同位角、内错角、同旁内角习题
- 格式:doc
- 大小:306.51 KB
- 文档页数:6
同位角、内错角、同旁内角测试题A卷一、填空题1.如图1,直线a、b被直线c所截,∠1和∠2是,∠3和∠4是,∠3和∠2是。
2.如图2,∠1和∠2是直线和直线被直线所截得的角。
3.如图3,∠1的内错角是,∠A的同位角是,∠B的同旁内角是。
4.如图4,和∠1构成内错角的角有个;和∠1构成同位角的角有个;和∠1构成同旁内角的角有个。
5.如图5,指出同位角是,内错角是 ,同旁内角是。
二、选择题6.如图6,和∠1互为同位角的是( )(A)∠2; (B)∠3;(C)∠4;(D)∠5。
7.如图7,已知∠1与∠2是内错角,则下列表达正确的是( )(A)由直线AD、AC被CE所截而得到的;(B)由直线AD、AC被BD所截而得到的;(C)由直线DA、DB被CE所截而得到的;(D)由直线DA、DB被AC所截而得到的。
8.在图8中1和2是同位角的有()(A)(1)、(2); (B)(2)、(3); (C)(1)、(3); (D)(2)、(4)。
9.如图9,在指明的角中,下列说法不正确的是()(A)同位角有2对; (B)同旁内角有5对;(C)内错角有4对; (D)∠1和∠4不是内错角。
10.如图10,则图中共有( )对内错角(A)3; (B)4; (C)5; (D)6。
三、简答题11.如图11(1)说出∠1与∠2互为什么角?(2)写出与∠1成同位角的角;(3)写出与∠1成内错角的角。
12.如图12(1)说出∠A与∠1互为什么角?(2) ∠B与∠2是否是同位角;(3)写出与∠2成内错角的角。
13.如图13,指出同位角、内错角、同旁内角。
B卷一、填空题1.如图1,∠1和∠2可以看作直线和直线被直线所截得的角。
2.如图2,∠1和∠2是直线和直线被直线被直线所截得的角。
3.如图3,直线DE、BC被直线AC所截得的内错角是;∠B与∠C可以看作直线、被直线所截得的角。
4.如图4,与∠EFC构成内错角的是;与∠EFC构成同旁内角的是。
七年级数学下册同位角、内错角、同旁内角练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,直线l 1,l 2被直线l 3所截,则( )A .∠1和∠2是同位角B .∠1和∠2是内错角C .∠1和∠3是同位角D .∠1和∠3是内错角2.如图,直线a 、b 被直线c 所截,则下列说法错误的是( )A .1∠与2∠是邻补角B .1∠与3∠是对顶角C .2∠与4∠是同位角D .3∠与4∠是内错角3.下列各图中,∠1与∠2是对顶角的是( )A .B .C .D .4.如图所示,下列说法错误的是( )A.∠1和∠3是同位角B.∠1和∠5是同位角C.∠1和∠2是同旁内角D.∠5和∠6是内错角5.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫作这点到直线的距离.其中正确的有()A.0个B.1个C.2个D.3个6.在下图中,1∠和2∠是同位角的是()A.(1)、(2)B.(1)、(3)C.(2)、(3)D.(2)、(4)7.下列四幅图中,1∠和2∠是同位角的是()A.(1)(2)B.(3)(4)C.(1)(2)(3)D.(1)(3)(4)8.如图,下列两个角是同旁内角的是( )A .1∠与2∠B .1∠与3∠C .1∠与4∠D .2∠与4∠9.如图所示,下列说法正确的是( )A .∠2与∠1是内错角B .∠2与∠3是同位角C .∠3与∠B 是同旁内角D .∠A 与∠3是内错角10.下列图形中,1∠与2∠是同位角的是( )A .B .C .D .11.下列所示的四个图形中,∠1和∠2是同位角的是( )A .∠∠B .∠∠∠C .∠∠∠D .∠∠12.下列说法正确的是( )A .同位角相等B .在同一平面内,如果a ∠b ,b ∠c ,则a ∠cC .相等的角是对顶角D .在同一平面内,如果a ∠b ,b ∠c ,则a ∠c二、填空题13.如图所示,(1)1∠和2∠是直线______和直线_______被第三条直线_______所截而成的_______角;(2)2∠和3∠是直线______和直线_______被第三条直线______所截而成的______角;(3)4∠和A ∠是直线______和直线______被第三条直线______所截而成的_______角.14.如图,直线,AB CD 与直线,EF GH 分别相交,图中的同旁内角共有_______对.15.如图,∠1和∠B 是直线____和直线____被直线____所截得到的_____角;∠2和∠4是直线____和直线____被直线____所截得到的_____角;∠D和∠4是直线___和直线___被直线___所截得到的_____角.16.如图,四边形ABCD是正方形,点E在BC上,∠ABE绕正方形的中心经顺时针旋转后与∠DAF重合,则∠DGE=______度.17.回顾之前所学内容填空:同位角:图中∠1与∠5,这两个角分别在直线AB,CD的同一方(上方),并且都在直线EF的同侧(右侧),具有这种位置关系的一对角叫做__________.图中还有同位角:__________.内错角:∠3与∠5,这两个角分别在直线AB,CD之间,并且分别在直线EF两侧,(∠3在直线EF左侧,∠5在直线EF右侧),具有这种位置关系的一对角叫做__________.图中还有内错角:__________.同旁内角:∠3与∠6,这两个角分别在直线AB,CD之间,但它们在直线EF的同一旁(左侧),具有这种位置关系的一对角叫做__________.图中还有同旁内角:__________.18.如图所示,1∠与2∠是________角,2∠与4∠是______角,2∠与3∠是__________角.19.空间两条不重合的直线的位置关系有________、________、________三种.三、解答题20.如图中,共有几对内错角?这几对内错角分别是哪两条直线被哪一条直线所截构成的?21.根据图形填空:(1)若直线,ED BC 被直线AB 所截,则1∠和_____是同位角;(2)若直线,ED BC 被直线AF 所截,则3∠和_____是内错角;(3)1∠和3∠是直线,AB AF 被直线______所截构成的内错角;(4)2∠和4∠是直线AB ,______被直线BC 所截构成的_____角.22.如图∠1、∠2、∠3、∠4、∠5中,哪些是同位角?哪些是内错角?哪些是同旁内角?参考答案:1.C【分析】两条直线a、b被第三条直线c所截,在截线c的同旁,被截两直线a、b的同一侧的角(都在左侧或者都在右侧),把这样的两个角称为同位角;根据定义分别判断即可.【详解】解:∠1和∠2既不是同位角,也不是内错角,故选项A、B错误;∠1和∠3是同位角,故选项C正确,选项D错误;故答案为:C.