第9章 聚类分析
- 格式:ppt
- 大小:576.50 KB
- 文档页数:36
本科数据挖掘课程设计一、课程目标知识目标:1. 理解数据挖掘的基本概念、原理和方法,掌握数据预处理、关联规则挖掘、分类与预测等关键技术。
2. 学习常见的数据挖掘算法,如决策树、支持向量机、聚类分析等,并了解其适用场景和优缺点。
3. 掌握使用数据挖掘工具,如Weka、Python等,进行实际问题的数据分析和解决。
技能目标:1. 能够运用数据挖掘技术对实际问题进行数据收集、预处理和挖掘,独立完成简单的数据挖掘项目。
2. 培养学生的编程能力,使其能够利用Python等工具实现基本的数据挖掘算法。
3. 提高学生的团队协作和沟通能力,使其能够在项目中有效地分工合作,共同解决问题。
情感态度价值观目标:1. 培养学生对数据挖掘的兴趣,激发学生主动探索数据背后的价值和规律的积极性。
2. 培养学生的批判性思维,使其能够客观、理性地分析数据,避免盲目从众。
3. 强调数据挖掘在实际应用中的道德和法律规范,引导学生遵循社会主义核心价值观,尊重个人隐私,保护数据安全。
课程性质:本课程为本科阶段数据挖掘课程,旨在帮助学生掌握数据挖掘的基本理论、方法和技术,培养其实际应用能力。
学生特点:学生具备一定的数学、编程和统计学基础,具有较强的学习能力和动手实践能力。
教学要求:注重理论与实践相结合,通过实际案例和项目驱动教学,提高学生的实际操作能力和解决问题的能力。
同时,关注学生的情感态度价值观培养,使其成为具有道德素养和责任意识的数据挖掘人才。
在此基础上,将课程目标分解为具体的学习成果,便于后续教学设计和评估。
二、教学内容1. 数据挖掘基本概念与任务:介绍数据挖掘的定义、发展历程、应用领域,以及数据挖掘的主要任务,如关联规则挖掘、分类与预测、聚类分析等。
2. 数据预处理:讲解数据清洗、数据集成、数据变换、数据规约等预处理方法,以及如何处理缺失值、异常值等问题。
3. 关联规则挖掘:学习Apriori算法、FP-growth算法等关联规则挖掘方法,以及其在商业、生物信息学等领域的应用。
第九章SPSS的聚类分析1.引言聚类分析是一种数据分析方法,用于将相似的对象划分到同一组中,同时将不相似的对象划分到不同的组中。
SPSS是一种常用的统计软件,提供了聚类分析的功能。
本章将介绍SPSS中的聚类分析方法及其应用。
2.数据准备在进行聚类分析之前,需要准备好待分析的数据。
数据应该是定量变量或者定性变量,可以包含多个变量。
如果存在缺失值,需要处理之后才能进行聚类分析。
3.SPSS中的聚类分析方法在SPSS中,聚类分析方法有两种:基于距离的聚类和基于密度的聚类。
基于距离的聚类方法将对象划分到不同的组中,使得组内的对象之间的距离最小,组间的对象之间的距离最大。
常见的基于距离的聚类方法包括单链接聚类、完全链接聚类和平均链接聚类。
基于密度的聚类方法则通过考虑对象周围的密度来划分对象所属的组。
在SPSS中,可以使用层次聚类和K均值聚类这两种方法进行聚类分析。
3.1层次聚类层次聚类又称为分级聚类,它将对象分为一个个的层级,直到每个对象都成为一个单独的组为止。
层次聚类分为两种方法:凝聚层次聚类和分化层次聚类。
凝聚层次聚类是从每个对象作为一个单独的组开始,然后根据对象之间的距离逐渐合并组,直到所有的对象都合并到一个组为止。
凝聚层次聚类的最终结果是一个层级的分组结构,可以根据需要确定分组的层数。
分化层次聚类是从所有的对象开始,然后根据对象之间的距离逐渐分离成不同的组,直到每个对象都成为一个单独的组为止。
在SPSS中,可以使用层次聚类方法进行聚类分析。
通过选择合适的距离度量和链接方法,可以得到不同的聚类结果。
3.2K均值聚类K均值聚类是一种基于距离的聚类方法,通过计算对象之间的距离,将对象分为K个组。
K均值聚类的基本思想是:首先随机选择K个对象作为初始的聚类中心,然后将每个对象分配到离它最近的聚类中心,重新计算聚类中心的位置,直到对象不再发生变化为止。
K均值聚类的结果是每个对象所属的聚类,以及聚类的中心。
