步,输出m.如果a=3,b=6,c=2,则执行这个算法的结果是________.7.下面给出了一个问题的算法:第一步,输入a.第二步,如果a≥4,则y=2a-1;否则,y=a2-2a+3.第三步,输出y的值.问:(1)这个算法解决的是什么问题?(2)当输入的a的值为多少时,输出的数值最小?最小值是多少?8.“韩信点兵”问题:韩信是汉高祖手下的大将,他英勇善战,谋略超群,为汉朝的建立立下了不朽功勋.据说他在一次点兵的时候,为保住军事秘密,不让敌人知道自己部队的军事实力,采用下述点兵方法:①先令士兵从1~3报数,结果最后一个士兵报2;②又令士兵从1~5报数,结果最后一个士兵报3;③又令士兵从1~7报数,结果最后一个士兵报4.这样韩信很快算出自己部队里士兵的总数.请设计一个算法,求出士兵至少有多少人.答案[学业水平达标练]1. 解析:选A由算法定义可知B、C、D对,A错.2. 解析:选A算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.①②都各表达了一种算法;③只是一个纯数学问题,不是一个明确步骤;④的步骤是无穷的,与算法的有穷性矛盾.3. 解析:选D D中的求和不符合算法步骤的有限性,所以它不可以用算法求解,故选D.4. 解析:选D由算法过程知,M为三数之和,N为这三数的平均数.5. 解析:选B由以上计算可知:S=1+3+5+7+9=25,答案为B.6. 解析:选B 由算法知,当x <0时,y =x 2;当x =0时,y =2;当x >0时,y =-x 2.故选B.7. 解:算法步骤如下:第一步,输入圆心的坐标(a ,b )、半径r 和直线方程的系数A 、B 、C .第二步,计算z 1=Aa +Bb +C .第三步,计算z 2=A 2+B 2.第四步,计算d =|z1|z2. 第五步,如果d >r ,则输出“相离”;如果d =r ,则输出“相切”;如果d <r ,则输出“相交”.8. 解:算法步骤如下:第一步,输入购物金额x (x >0).第二步,判断“x >800”是否成立,若是,则y =0.7x ,转第四步;否则,执行第三步.第三步,判断“x >400”是否成立,若是,则y =0.8x ;否则,y =x .第四步,输出y ,结束算法.9. 解:算法如下:第一步,投票.第二步,统计票数,如果一个城市得票数超过总票数的一半,那么该城市就获得主办权,否则淘汰得票数最少的城市并转第一步.第三步,宣布主办城市.[能力提升综合练]1. 解析:选C ①洗锅、盛水2分钟+④用锅把水烧开10分钟(同时②洗菜6分钟+③准备面条及佐料2分钟)+⑤煮面条和菜共3分钟=15分钟.解决一个问题的算法不是唯一的,但在设计时要综合考虑各个方面的因素,选择一种较好的算法.2. 解析:选D 二分法求方程零点的算法中,仅能求方程的一些特殊的近似零点(满足函数零点存在性定理的条件),故D 正确.3. 解析:选C 根据x 值与0的关系选择执行不同的步骤.4. 解析:选A 根据质数、奇数、偶数、合数的定义可知,满足条件的n 是质数.5. 解析:以x -1与0的大小关系为分类准则知第二步应填当x ≥1时,计算y =x -1.答案:当x ≥1时,计算y =x -16. 解析:这个算法是求a ,b ,c 三个数中的最小值,故这个算法的结果是2.答案:27. 解:(1)这个算法解决的是求分段函数y =⎩⎪⎨⎪⎧ 2a -1,a ≥4,a2-2a +3,a <4的函数值的问题.(2)当a ≥4时,y =2a -1≥7;当a <4时,y =a 2-2a +3=(a -1)2+2≥2,∵当a =1时,y 取得最小值2.∴当输入的a值为1时,输出的数值最小为2.8. 解:第一步,首先确定最小的满足除以3余2的正整数:2.第二步,依次加3就得到所有除以3余2的正整数:2,5,8,11,14,17,20,…. 第三步,在上列数中确定最小的满足除以5余3的正整数:8.第四步,然后在自然数内在8的基础上依次加上15,得到8,23,38,53,…. 第五步,在上列数中确定最小的满足除以7余4的正整数:53.即士兵至少有53人.。
课下能力提升(三)[学业水平达标练]题组1 条件结构的简单应用1.解决下列问题的算法中,需要条件结构的是( )A.求两个数的和B.求某个正实数的常用对数C.求半径为r的圆的面积D.解关于x的一元二次方程ax2+bx+c=02.已知如图是算法程序框图的一部分 ① ② ③其中含条件结构的是( )A.①②B.①③C.②③D.①②③3.程序框图如图所示,它是算法中的( )A.条件结构B.顺序结构C.递归结构D.循环结构4.如图为计算函数y=|x|函数值的程序框图,则此程序框图中的判断框内应填________.5.已知函数y=Error!请设计程序框图,要求输入自变量,输出函数值.题组2 与条件结构有关的读图、应用问题6.