【点睛】本题考查了同位角、内错角、同旁内角,掌握同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形是解题的关键.2.D【分析】利用邻补角、对顶角、同位角、同旁内角定义解答即可.【详解】解:A 、1∠与2∠是邻补角,故原题说法正确;B 、1∠与3∠是对顶角,故原题说法正确;C 、2∠与4∠是同位角,故原题说法正确;D 、3∠与4∠是同旁内角,故原题说法错误;答案:D .【点睛】此题主要考查了邻补角、对顶角、同位角、同旁内角,关键是掌握各种角的定义.3.A【分析】根据对顶角的定义,即可一一判定.【详解】解:A 、∠1与∠2是对顶角,故A 选项正确;B 、∠1与∠2不是对顶角,故B 选项错误;C 、∠1与∠2不是对顶角,故C 选项错误;D 、∠1与∠2不是对顶角,故D 选项错误.故选:A .【点睛】本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.4.B【分析】根据同位角、内错角、同旁内角的意义:两条直线被第三条直线所截,在截线的同旁,在被截的两直线的同一侧的角叫做同位角;两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间的两个角叫做内错角;两条直线被第三条直线所截,在截线同旁,且在被截两条直线之内的两角叫做同旁内角,可得答案.【详解】解:A 、∠1和∠3是同位角,故此选项不符合题意;B 、∠1和∠5不存在直接联系,故此选项符合题意;C 、∠1和∠2是同旁内角,故此选项不符合题意;D 、∠1和∠6是内错角,故此选项不符合题意;故选B .【点睛】本题考查了同位角、内错角、用旁内角,利用同位角、内错角、同旁内角的意义是解题关键. 5.B【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】解:(1)同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;(2)强调了在平面内,正确;(3)不符合对顶角的定义,错误;(4)直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】本题主要考查了对顶角、同位角、相交线、平行线、点到直线的距离,正确理解相关概念是解题的关键.6.B【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:∠∠1和∠2是同位角;∠∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角;∠∠1和∠2是同位角;∠∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角.故选:B.【点睛】本题考查三线八角中的某两个角是不是同位角,同位角完全由两个角在图形中的相对位置决定.在复杂的图形中判别同位角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形.7.A【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【详解】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选:A.【点睛】本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.8.B【分析】根据同旁内角的概念求解即可.【详解】解:由图可知,∠1与∠3是同旁内角,∠1与∠2是内错角,∠4与∠2是同位角,故选:B .【点睛】本题考查了同旁内角的概念,属于基础题,熟练掌握同位角,同旁内角,内错角的概念是解决本题的关键.9.C【分析】根据内错角、同位角、同旁内角的定义进行判断即可.【详解】∠2与∠1不是内错角,A 选项错误,不符合题意;∠2与∠3是邻补角,B 选项错误,不符合题意;∠3与∠B 是同旁内角,C 选项正确,符合题意;∠A 与∠3是同位角,D 选项错误,不符合题意;故选:C .【点睛】本题考查了内错角、同位角、同旁内角的定义,即同位角:在截线的同旁,在被截两直线的同方向;内错角:在截线的两旁,在被截两直线的内部;同旁内角:在截线的同一侧,夹在被截两直线的之间;熟练掌握知识点是解题的关键.10.D【分析】根据同位角的定义解答.【详解】A 、B 、C 中的1∠与2∠不是同位角,D 中的1∠与2∠是同位角;故选:D .【点睛】此题考查同位角的定义,熟记定义是解题的关键.11.C【分析】在截线的同侧,并且在被截线的同一方的两个角是同位角,所以∠∠∠符合要求.【详解】解:图∠、∠、∠中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图∠中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:C .【点睛】此题主要考查了内错角、同位角和同旁内角的定义,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.12.D【分析】根据同位角的定义、垂线的性质、对顶角的性质、平行公理依次判断.【详解】解:A. 同位角不一定相等,故该项不符合题意;B. 在同一平面内,如果a ∠b ,b ∠c ,则a //c ,故该项不符合题意;C. 相等的角不一定是对顶角,故该项不符合题意;D. 在同一平面内,如果a//b,b//c,则a//c,故该项符合题意;故选:D.【点睛】此题考查了语句的判断,正确掌握同位角的定义、垂线的性质、对顶角的性质、平行公理是解题的关键.13.BA CE BD同位BA CA BD同旁内BA CE AC内错【分析】根据同位角、内错角及同旁内角的定义:两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形即可得出答案.【详解】解:由图可知:(1)1∠和2∠是直线BA和直线CE被第三条直线BD所截而成的同位角;∠是直线BA和直线CA被第三条直线BD所截而成的同旁内角;(2)2∠和3(3)4∠和A∠是直线BA和直线CE被第三条直线AC所截而成的内错角,故答案为:BA;CE;BD;同位;BA;CA;BD;同旁内;BA;CE;AC;内错.【点睛】此题考查了同位角、内错角及同旁内角的知识,属于基础题,掌握定义是关键.14.16【分析】根据同旁内角的定义:两直线被第三条直线所截,在截线的同一侧,被截线的内部的两个角是同旁内角,注意每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解入手即可求得答案.