在SPSS中,可以使用K均值聚类方法进行聚类分析。
第九章SPSS的聚类分析聚类分析是一种将相似个体或对象归类到同一组中的统计方法,它通过测量个体或对象之间的相似性或距离来确定聚类的结构。
聚类分析在许多领域中都有广泛的应用,如市场分析、社会科学研究和生物学等。
在SPSS中进行聚类分析可以帮助研究人员和分析师更好地理解数据的结构和模式。
SPSS的聚类分析功能位于“分析”菜单下的“分类”子菜单中。
在打开聚类分析对话框后,用户需要选择聚类变量,并可以设置合适的聚类方法和距离度量。
可以使用的聚类方法包括层次聚类和K均值聚类,常用的距离度量有欧氏距离和曼哈顿距离等。
此外,用户还可以选择是否进行标准化处理和设置聚类数目等。
在进行聚类分析之前,用户需要对变量进行适当的数据准备工作,如缺失值处理、异常值处理和变量转换等。
这些数据准备步骤可以在“转换”菜单中的相应功能中完成。
对于聚类分析的结果,SPSS提供了多种显示和解释的方法。
在聚类过程完成后,SPSS会自动生成聚类结果的总结报告,该报告包含了关于聚类数目和每个聚类的统计信息。
用户可以通过“聚类概括”选项卡中的预览按钮查看聚类结果的总结报告。
此外,用户还可以通过“数量聚类输出”选项卡中的可视化按钮来生成聚类结果的可视化图形,如散点图和聚类树等。
在解释聚类分析的结果时,用户应该关注聚类数目和每个聚类的特征。
聚类数目可以根据数据的结构和目标进行选择,一般来说,聚类数目越多,聚类结果更详细,但也更复杂。
每个聚类的特征指的是在该聚类中具有相似特征的个体或对象。
用户可以通过查看每个聚类的平均值和标准差来得到关于每个聚类的特征。
总之,在SPSS中进行聚类分析可以帮助研究人员和分析师更好地理解数据的结构和模式。
通过选择合适的聚类变量、聚类方法和距离度量,以及适当的数据准备和结果解释,用户可以得到有关数据聚类结构的有用信息。
第一章练习题一、名词解释人员素质测评;素质(广义)二、填空题(可出选择题)1.素质包括以下三大类:、、;2.心理素质包括:与;3.人员素质测评的方法包括:、、、;4.人员素质测评的主体包括:、;5.心理测量测查的对象具有、、等特点;6.人员素质测评的对象是及;7.人才测评的三个功能是、、;8.人才测评的作用包括对和对所起的作用;9.人才测评对组织所起的作用包括、、;10.人才测评对个人所起的作用包括、、。
三、简答题1.阐述评价(评定)与测量的联系与区别?2.简述人员素质测评的特点?3.简述人员素质测评与人才素质测评的联系与区别?第二章练习题一、名词解释察举;九品中正制;科举制二、填空题1.中国古代人才选拔制度包括:、、;2.察举制度用来测评人才的方法有许多,仅两汉就有常科:、、、四行,后来规定岁举的科目以、为主;3.九品中正制,又称,是的一种选拔人才的举官制度;4.九品中正制中选拔人才的标准有三:、、;5.科举制是以后历代封建王朝常常采用的通过考试选拔官吏的一种制度;6.科举制度考试有、、三级;7.唐代科举从种类上讲只有和两种;8.三国时魏人所著的《人物志》对人才测评作了较为系统完整的论述;9.春秋时期,就对人的“才能”的观点加以了论述;10.战国时期,提出了“察能予官”,“以德就列”的原则;11.战国时期的把“德才”标准具体化为忠诚、谨慎、才能、智力、信用、廉洁、节守、仪态、行为等指标;12.古代人才测评用、、、以判断人才;13.我国古代使用的测评技术有、、;14.纸笔测验的典型形式有、、、;15.《吕氏春秋》提出了对内用“”,对外用“”的方法识别人才;16.实践鉴别法的核心是根据“”来作为选拔衡量使用人才的标准;17.文官考绩因素包括10项:、、、、、、、、、;18.文官接受培训的形式有、、、、、等;19.西方现代人才测评思想与技术发端于,开始于,最初源于教育实践中的需要;20.19世纪80年代至20世纪前10年,西方心理测验逐渐兴起,最有名的是测量智商的,这一量表是世界上第一个标准化的心理测验,由法国心理学家和医生于年提出,被称为是心理测验的鼻祖;21.美国最著名的比奈西蒙量表修订本是斯坦福大学教授在年指导修订的,即著名的量表;22.