(2016·洛阳模拟)给出了一个算法的程序框图(如图所示),若输入的四个数分别为5,3,7,2,则最后输出的结果是( )A.5 B.3 C.7 D.27.(2016·海口高一检测)如图所示的程序框图,若a=5,则输出b=________.8.在新华书店里,某教辅材料每本售价14.80元,书店为促销,规定:如果顾客购买5本或5本以上,10本以下则按九折(即13.32元)出售;如果顾客购买10本或10本以上,则按八折(即11.84元)出售.请设计一个完成计费工作的程序框图.[能力提升综合练]1.广东中山市的士收费办法如下:不超过2公里收7元(即起步价7元),超过2公里的里程每公里收2.6元,另每车次超过2公里收燃油附加费1元(不考虑其他因素).相应收费系统的程序框图如图所示,则①处应填( )A.y=7+2.6x B.y=8+2.6xC.y=7+2.6(x-2) D.y=8+2.6(x-2)2.执行如图所示的程序框图,如果输入的t∈[-1,3],则输出的s属于( )A.[-3,4] B.[-5,2]C.[-4,3] D.[-2,5]3.若f(x)=x2,g(x)=log2x,则如图所示的程序框图中,输入x=0.25,输出h(x)=( )A.0.25 B.2C.-2 D.-0.254.如图所示的程序框图,如果输入三个实数a,b,c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入四个选项中的( )A.c>x?B.x>c?C.c>b?D.b>c?5.定义运算a⊗b,运算原理如图所示,则式子4⊗1+2⊗5的值等于________.。
课下能力提升(十九) [学业水平达标练]题组1 与长度有关的几何概型1.在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( ) A.45 B.35 C.25 D.152.已知地铁列车每10 min 一班,在车站停1 min ,则乘客到达站台立即乘上车的概率是( )A.110B.19C.111D.183.在区间[-2,4]上随机取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.4.如图所示,在单位圆O 的某一直径上随机地取一点Q ,求过点Q 且与该直径垂直的弦长长度不超过1的概率.题组2 与面积、体积有关的几何概型5.在如图所示的正方形中随机撒入 1 000粒芝麻,则撒入圆内的芝麻数大约为________(结果保留整数).6.一个球型容器的半径为3 cm ,里面装有纯净水,因为实验人员不小心混入了一个H 7N 9 病毒,从中任取1 mL 水,含有H 7N 9 病毒的概率是________.7.(2015·西安质检)如图,在正方体ABCD -A 1B 1C 1D 1 内随机取点,则该点落在三棱锥A 1-ABC 内的概率是________.8.如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.9.在街道旁边有一游戏:在铺满边长为9 cm 的正方形塑料板的宽广地面上,掷一枚半径为1 cm 的小圆板.规则如下:每掷一次交5角钱,若小圆板压在边上,可重掷一次;若掷在正方形内,需再交5角钱才可玩;若压在正方形塑料板的顶点上,可获得一元钱.试问:(1)小圆板压在塑料板的边上的概率是多少? (2)小圆板压在塑料板顶点上的概率是多少?[能力提升综合练]1.下列关于几何概型的说法中,错误的是( )A .几何概型是古典概型的一种,基本事件都具有等可能性B .几何概型中事件发生的概率与它的位置或形状无关C .几何概型在一次试验中可能出现的结果有无限多个D .几何概型中每个结果的发生都具有等可能性2.已有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )3.如图,在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.14B.12C.34D.234.已知事件“在矩形ABCD 的边CD 上随机地取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB=( )A.12B.14C.32 D.745.(2016·石家庄高一检测)如图,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,则射线OA 落在∠xOT 内的概率为________.6.一个多面体的直观图和三视图如图所示,其中M 是AB 的中点.一只苍蝇在几何体ADF -BCE 内自由飞行,求它飞入几何体F -AMCD 内的概率. 7.在长度为10 cm 的线段AD 上任取两点B ,C .在B ,C 处折此线段而得一折线,求此折线能构成三角形的概率.答 案[学业水平达标练]1. 解析:选B 在区间[-2,3]上随机选取一个数X ,则X ≤1,即-2≤X ≤1的概率为P =35.2. 