【详解】解:直线AB、CD被EF所截有2对同旁内角;直线AB、CD被GH所截有2对同旁内角;直线CD、EF被GH所截有2对同旁内角;直线CD、GH被EF所截有2对同旁内角;直线GH、EF被CD所截有2对同旁内角;直线AB、EF被GH所截有2对同旁内角;直线AB、GH被EF所截有2对同旁内角;直线EF、GH被AB所截有2对同旁内角.共有16对同旁内角.故答案为:16.【点睛】此题考查了同旁内角的知识,属于基础题,掌握定义是关键.15.(1)AD(2)BC(3)AB(4)同位(5)AB(6)CD(7)AC(8)同位(9)AC(10)AD(11)CD(12)同旁内【分析】根据两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形解答.【详解】∠1和∠B是直线AD和直线BC被直线A所截得到的同位角;∠2和∠4是直线AB和直线CD被直线AC所截得到的同位角;∠D和∠4是直线AC和直线AD被直线DC所截得到的同旁内角.【点睛】本题主要考查了三线八角的问题,熟记同位角、内错角、同旁内角的位置关系是解决此类问题的关键.16.90【分析】由旋转的性质得∠ADF=∠BAE,再根据正方形的性质,得∠DAF=90°,从而得∠AFD+∠ADF=90°,即∠AFD+∠BAE=90°,再由三角形内角和定理得出∠AGF=90°,即可由对顶角相等求得答案.【详解】解:∠△ABE绕正方形的中心经顺时针旋转后与△DAF重合,∠∠ADF=∠BAE,∠四边形ABCD是正方形,∠∠DAF=90°,∠∠AFD+∠ADF=90°,∠∠AFD+∠BAE=90°,∠∠AFD+∠BAE+∠AGF=180°,∠∠AGF=90°,∠∠DGE=∠AGF=90°,故答案为:90.【点睛】本题考查旋转的性质,三角形内角和定理,对顶角性质,熟练掌握旋转的性质是解题的关键.17.同位角∠2和∠6;∠3和∠7;∠4和∠8内错角∠4和∠6同旁内角∠4和∠5【解析】略18.同位同旁内内错【分析】根据同位角、内错角及同旁内角的定义:两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形即可得出答案.【详解】解:由图形可得,∠1与∠2是同位角;∠2与∠4是同旁内角;∠2与∠3是内错角.故答案为:同位、同旁内、内错.【点睛】此题考查了同位角、内错角及同旁内角的知识,属于基础题,掌握定义是关键.19.相交平行异面【分析】在空间,直线与直线的位置关系有平行、相交、异面三种,在同一平面内两条不重合的直线的位置关系是平行或相交,根据两条直线所在的空间解答即可.【详解】在空间,直线与直线的位置关系有相交、平行、异面,故答案为:相交、平行、异面.【点睛】此题考查相交于平行的特征及性质,关键是要明确两条直线所在的平面是在空间或是在同一平面内.20.BC、BE被DF截得的两对内错角;∠DFB和∠CDF;∠FDB和∠FDB;AC、AD被BE截得的两对内错角:∠AFE和∠CEF,∠AEF和∠EFD【分析】根据内错角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.所以由图形可得答案.【详解】∠DFB和∠CDF,∠FDB和∠FDB 是BC、BE被DF截得的内错角;∠AFE和∠CEF,∠AEF和∠EFD是AC、AD被BE截得的内错角.【点睛】本题主要考查了内错角的定义,三线八角中的某两个角是不是内错角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别内错角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.内错角的边构成“Z“形,认真识图是关键.21.(1)2∠;(3)ED;(4)AF,同位∠;(2)4【分析】(1)根据图形及同位角的概念可直接进行求解;(2)根据图形及内错角的概念可直接进行求解;(3)根据图形及内错角的概念可直接进行求解;(4)根据图形及同位角的概念可直接进行求解.【详解】解:由图可得:(1)若直线,ED BC 被直线AB 所截,则1∠和2∠是同位角;故答案为2∠;(2)若直线,ED BC 被直线AF 所截,则3∠和4∠是内错角;故答案为4∠;(3)1∠和3∠是直线,AB AF 被直线ED 所截构成的内错角;故答案为ED ;(4)2∠和4∠是直线AB ,AF 被直线BC 所截构成的同位角;故答案为AF ,同位.【点睛】本题主要考查内错角及同位角的概念,熟练掌握同位角及内错角的概念是解题的关键. 22.同位角有∠1和∠5;∠4和∠3;内错角有∠2和∠3;∠1和∠4;同旁内角有∠3和∠5;∠4和∠5;∠4和∠2.【分析】同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.依此即可得出答案.【详解】解:∠∠1和∠5在截线AC 同侧,在被截直线BE ,CE 同方向所成的角;∠4和∠3,在截线CE 的上方,被截直线DB 、EB 的左侧,∠同位角有∠1和∠5;∠4和∠3,共2对;∠∠2和∠3在截线BD 两侧,被截直线AC 与CE 内部;∠1和∠4在截线BE 两侧,被截直线AC 与CE 内部, ∠内错角有∠2和∠3;∠1和∠4,共2对;∠∠3和∠5在截线CD 同侧,被截直线CB 与DB 内部;∠4和∠5在截线CE 同侧,被截直线CB 与EB 的内部;∠4和∠2在截线BE 同侧,被截直线DB 与DE 的内部,∠同旁内角有∠3和∠5;∠4和∠5;∠4和∠2,共3对.【点睛】本题考查了同位角、内错角、同旁内角,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.。
绝密★启用前一、单选题1.[单选题]下列图形中1∠与2∠是内错角的是A .B .C .D .答案:A 解析:A. <2与<1是内错角,故此选项正确;B. <2与<1的对顶角是内错角,故此选项错误;C. <2与<1 是同旁内角,故此选项错误;D. <2与<1的邻补角是内错角,故此选项错误;线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.掌握内错角的定义是解答本题的关键.2.[单选题]已知如图AB 、BE 被AC 所截,下列说法不正确的是( )A .1∠与2∠是同旁内角B .1∠与ACE ∠是内错角C .B 与ACB ∠是同位角D .1∠与3∠不是同位角 答案:C 解析: 解析:根据同位角、内错角、同旁内角的定义可以直接得到答案. 【详解】 解:A. 1∠与2∠是同旁内角,正确但不符合题意;B. 1∠与ACE ∠是内错角,正确但不符合题意;C. B ∠与ACB ∠是同位角,错误符合题意;D.1∠与3∠不是同位角,正确但不符合题意.故选:C. 【点睛】本题主要考查了三线八角.3.[单选题]如图,∠1与∠2不能构成同位角的图形的是( )A .B.C.D.答案:D解析:解析:根据同位角的定义来分析判断即可,两条直线被第三条直线所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角.【详解】由同位角的定义可知图A、B、C中的∠1和∠2可以构成同位角,D中的∠1和∠2构不成同位角.故本题答案为:D.【点睛】同位角的定义是本题的考点,根据同位角的定义正确识别同位角是解题的关键. 4.[单选题]如图,下列说法错误的是()A.∠1与∠3是对顶角B.∠3与∠4是内错角C.∠2与∠6是同位角D.∠3与∠5是同旁内角答案:C解析:根据对顶角定义、内错角定义、同位角定义、同旁内角定义进行分析即可.【详解】A、∠1与∠3是对顶角,故A说法正确;B、∠3与∠4是内错角,故B说法正确;C、∠2与∠6不是同位角,故C说法错误;D、∠3与∠5是同旁内角,故D说法正确;故选:C.【点睛】本题考查对顶角、内错角、同位角和同旁内角的定义,掌握其定义是选择本题答案的关键.5.[单选题]下列选项中,∠ 5和∠6不是同旁内角的是()A.B.C.D.答案:B解析:根据同旁内角的定义:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角.进行解答【详解】A. ∠5和∠6是同旁内角,不合题意,故此选项错误.B.∠5和∠6不是同旁内角,符合题意,故此选项正确C.∠5和∠6是同旁内角,不合题意,故此选项错误D.∠5和∠6是同旁内角,不合题意,故此选项错误【点睛】本题考查同旁内角的定义,理解掌握同旁内角定义是解题关键6.[单选题]如图,直线1l和2l被直线3l所截,则()A .1∠和2∠是同位角B .1∠和2∠是内错角C .1∠和3∠是同位角D .1∠和3∠是内错角 答案:C 解析:根据同位角和内错角的定义进行分析即可. 【详解】同位角是位于两直线及截线的同侧,内错角是位于两直线内侧及截线两侧,故1∠和3∠是同位角; 故选:C . 【点睛】本题考查了同位角和内错角的判断,熟练掌握基本概念是解决这类问题的关键. 8.[单选题]如图,点D 、E 分别为三角形ABC 边BC 、AC 上一点,作射线DE ,则下列说法错误的是( )A .∠1与∠3是对顶角B .∠2与∠A 是同位角C .∠2与∠C 是同旁内角D .∠1与∠4是内错角解析:根据同位角、内错角以及同旁内角的概念进行判断.【详解】解:A、∠1与∠3是对顶角,说法正确;B、∠2与∠A是同位角,说法正确;C、∠2与∠C是同旁内角,说法正确;D、∠2与∠4是内错角,说法错误.故选:D.【点睛】考查了同位角、内错角以及同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.9.[单选题]如图,下列结论正确的是().A.∠5与∠2是对顶角;B.∠1与∠3是同位角;C.∠2与∠3是同旁内角;D.∠1与∠2是同旁内角.根据对顶角即三线八角的特征可得∠1与∠2是同旁内角,故选D。
同位角、内错角、同旁内角测试题及答案A卷h直线a、b被直线c所截• Z1和Z2是 Z3和Z2是°|¥14•如图4,和Z1构成内错角的角有_________________________________________________个:和Z1构成同旁内角的角有 __________ 个。
5■如图5,指出同位角是____________ ,内错角是是 O/>1?1 2被宜线2•如图2,得的_角。
3•如图3,是 OZ1和Z2是直线Z1的内错角是和直线所截• ZA的同位角是,ZB的同旁内角图5二、选择题6.如图6,(A)Z2:(C)Z4:7.如图7,Q 和Z1互为同位角的是((B) Z3:(D) Z5Q已知Z1与Z2是内错角,则下列表达正确的是(A)由直线AD. AC被CE所截而得到的:(B)由直线AD、AC被BD所截而得到的;(C)由直线DA、DB被CE所截而得到的;(D)由直线DA、DB被AC所截而得到的。
一、填空题1•如图是,Z3 和Z4个;和Z1构成同位角的角有C8•在图8中1和2是同位角的有(RI(A)(1). (2):9.如图9,在指明的角中,下列说法不正确的是()(A) 同位角有2对;(C)内错角有4对:(B)(2)、(3):(D)(2)、(4)。
(B)同旁内角有5对:(D)Z1和Z4不是内错角。
(B)4:⑷3:三、简答题11.如图11(1)说出Z1与Z2互为什么角?(2)写出与Z1成同位角的角;(3)写出与Z1成内错角的角。
)对内错角(05:(D)6。
12.如图12(D说出ZA与Z1互为什么角?(2) ZB与Z2是否是同位角;⑶写出与Z2成内错角的角013.如图13.指出同位角、内错角、同旁内角.B卷一、填空题1 •如图1, Z1和Z2可以看作直线和直线被直线所截得的角。
截得的 ________ 角。
3•如图3,直线DE、BC被直线AC所截得的内错角是宜线、被直线_______ 所截得的_______ 角°图34•如图4,与ZEFC构成内错角的是________的是5.如图5,与Z1构成内错角的角有_个:与Z1构成同旁内角的角有 __________ 个。
2019年4月16日初中数学作业一.单选题1.已知Z1和Z2是同旁内角,Zl=60° , Z2等于() A. 140°B. 120°C. 60。
D.无法确定 【答案】D【解析】【分析】 本题只是给出两个角的同旁内角关系,没有两直线平行的条件,故不能判断两个角的数 量关系.【详解】解:同旁内角只是一种位置关系,两直线平行时同旁内角互补,不平行时无法确定同旁 内角的人小关系,故选D.【点睛】特别注意,同旁内角互补的条件是两直线平行.[Wr]【分析】 本题需先根据同位角的定义进行筛选,即町得岀答案.【详解】A 、•••根据同位角的定义得:Z1与Z2不是同位角,故本选项错误:E 、I 根据同位角的定义得:Z1与Z2是同位角,故本选项正确:C. I 根据同位角的定义得:学校: _____________ 姓名: _____________ 班级:____________ 考号: _____________ 2.下列各图中,乙1与乙2是同位角的是(Z1与Z2不是同位角,故本选项错误:D 、•・•根据同位角的定义得:Z1与Z2不是同位角,故本选项错误.故选E.【点睛】本题主要考查了同位角,在解题时要根据同位角的定义进行筛选是本题的关键.【答案]C【分析】 根据同位角:两条直线彼第三条直线所截形成的角中,若两个角都在两直线的同侧,并 且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】如图①,Zls Z2是直线加与直线“被直线"所截形成的同位角,故①符合题意;如图②,ZU Z2是直线卩与直线q 被直线『所截形成的同位角,故②符合题意;如图③,Z1是直线d 与直线e 构成的夹角,Z2是直线g 与直线/形成的夹角,Z1与Z2不是同位角,故③不符合题意;如图④,ZU Z2是直线a 与直线b 被直线c 所截形成的同位角,故④符合题意.