解析:选A 试验的所有结果构成的区域长度为10 min ,而构成事件A 的区域长度为1 min ,故P (A )=110.3. 解析:由|x |≤m ,得-m ≤x ≤m ,当m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3.答案:34. 解:弦长不超过1,即|OQ |≥32,而Q 点在直径AB 上是随机的,记事件A ={弦长超过1}.由几何概型的概率公式得P (A )=32×22=32.∴弦长不超过1的概率为1-P (A )=1-32. 5. 解析:设正方形边长为2a ,则S 正=4a 2,S 圆=πa 2.因此芝麻落入圆内的概率为P =πa 24a 2=π4,大约有1 000×π4≈785(粒).答案:7856. 解析:水的体积为43πR 3=43×π×33=36π(cm 3)=36π(mL).故含有病毒的概率为P =136π. 答案:136π7. 解析:设正方体的棱长为a ,则所求概率 P =VA 1-ABCVABCD -A 1B 1C 1D 1=13×12a 2·a a 3=16. 答案:168. 解析:设长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =2+4h (2h +2)(2h +1)=14,解得h =3或h =-12(舍去),故长方体的体积为1×1×3=3.答案:39. 解:(1)如图(1)所示,因为O 落在正方形ABCD 内任何位置是等可能的,小圆板与正方形塑料板ABCD 的边相交接是在圆板的中心O 到与它靠近的边的距离不超过1 cm 时,所以O 落在图中阴影部分时,小圆板就能与塑料板ABCD 的边相交接,这个范围的面积等于92-72=32(cm 2),因此所求的概率是3292=3281.(2)小圆板与正方形的顶点相交接是在圆心O 与正方形的顶点的距离不超过小圆板的半径1 cm 时,如图(2)阴影部分,四块合起来面积为π cm 2,故所求概率是π81.[能力提升综合练]1. 解析:选A 几何概型和古典概型是两种不同的概率模型,故选A.2. 解析:选A 利用几何概型的概率公式,得P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ),故选A.3. 解析:选C 因为△ABC 与△PBC 是等高的,所以事件“△PBC 的面积大于S4”等价于事件“|BP |∶|AB |>14”.即P (△PBC 的面积大于S 4)=|P A ||BA |=34.4. 解析:选D 依题可知,设E ,F 是CD 上的四等分点,则P 只能在线段EF 上且BF =AB .不妨设CD =AB =a ,BC =b ,则有b 2+⎝⎛⎭⎫3a 42=a 2,即b 2=716a 2,故b a =74.5. 解析:记“射线OA 落在∠xOT 内”为事件A .构成事件A 的区域最大角度是60°,所有基本事件对应的区域最大角度是360°,所以由几何概型的概率公式得P (A )=60°360°=16.答案:166. 解:由三视图可得直观图为直三棱柱且底面ADF 中AD ⊥DF ,DF =AD =DC =a . 因为V F -AMCD =13S 四边形AMCD×DF =13×12(12a +a )·a ·a =14a 3, V ADF -BCE=12a 2·a =12a 3, 所以苍蝇飞入几何体F -AMCD 内的概率为14a 312a 3=12.7. 解:设AB ,AC 的长度分别为x ,y ,由于B ,C 在线段AD 上,因而应有0≤x ,y ≤10,由此可见,点对(B ,C )与正方形K ={(x ,y )|0≤x ≤10,0≤y ≤10}中的点(x ,y )是一一对应的,先设x <y ,这时,AB ,BC ,CD 能构成三角形的充要条件是AB +BC >CD ,BC +CD >AB ,CD +AB >BC ,注意AB =x ,BC =y -x ,CD =10-y ,代入上面三式,得y >5,x <5,y -x <5,符合此条件的点(x ,y )必落在△GFE 中(如图).同样地,当y <x 时,当且仅当点(x ,y )落在△EHI 中,AC ,CB ,BD 能构成三角形, 利用几何概型可知,所求的概率为S △GFE +S △EHI S 正方形=14.。