故选C.【点睛】本题考查了同位角,关键是掌握同位角的边构成“F “形,内错角的边构成“Z“形,同3.如图所示,乙1和乙2是同位角的是(D.旁内角的边构成W 形・4.下列所示的四个图形中,Z1和Z2是同位角的是()• • •【答案】D【解析】【分析】 根据同位角,内错角,同旁内角的概念解答即可.【详解】Z1和Z2是同位角的是①©④.故选D.【点睛】本题考查了同位角,内错角,同旁内角的概念,关键是根据同位角, 【分析】 根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线 的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】 解:A 、B. D 中Z1和Z2是同位角;C 、Z1和Z2不满足两条直线彼第三条直线所截 形成的角,所以不是同位角;故选:C.【点睛】 本题考查三线八角中的某两个角是不是同位角,同位角完全由两个角在图形中的相对位 置决定.在复杂的图形中判别同位角时,应从角的两边入于具有上述关系的角必有两 试卷第3页,总18页B.①® 内错角,同旁内角A.③©D ・④ 的概念解答.【衢]A.对顶角【答案】DB.同位角C.内错角 0.同旁内角边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即 为被截的线.同位角的边构成“F “形.6.如图,下列说法不正确的是()两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直 线(截线)的同旁,则这样一对角叫做同位角;两条直线被第三条直线所截形成的角中, 若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁 内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第 三条直线(截线)的两旁,则这样一对角叫做内错角.【详解】A ・Z1和ZB 是DE 与被AB 所截得到的同位角,正确;B. Z1和Z4是初与AC 被DE 所截得到的内错角,正确;C. Z3和ZB 是DE 与BC 被AB 所截得到的同旁内角,正确;D. ZC 和ZA 是AB 与BC 被AC 所截得到的同旁内角,故不正确:故选D.【点睛】本题考查了同位角、内错角、同旁内角的定义,熟练掌握三种角的特征是解答本题的关 键.7.如图,直线b.c 被直线a 所截,则Z1和Z2的关系是()【衢】【分析】A. Z1和ZB 是同位角C. Z3和ZB 是同旁内角【答案】D 【梯】【分析】B. Z1和Z4是内错角 D. ZC 和ZA 不是同旁内角结合图形,根据同位角、内错角、同旁内角的概念进行判断即可.【详解】观察图形可知,Z1和Z2两个角都在两被截直线b和c的内侧,并且在第三条直线a(截线)的同旁,故Z1和Z2是直线b、c被a所截而成的同旁内角,故选D.【点睛】本题考查了“三线八角”,熟练掌握同位角、内错角、同旁内角的图形特征是解题的关键.8.Z1与Z2是内错角,Zl=30°,则Z2的度数为()A.30°B. 150°C. 30°或150°D.不能确定【答案】D【和】【分析】两直线平行时内错角相等,不平行时无法确定内错角的人小关系,据此分析判断即可得.【详解】内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等,故选D.【点睛】本题考查了三线八角,明确同位角、内错角、同旁内角只是两个角的一种位置关系,而没有一定的大小关系是解此类问题的关键.9.两条直线被第三条直线所截,若Z1与Z2是同旁内角,且Zl=70°,则()A.Z2=70°B. Z2=110°C. Z2=70O S EZ2=110°D. Z2的度数不能确定【答案】D【解析】【分析】两直线被第三条直线所截,只有当两条被截直线平行时,内错角相等,同位角相等,同旁内角互补.不平行时以上结论不成立.【详解】】解:因为两条直线的位置关系不明确,所以无法判断Z1和Z2大小关系.故选:D.【点睛】本题考查平行线的性质,注意性质定理的条件是两直线平行.10.如图,点O是宜线AB上一点,OE, OF分别平分ZAOC和ZBOC,当OC的位置发生变化时(不与直线AB重合),那么ZEOF的度数()A.不变,都等于90°B.逐渐变大C.逐渐变小D.无法确定【答案】A【解析】【分析】由0E与OF为角平分线,利用角平分线定义得到两对角相等,由平角的定义及等式的性质即可求出所求角的度数.【详解】TOE、OF分别是ZAOC. ZBOC的角平分线,A ZAOE=ZCOE, ZCOF=ZBOF, V ZAOC+ ZCOB= ZAOE+ ZCOE+ ZCOF+ ZBOF=180。
《同位角、内错角、同旁内角》精品练习题一、填空题1.(1)∠1和∠2是直线_________、_________被直线_________所截得的__________角;(2)∠2和∠4是直线_________、_________被直线_________所截得的__________角;(3)∠5和∠2是直线_________、_________被直线_________所截得的__________角;(4)如图中,同位角共有____对,分别是______________________________________________.(5)如图中,内位角共有____对,分别是_____________________________.(6)如图中,同旁内角共有____对,分别是_____________________________.cab(第1题)(第2题)2.(1)∠1和∠B是直线_________、_________被直线_________所截得的__________角;(2)∠2和∠3是直线_________、_________被直线_________所截得的__________角;(3)∠2和∠B是直线_________、_________被直线_________所截得的__________角;(4)∠1和∠4是直线_________、_________被直线_________所截得的__________角.3.如图,∠1和∠6的同位角是__________,∠1和∠6的内错角是__________,∠6的同旁内角是__________.(第3题)(第4题)4. 如图,∠1和∠2是_______角,∠1和∠7_______角,∠3和∠4_______角,∠4和∠6_______角,∠5和∠7_______角.1 32 A E CDBF 5.如图,∠DAC 与∠C 是由直线_________、_________被直线__________所截得到的__________角;∠DAC 和∠B 是直线_________、_________被直线_________所截得的__________角∠B 和∠C 是直线_________、_________被直线_________所截得的__________角。
同位角、内错角、同旁内角(习题)例题示范例 1:如图,判断下列各组角的位置关系:①∠1 与∠2;②∠1 与∠7;③∠1 与∠BAD;④∠2 与∠6.思路分析操作步骤:①找角;②找角的边所在的直线;③找到截线与被截线,判断角的位置关系.分析可得,∠1 与∠2 是角;∠1 与∠7 是角;∠1 与∠BAD 是角;∠2 与∠6 是角.A 21 B3 4 5巩固练习1. 如图,直线 CD 与∠O 的两边相交.(1)∠O 和∠2 是直线 和直线 被直线 所截得到的 角;(2)∠2 和∠8 是直线 和直线 被直线 所截得到的 角; (3)∠2 和∠5 是直线 和直线被直线所截得到的 角.AC3 4 2 18 5O7 6 B DCD第 1 题图第 2 题图3. 如图所示,当时,有 AB ∥CE 成立,理由是.(只需写出一个条件即可)DE第 3 题图第 4 题图4. 如图,若∠1=∠2,则下列结论:①∠3=∠4;②AB ∥CD ;③AD ∥BC .其中正确的是 .(填序号)5.如图,点B 在DC 上,若BE 平分∠ABD,∠DBE=∠A,则BE AC.理由如下:E AD B∵BE 平分∠ABD ()∴∠ABE=∠DBE (角平分线的定义)∵∠DBE=∠A ()∴=∠A ()∴BE AC ()6.已知:如图,E 为DF 上的点,B 为AC 上的点,∠1=∠2,AC∥DF.求证:∠C=∠D.证明:如图,∵∠1=∠2 ()∠1=∠3 ()∴∠2=∠3 ()∴BD∥CE ()∴∠C=∠ABD ()∵AC∥DF ()∴∠D=∠ABD ()∴∠C=∠D (等量代换)思考小结1.动手操作:利用如图所示的方式,可以折出“过直线外一点和已知直线平行”的直线,依据是 .2. 阅读材料什么是推理生活中,我们往往可以通过观察、实验来寻找规律,从而得出结论.但是要判断一个数学结论是否正确,仅仅依靠经验、观察或实验是不够的,必须一步一步、有理有据地进行推理. 推理就是由一个或几个已知的判断(前提),推导出一个未知的结论的思维过程.其作用是从已知的知识得到未知的知识, 特别是可以得到不可能通过感觉经验掌握的未知知识.几何推理是我们中学接触最多的一种推理形式.要想进行严格的几何推理,首先要有一些对应前提.这些前提我们叫做“基本事实”或“定理”,比如我们学过的“同位角相等,两直线平行”、“两点确定一条直线”等都是一些基本事实.这些作为大前提,是我们进行推理的主要依 据.而根据这些“基本事实”或“定理”,我们对某个句子进行判断或说明的过程就是证明. 例如,如下的推理: 已知:如图,∠ABC =∠1. 求证:AD ∥BC . 证明:如图,∵∠ABC =∠1(已知)∴AD ∥BC (同位角相等,两直线平行)我们分析可知,每一个判断都有自己的条件和结论.上述推理中的条件就是∠ABC =∠1,代表着一组同位角相等,而结论就是 AD ∥BC .由条件得到结论的过程叫做证明,而这个证明必须依据基本事实.我们把基本事实放在结论后的括号中,表明我们是以此为依据进行推理的.1 A【参考答案】例题示范同旁内,同位,同旁内,内错巩固练习1.(1)CD,OB,OA,同位;(2)O A,OB,CD,内错;(3)O A,OB,CD,同旁内.2. ①×②×③×④√3. ∠1=∠2,同位角相等,两直线平行.(答案不唯一,前后一致即可)4. ②5. ∥已知已知∠ABE,等量代换∥,内错角相等,两直线平行6. 已知对顶角相等等量代换同位角相等,两直线平行两直线平行,同位角相等已知两直线平行,内错角相等思考小结1. 同位角相等,两直线平行(或内错角相等,两直线平行,或同旁内角互补,两直线平行)。
同位角、内错角、同旁内角练习一、选择题1.如图,下列各组角中,互为内错角的是( )A. ∠1和∠2B. ∠2和∠3C. ∠1和∠3D. ∠2和∠52.如图,直线a,b被c所截,则∠1与∠2是( )A. 同位角B. 内错角C. 同旁内角D. 邻补角3.如图,直线a,b被直线c所截,则∠1与∠2的位置关系是( )A. 同位角B. 内错角C. 同旁内角D. 邻补角4.如下图,∠1和∠2为同旁内角的是( )A. B.C. D.5.如图,下列结论中错误的是( )A. ∠1与∠2是同旁内角B. ∠1与∠4是内错角C. ∠5与∠6是内错角D. ∠3与∠5是同位角6.如图,直线a,b被直线c所截,则∠1与∠2的位置关系是()A. 同位角B. 内错角C. 同旁内角D. 邻补角7.如图,在图中∠BAO和∠AOC是一对()A. 内错角B. 同旁内角C. 同位角D. 对顶角8.如图,直线l1,l2被直线13所截,则( )A. ∠1和∠2是同位角B. ∠1和∠2是内错角C. ∠1和∠3是同位角D. ∠1和∠3是内错角9.如图,∠1的内错角是( )A. ∠1B. ∠2C. ∠3D. ∠410.如图,下列说法错误的是( )A. ∠1与∠3是对顶角B. ∠3与∠4是内错角C. ∠2与∠6是同位角D. ∠3与∠5是同旁内角11.如图,直线AB,CD分别与直线EF交于点G,M,GH,MN分别与AB,CD交于点G,M,有下列结论:①∠1与∠4是同位角;②∠2与∠5是同位角;③∠EGB与∠GMD是同位角;④∠3与∠4是同旁内角.其中正确的结论有()A. 4个B. 3个C. 2个D. 1个二、填空题12.如下图,如果∠2=100°,那么∠1的同位角等于______度,∠1的内错角等于______度,∠1的同旁内角等于_____度.13.如下图,标有数字的四个角中,属于内错角的是________.14.已知直线a、b被直线c所截,则与∠1是内错角关系的是____.15.如图,∠1的同位角是,∠2的内错角,∠A的同旁内角是.16.如图所示,把一根筷子的一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.若不再添加新的标注,则图中与∠1是同旁内角的有________;与∠2是内错角的有________.三、解答题17.两条直线被第三条直线所截,∠1是∠2的同旁内角,∠2是∠3的内错角.(1)画出大致示意图;(2)若∠1=2∠2,∠2=2∠3,求∠1和∠2的度数.18.如图,∠1与∠2,∠3与∠4各是哪两条直线被哪一条直线所截而形成的什么角?19.两条直线都与第三条直线相交,∠1与∠2是内错角,∠1和∠3是同旁内角.(1)根据上述条件,画出符合题意的图形;(2)若∠1:∠2:∠3=1:2:3,求∠1,∠2,∠3的度数.答案和解析1.【答案】B【解析】解:A、∠1和∠2是对顶角,不是内错角,故本选项不符合题意;B、∠2和∠3是内错角,故本选项符合题意;C、∠1和∠3是同位角,不是内错角,故本选项不符合题意;D、∠2和∠5是同旁内角,不是内错角,故本选项不符合题意;2.【答案】B【解答】解:两条直线a、b被直线c所截形成的角中,∠1与∠2都在a、b直线的之间,并且在直线c的两旁,所以∠1与∠2是内错角.3.【答案】A【解答】解:直线a,b被直线c所截,∠1与∠2是同位角.4.【答案】C【解析】本题考查同旁内角的判定。