课下能力提升(九)[学业水平达标练]题组1求曲边梯形的面积1.在求直线x=0,x=2,y=0与曲线y=x2所围成的曲边梯形的面积时,把区间[0,2] 等分成n个小区间,则第i个小区间是()i-1 i i i+1A.[ n]B.[,n],n n2i-12i2i2i+1C.[D.,n]n] [ ,n n2.对于由直线x=1,y=0和曲线y=x3所围成的曲边梯形,把区间3等分,则曲边梯形面积的近似值(取每个区间的左端点)是()1 1A. B.9 251 1C. D.27 303.求由直线x=0,x=1,y=0和曲线y=x(x-1)围成的图形的面积.题组2求变速直线运动的路程4.一物体沿直线运动,其速度v(t)=t,这个物体在t=0到t=1这段时间内所走的路程为()1 1 3A. B. C. 1 D.3 2 25.若做变速直线运动的物体v(t)=t2在0≤t≤a内经过的路程为9,求a的值.题组3定积分的计算及性质6.下列等式不成立的是()17.图中阴影部分的面积用定积分表示为()1 1A.∫02x d xB.∫(2x-1)d x1 1C.∫0(2x+1)d xD.∫(1-2x)d x1 18.S1=∫0x d x与S2=∫x2d x的大小关系是()A.S1=S2 B.S21=S2C.S1>S2 D.S1<S21 21 72 29.已知∫x2d x=3,∫x2d x=3,∫01d x=2,则∫(x2+1)d x=________.0 1 010.用定积分的几何意义计算下列定积分:[能力提升综合练]b b b1.若∫a f(x)d x=1,∫a g(x)d x=-3,则∫[2f(x)+g(x)]d x=()a2A.2 B.-3 C.-1 D.462.若f(x)为偶函数,且∫f(x)d x=8,则等于()A.0 B.4 C.8 D.1633.定积分∫(-3)d x等于()1A.-6 B.6 C.-3 D.36.用定积分表示下列曲线围成的平面区域的面积.(1)y=|sin x|,y=0,x=2,x=5;答案题组1求曲边梯形的面积21.解析:选C将区间[0,2]等分为n个小区间后,每个小区间的长度为,第i个小区n2i-12i间为[ n ].,n1 12 22.解析:选A将区间[0,1]三等分为[0,3 ],[ 3 ],[,1 ],各小矩形的面积和为,3 31 1 12 1 9 1S=03·3+( 3·3+(3 )3·==.3 )3 81 93.解:(1)分割将曲边梯形分割成n个小曲边梯形,在区间[0,1]上等间隔地插入n-1个点,将区间[0,1] 等分成n个小区间:1 12 n-1[0,n][n] [ ,1],,,…,,n n3i -1 i记第 i 个区间为[n ](i =1,2,…,n ),其长度为 ,ni i -1 1 Δx = - = . n n n把每个小曲边梯形的面积记为 ΔS 1,ΔS 2,…,ΔS n . (2)近似代替根据题意可得第 i 个小曲边梯形的面积i -1 ΔS i =|f ( n )·Δx|i -1 i -11=|[-1)]·n |·( nni -1 i -1=·(i =1,2,…,n ).n 2(1- n )(3)求和把每个小曲边梯形近似地看作矩形,求出这 n 个小矩形的面积的和ni -1∑i =1|f ( n )·Δx |S n =ni -1i -1∑=·n 2(1- n )i =111=6·(1-n 2),11 从而得到所求图形面积的近似值 S ≈ · . 6 (1-n 2)(4)取极限1即直线 x =0,x =1,y =0和曲线 y =x (x -1)围成的图形的面积为 .6题组 2 求变速直线运动的路程14.解析:选 B 曲线 v (t )=t 与直线 t =0,t =1,横轴围成的三角形面积 S = 即为这段2时间内物体所走的路程.a i-1ai5.解:将区间[0,a]n等分,记第i个区间为,(i=1,2,…,n),此区间n na长为,nnai a ai a a3∑用小矩形面积(n)2·近似代替相应的小曲边梯形的面积,则i=1 (n)2·=·(12n n n3 a3 1 1+22+…+n2)=3(1+n)(1+2n)近似地等于速度曲线v(t)=t2与直线t=0,t=a,t轴围成4的曲边梯形的面积.a 3∴ =9,解得 a =3. 3题组 3 定积分的计算及性质6.解析:选 C 利用定积分的性质可判断 A ,B ,D 成立,C 不成立.222222例如∫0x d x =2,∫02d x =4,∫02xd x =4,但 ∫02xd x ≠∫0xd x ·∫2d x .1117.解析:选 B 根据定积分的几何意义,阴影部分的面积为∫2x d x -∫01d x =∫(2x-1)d x.1 18.解 析:选 C∫0x d x 表示由直线 x =0,x =1,y =x 及 x 轴所围成的图形的面积,而 ∫x 2d x表示的是由曲线 y =x 2与直线 x =0,x =1及 x 轴所围成的图形的面积,因为在 x∈[0,1]内直 线 y =x 在曲线 y =x 2的上方,所以 S 1>S 2.9.解析:由定积分的性质可知2∫(x 2+1)d x22=∫0x 2d x +∫1d x12=∫0x 2d x +∫x 2d x +211 7 14 = + +2= . 3 3 314 答案: 3 10.5× 52 25而 S = = , 24(2)令 y = 4-x 2+2,则 y = 4-x 2+2表示以(0,2)为圆心,2为半径的圆的上半圆,5[能力提升综合练]b b b1.解析:选C∫a [2f(x)+g(x)]d x=2∫a f(x)d x+∫g(x)d x=2×1-3=-1.a2.解析:选D∵被积函数f(x)为偶函数,∴在y轴两侧的函数图象对称,从而对应的曲边梯形面积相等.3.解析:选A3∵∫3d x表示图中阴影部分的面积S=3×2=6,13 3∴∫1 (-3)d x=-∫3d x=-6.14.又y=sin x与y=2x都是奇函数,故所求定积分为0.答案:05.解析:由y=4-x2可知x2+y2=4(y≥0),其图象如图.等于圆心角为60°的弓形CD的面积与矩形ABCD的面积之和.1 π 1 π2πS弓形=××22-×2×2sin=-.32 3 2 3 3S矩形=AB·BC=2 3.2π3答案:+36.解:(1)曲线所围成的平面区域如图所示.6设此面积为S,(2)曲线所围成的平面区域如图所示.7.解:如图,7。
2017-2018学年高中数学人教A版必修三课下能力提升:(九)
[学业水平达标练]
题组1 简单随机抽样的概念
1.(2014·四川高考)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是( )
A.总体 B.个体
C.样本的容量 D.从总体中抽取的一个样本
2.要检查一个工厂产品的合格率,从1 000件产品中抽出50件进行检查,检查者在其中随机逐个抽取了50件,这种抽样方法可称为________.
3.下面的抽样方法是简单随机抽样的是________.
①从某城市的流动人口中随机抽取100人作调查;
②在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方法确定号码的后四位为2 709的为三等奖;
③在待检验的30件零件中随机逐个拿出5件进行检验.
题组2 简单随机抽样的应用
4.抽签法中确保样本代表性的关键是( )
A.制签 B.搅拌均匀
C.逐一抽取 D.抽取不放回
5.用随机数表法进行抽样有以下几个步骤:
①将总体中的个体分段;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为( )
A.①②③④ B.①③④②
C.③②①④ D.④③①②
6.采用抽签法从含有3个个体的总体{1,3,8}中抽取一个容量为2的样本,则所有可能的样本是________.
7.上海某中学从40名学生中选1人作为上海男篮拉拉队的成员,采用下面两种选法:选法一将这40名学生从1~40进行分段,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签分段一致的学生幸运入选;
选法二将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为拉拉队成员.
试问这两种选法是否都是抽签法?为什么?这两种选法有何异同?
8.现有一批分段为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6
的样本进行质量检测,如何用随机数法设计抽样方案?
[能力提升综合练]
1.在简单随机抽样中,某一个个体被抽到的可能性( )
A.与第几次抽样有关,第一次被抽到的可能性最大
B.与第几次抽样有关,第一次被抽到的可能性最小
C.与第几次抽样无关,每一次被抽到的可能性相等
D.与第几次抽样无关,与抽取几个样本有关
2.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的分段方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是( )
A.①② B.①③ C.②③ D.③
3.下列抽样试验中,用抽签法方便的是( )
A.从某工厂生产的3 000件产品中抽取600件进行质量检验
B.从某工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
D.从某厂生产的3 000件产品中抽取10件进行质量检验
4.某班有34位同学,座位号记为01,02,…,34,用如图的随机数表选取5组数作为参加青年志愿者活动的五位同学的座位号.选取方法是从随机数表第一行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座位号是( )
49 54 43 54 82 17 37 93 23 78 87 35 20
96 43 84 26 34 91 64 57 24 55 06 88 77
04 74 47 67 21 76 33 50 25 83 92 12 06
A.23 B.09 C.02 D.16
5.某中学高一年级有1 400人,高二年级有1 320人,高三年级有1 280人,从该中学学生中抽取一个容量为n的样本,每人被抽到的机会为0.02,则n=________.