9.1 同位角、内错角、同旁内角1.下列图形中,1∠和2∠不是同位角的是( )2.如图,属于内错角的是( )A.∠1和∠2B.∠2和∠3 C .∠1和∠4 D.∠3和∠4 3.看图填空:(1)如图1,同位角一共有 对,分别是 ;内错角一共有 对,分别是 ; 同旁内角一共有 对,分别是 ; (2)如图2,同位角一共有 对,分别是 ;内错角一共有 对,分别是 ; 同旁内角一共有 对,分别是 .4.如图,1∠与哪个角是内错角,与哪个角是同旁内角? 2∠与哪个角是内错角,与哪个角是同旁内角(只需写一个角)?它们分别是哪两条直线被哪一条直线所截形成的?5.看图填空(1)如右图:①∠1和∠4是 角; ②∠1和∠3是 角; ③∠2和∠D 是 角; ④∠3和∠D 是 角; ⑤∠4和∠D 是 角; ⑥∠4和∠B 是 角. (2)如右图:①∠ABC 与 是同位角; ②∠ADB 与 是内错角; ③∠ABC 与 是同旁内角.6.如图所示,同位角一共有 对,分别是 ;内错角一共有 对,分别是 ; 同旁内角一共有 对,分别是 .c第2题3421A B C D12121212abc123456789AB CDE ABC DEF123412A BCD E7.如图,∠1和∠2,∠3和∠4各是哪两条直线被哪一条直线所截形成的?它们各是什么角?8.如图,用数字标注的角中,共有四对内错角,请把它们写出,并说明是哪两条直线被哪一条直线所截得的内错角.A. B. C. D.9.画图回答问题:如图,P 、Q 分别是直线EF 外两点,(1)过P 画AB ∥EF ,过Q 画CD ∥EF . (2)过点P 能画几条直线与EF 平行?为什么? (3)AB 与CD 平行吗?为什么? 解:AB 与CD 平行.理由:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.EFPQ A B 图1 图2参考答案一、课堂练习:1.下列图形中,1∠和2∠不是同位角的是( B )2.如图,属于内错角的是( D )A.∠1和∠2B.∠2和∠3 C .∠1和∠4 D.∠3和∠4 3.看图填空:(1)如图1,同位角一共有 4 对,分别是 ∠l 和∠5,∠2和∠6,∠3和∠7,∠4和∠8 ;内错角一共有 2 对,分别是 ∠3和∠6,∠4和∠5 ; 同旁内角一共有 2 对,分别是 ∠3和∠5,∠4和∠6 ; (2)如图2,同位角一共有 2 对,分别是 ∠l 和∠3,∠2和∠4 ;内错角一共有 0 对,分别是 ; 同旁内角一共有 1 对,分别是 ∠2和∠3 .4.如图,1∠与哪个角是内错角,与哪个角是同旁内角? 2∠与哪个角是内错角,与哪个角是同旁内角(只需写一个角)?它们分别是哪两条直线被哪一条直线所截形成的?解:1∠与DAB ∠是内错角,它是直线DE 、BC 被直线AB 所截形成的; 1∠与EAB ∠是同旁内角,它是直线DE 、BC 被直线AB 所截形成的;1∠与2∠是同旁内角,它是直线AB 、AC 被直线BC 所截形成的; 1∠与BAC ∠是同旁内角,它是直线BC 、AC 被直线AB 所截形成的; 2∠与EAC ∠是内错角,它是直线DE 、BC 被直线AC 所截形成的; 2∠与BAC ∠是同旁内角,它是直线AB 、BC 被直线AC 所截形成的.c第2题3421A B C D1212121212A BCD(2∠与DAC ∠是同旁内角,它是直线DE 、BC 被直线AC 所截形成的.)二、课后作业: 5.看图填空 (1)如右图:①∠1和∠4是 邻补 角; ②∠1和∠3是 对顶 角; ③∠2和∠D 是 内错 角; ④∠3和∠D 是 同旁内 角; ⑤∠4和∠D 是 同位 角; ⑥∠4和∠B 是 同位 角. (2)如右图:①∠ABC 与 ∠EAD 是同位角;②∠ADB 与 ∠DBC 、 ∠EAD 是内错角; ③∠ABC 与 ∠DAB 、 ∠BCD 是同旁内角. 6.如图所示,同位角一共有 6 对,分别是 ∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8,∠7和∠9,∠4和∠9 ; 内错角一共有 4 对,分别是 ∠1和∠7, ∠4和∠6, ∠5和∠9, ∠2和∠9 ;同旁内角一共有 4 对,分别是 ∠1和∠6, ∠1和∠9, ∠4和∠7, ∠6和∠9 .7.如图,∠1和∠2,∠3和∠4各是哪两条直线被哪一条直线所截形成的?它们各是什么角? 解:如图1中,∠1和∠2是直线AB 、CD 被直线BD 所截,它们是内错角;∠3和∠4是直线AD 、CB 被直线BD 所截, 它们也是内错角. 如图2中,∠1和∠2是直线AB 、CD 被直线BC 所截,它们是同旁内角; ∠3和∠4是直线AD 、CB 被直线AB 所截,它们是同位角.8.如图,用数字标注的角中,共有四对内错角,请把它们一一写出,并说明是哪两条直线被哪一条直线所截得的内错角.abc123456789AB CDEAB C DEF1234AB 图1 图2解:∠1和∠5是内错角,它们是由直线AD 、BC 被直线AC 所截形成的; ∠2和∠6是内错角,它们是由直线AB 、CD 被直线AC 所截形成的; ∠3和∠7是内错角,它们是由直线AB 、CD 被直线BD 所截形成的; ∠4和∠8是内错角,它们是由直线AD 、BC 被直线BD 所截形成的.三、新课预习: 9.画图回答问题:如图,P 、Q 分别是直线EF 外两点, (1)过P 画AB ∥EF ,过Q 画CD ∥EF .(2)过点P 能画几条直线与EF 平行?为什么?解:过点P 只能画一条直线与EF 平行.理由:经过直线外一点,有且只有一条直线与这条直线平行.(3)AB 与CD 平行吗?为什么? 解:AB 与CD 平行.理由:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.A B C DEFPQ。
同位角、内错角、同旁内角
【巩固练习】
一、选择题
1.如图,直线AD、BC被直线AC所截,则∠1和∠2是( ).
A.内错角 B.同位角 C.同旁内角 D.对顶角
∠构成同位角的有( ).
2.如图,能与α
A.4个 B.3个 C.2个 D.1个
3.(优质试题春•迁安市期中)下列命题中,真命题有()
(1)直线外一点与直线上各点连接的所有线段中,垂线段最短;
(2)两条直线被第三条直线所截,内错角相等;
(3)经过两点有一条直线,并且只有一条直线;
(4)如果一条直线和两条直线中的一条垂直,那么这条直线也和另一条垂直.A.1个B.2个C.3个D.4个
4.若∠1与∠2是同位角,则它们之间的关系是( ).
A.∠1=∠2 ; B.∠1>∠2 ;
C.∠1<∠2; D.∠1=∠2或∠1>∠2或∠1<∠2.
5.(优质试题•宿迁)如图所示,直线a,b被直线c所截,∠1与∠2是()
A.同位角B.内错角C.同旁内角 D.邻补角
6. 已知图(1)—(4):
在上述四个图中,∠1与∠2是同位角的有().
A.(1)(2)(3)(4) B.(1)(2)(3) C.(1)(3) D.(1)
7.如图,下列结论正确的是().
A.∠5与∠2是对顶角; B.∠1与∠3是同位角;
C.∠2与∠3是同旁内角; D.∠1与∠2是同旁内角.
8.在图中,∠1与∠2不是同旁内角的是().
二、填空题
9.(优质试题•鞍山二模)如图,当直线BC、DC被直线AB所截时,∠1的同位角是_______,同旁内角是_______;当直线AB、AC被直线BC所截时,∠1的同位角是________;当直线AB、BC被直线CD所截时,∠2的内错角是________.
10.如图,
(1)∠1和∠ABC是直线AB、CE被直线________所截得的________角;
(2)∠2和∠BAC是直线CE、AB被直线________所截得的________角;
(3)∠3和∠ABC是直线________、________被直线________所截得的________角;
(4)∠ABC和∠ACD是直线________、________被直线所截得的________角;
(5)∠ABC和∠BCE是直线________、________被直线所截得的________角.11.如图,若∠1=95°,∠2=60°,则∠3的同位角等于________,∠3的内错角等于________,∠3的同旁内角等于________.
12.(优质试题春•昆明校级期中)如图,标有角号的7个角中共有对内错角,对同位角,对同旁内角.
13.如图,直线a、b、c分别与直线d、e相交,与∠1构成同位角的角共有________个,和∠l构成内错角的角共有________个,与∠1构成同旁内角的角共有________个.
14.如图,三条直线两两相交,其中同旁内角共有对,同位角共有对,内错角共有对.
三、解答题
15.如图,∠1和哪些角是内错角? ∠1和哪些角是同旁内角? ∠2和哪些角是内错角? ∠2和哪些角是同旁内角?它们分别是由哪两条直线被哪一条线截成的?
16.指出图中的同位角、内错角、同旁内角.
17.(优质试题春•惠城区期中)指出图中各对角的位置关系:
(1)∠C和∠D是角;
(2)∠B和∠GEF是角;
(3)∠A和∠D是角;
(4)∠AGE和∠BGE是角;
(5)∠CFD和∠AFB是角.
【答案与解析】
一、选择题
1. 【答案】A
【解析】∠1与∠2是直线AD、BC被直线AC所截而成,且这两角都在被截线AD、BC之间,在截线AC两侧,所以为内错角.
2.【答案】B
∠能构成同位角的有:∠1,∠2,∠3.
【解析】如图,与α
3. 【答案】B
【解析】(1)直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;
(2)应为两条平行直线被第三条直线所截,内错角相等,故本选项错误;
(3)经过两点有一条直线,并且只有一条直线,正确;
(4)应为如果一条直线和两条平行直线中的一条垂直,那么这条直线也和另一条垂直,故本选项错误.
所以(1)(3)两项是真命题.
4. 【答案】D
【解析】由两角是同位角,内错角或同旁内角得不出它们大小之间的关系.
5. 【答案】A.
6. 【答案】C
【解析】图(2)或图(4)中的∠1与∠2没有公共边,不属于“三线八角”中的角.
7. 【答案】D
8. 【答案】D
【解析】选项D中∠1与∠2没有公共边,不属于“三线八角”中的角.
二、填空题
9.【答案】∠2, ∠5, ∠3, ∠4
【解析】先看哪两条线被哪一条线所截,再判断它们的关系.
10.【答案】(1)BD(或BC), 同位; (2)AC, 内错; (3)AB, AC, BC, 同旁内; (4)AB , AC , BC ,同位; (5)AB , CE , BC ,同旁内.
【解析】可以从复杂图形中抽出简单图形进行分析. 11.【答案】85°, 85°, 95°
【解析】∠3的同位角和内错角均与∠1互补,故它们的度数均为:180°-95°=85°,
而∠3的同旁内角是∠1的对顶角,所以∠3的同旁内角的度数等于∠1的度数.
12.【答案】4对内错角:分别是∠1和∠4,∠2和∠5,∠6和∠1,∠5和∠7;
2对同位角:分别是∠7和∠1,∠5和∠6;
4对同旁内角:分别是∠1和∠5、∠3和∠4、∠3和∠2、∠4和∠2.
13.【答案】3,2,2
【解析】如图,与∠1是同位角的是:∠2, ∠3,∠4;与∠1是内错角的是:∠5, ∠6;与∠1是同旁内角的是:∠7,∠8.
14.【答案】6, 12, 6
【解析】每个“三线八角”中共有4对同位角,2对内错角,2对同旁内角,而两两相交,且不交于同一点的三条直线共有三个“三线八角”,所以同旁内角共有:326⨯=(对),同位角共有:3412⨯=(对),同旁内角共有:326⨯=(对). 三、解答题 15. 【解析】
解:∠1和∠DAB 是内错角,由直线DE 和BC 被直线AB 所截而成; ∠1和∠BAC 是同旁内角,由直线BC 和AC 被直线AB 所截而成; ∠1和∠2也是同旁内角,是直线AB 和AC 被直线BC 所截而成; ∠1和∠BAE 也是同旁内角,是直线DE 和BC 被直线AB 所截而成; ∠2和∠EAC 是内错角,是直线DE 和BC 被直线AC 所截而成; ∠2和∠BAC 是同旁内角,是直线AB 和BC 被直线AC 所截而成; ∠2和∠1也是同旁内角,是直线AB 和AC 被直线BC 所截而成; ∠2和∠DAC 也是同旁内角,是直线DE 和BC 被直线AC 所截而成. 16.【解析】
解:如图,可分解成三个基本图形,由图(1)得内错角:∠BAD 和∠B ; 由图(2)得同位角:∠DAE 和∠C ,同旁内角:∠CAD 和∠C ; 由图(3)得同位角:∠BAE 和∠C ,内错角:∠B 和∠BAE ,同旁内角:∠B 和∠C ,∠B 和∠BAC ,∠C 和∠BAC .
即原图形中共有两组同位角,两组内错角,四组同旁内角.。