6.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是________位.
7.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.
8.某学生在一次理科竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽3道;从20道化学题中随机抽3道;从12道生物题中随机抽2道.选用合适的抽样方法确定这个学生所要回答的三门学科的题的序号(物理题的序号为1~15,化学题的序号为16~35,生物题的序号为36~47).
答案
[学业水平达标练]
1. 解析:选A 5 000名居民的阅读时间的全体是总体,每名居民的阅读时间是个体,200是样本容量,故选A.
2. 解析:由简单随机抽样的特点可知,该抽样方法是简单随机抽样.
答案:简单随机抽样
3. 解析:①中总体容量较大,不宜用简单随机抽样;②中抽取的个体的间隔是固定的,不是简单随机抽样.
答案:③
4. 解析:选B 逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取也不影响样本的代表性,制签也一样,故选B.
5. 解析:选B 由随机数表法的步骤知选B.
6. 解析:从三个总体中任取两个即可组成样本,
∴所有可能的样本为{1,3},{1,8},{3,8}.
答案:{1,3},{1,8},{3,8}
7. 解:选法一满足抽签法的特征,是抽签法;选法二不是抽签法.因为抽签法要求所有的号签分段互不相同,而选法二中39个白球无法相互区分.这两种选法相同之处在于每
名学生被选中的可能性都相等,均为1
40
.
8. 解:第一步,将元件的分段调整为010,011,012,...,099,100, (600)
第二步,在随机数表中任取一数作为开始,任选一方向作为读数方向,比如,选第6行第7个数“9”,向右读.
第三步,从数“9”开始,向右读,每次读取三位,凡不在010~600中的跳过去不读,前面已经读过的数也跳过去不读,依次可得到544,354,378,520,384,263.
第四步,以上这6个号码对应的元件就是要抽取的对象.
[能力提升综合练]
1. 解析:选C 在简单随机抽样中,总体中的每个个体在每次抽取时被抽到的可能性相同,故选C.
2. 解析:选C 根据随机数表的要求,只有分段时数字位数相同,才能达到随机等可能抽样.
3. 解析:选B A总体容量较大,样本容量也较大,不适宜用抽签法;B总体容量较小,样本容量也较小,可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.故选B.
4. 解析:选D 从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字中小于34的分段依次为21,32,09,16,其中第4个为16,故选D.
5. 解析:三个年级的总人数为1 400+1 320+1 280=4 000,每人被抽到的机会均为0.02,∴n=4 000×0.02=80.
答案:80
6. 解析:由于所分段码的位数和读数的位数要一致,因此所分段码的位数最少是四位.从0 000到1 000,或者是从0 001到1 001等.
答案:四
7. 解:第一步:先确定艺人:(1)将30名内地艺人从1到30分段,然后用相同的纸条做成30个号签,在每个号签上写上这些分段,然后放入一个不透明小筒中摇匀,从中依次抽出10个号签,则相应分段的艺人参加演出;(2)运用相同的方法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.
第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.
8. 解:法一(抽签法):
第一步,将试题的分段1~47分别写在纸条上.
第二步,将纸条揉成团,制成号签.
第三步,将物理、化学、生物题的号签分别放在三个不透明的袋子中,充分搅拌.
第四步,从装有物理题的袋子中逐个抽取3个号签,从装有化学题的袋子中逐个抽取3个号签,从装有生物题的袋子中逐个抽取2个号签,并记录所得号签上的分段,这便是所要回答的问题的序号.
法二:(随机数表法):
第一步,将物理题的序号对应改成01,02,…,15,其余两科题的序号不变.
第二步,在教材所附的随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第10行第11个数0,并向右开始读取.
第三步,从数0开始向右读,每次读取两位,若得到的号码不在01~47中,则跳过,前面已经取出的也跳过.从01~15中选3个号码,从16~35中选3个号码,从36~47中选2个号码.依次可得到09,47,27,17,08,02,43,28.
第四步,对应以上号码找出所要回答的问题的序号.物理题的序号为:2,8,9;化学题的序号为:17,27,28;生物题的序号为:43,47.。