美国学者斯特朗于1927年编制出版的世界上第一个职业兴趣测验“”;23.“评价中心”技术综合运用了、和,使测评效果比原来更加可靠和有效;三、简答题1.试述察举制、九品中正制和科举制的特点?2.试述古代人才测评机制的缺点?第三章练习题一、名词解释职业;地位;角色;工作角色;二、填空题1.个人素质差异表现为两个方面,一是个性差异,如、和及其组合;二是个体的差异,如、、、、及等;2.以人员配置所凭借的方法为标准,大致可将人员配置原型划分为和;3.人员配置的经验原型的主要特征是和;4.以经验原型为指导进行人员配置,一般采用两种方法:一是,二是;5.在经验原型中,、是人员配置的核心;6.人员配置的测评原型最显著的两大特征是和;7.美国约翰·霍普金斯大学心理学教授约翰·霍莱特认为人的个性素质基本类型有六种:、、、、、;8.人员素质测评的必要条件是、与的客观存在,充分条件是对个体素质与的探索;9.、、三大主指标及其数十个子指标,是当前比较流行的人员素质测评指标体系;10.职业能力测试子指标包括、、;11.职业人格子指标包括、、、;12.职业兴趣子指标包括、、、;13.人员素质测评应向与的方向发展,应把人员素质测评作为一种重要手段贯穿于整个的组织管理过程之中;14.借助,可以充分发挥素质测评在人力资源开发与管理中的优化作用;15.行为管理科学启示我们,通过素质测评对个体差异的揭示,按;按;16.著名的心理学家马斯洛理论把需求分成、、、、五类;17.提高人员素质测评效用的六大原则:、、、、、;18.人员素质测评的八个主要原则是:、、、、、、、;19.人员素质测评的主要理论依据有、、等学科的知识;20.个性心理品质中的能力特征的两个方面是指和;21.人员素质测评所使用的各类人员的素质量表,是由、、、、五个方面的素质组成的一个复杂的系统,它包括分系统、分系统、分系统、分系统、分系统等;22.模糊数学被广泛应用于、、、等具有模糊现象的学科中;23.1965年美国控制论专家、加利福尼亚大学教授,对大量不确切现象进行了认真的分析,提出了原理;24.查德的模糊集合论原理用二句话概括就是、;25.查德借助经典数学这一工具,创立了用来定量表示模糊概念的模糊数学;26.当刺激情景是以文字或图形设计呈现时,测评即是形式;当刺激情景是经过精心设计,且以面对面的问答或谈话形式出现时,测评则是形式;当各种刺激情景是以自然的实际情形出现时,测评则是形式;三、简答题2.简述人员配置的经验原型的弊端?3.简述人员配置的测评原型与经验原型相比的优势表现在哪几个方面?6.简述素质测评待解决的几个问题?10.为了控制施测者主观性的消极影响,一般采取哪些方法?第四章练习题一、名词解释职业适应性测评的定义、内容;职业能力测评的定义、内容、领导人才测评的定义、内容、管理人才测评的定义、内容、科技人才测评的定义、内容。
第9章因子分析与主成份分析因子分析与因子分析过程因子分析是将多个实测变量转换为少数几个不相关的综合指标的多元统计分析方法。
线性综合指标往往是不能直接观测到的,但它更能反映事物的本质。
因子分析概念在各个领域的科学研究中往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。
多变量大样本无疑会为科学研究提供丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在大多数情况下,许多变量之间可能存在相关性而增加了问题分析的复杂性。
由于各变量之间存在一定的相关关系,因此有可能用较少的综合指标分别综合存在于各变量中的各类信息,而综合指标之间彼此不相关,即各指标代表的信息不重叠。
这样就可以对综合指标根据专业知识和指标所反映的独特含义给予命名。
这种分析方法成为因子分析,代表各类信息的综合指标就称为因子或主成份。
根据因子分析的目的我们知道,综合指标应该比原始变量少,但包括的信息量应该相对损失较少。
原始变量:X1、X2、X3、X4……Xm主成份:Z1、Z2、Z3、Z4……Zn则各因子与原始变量之间的关系可以表示成:X1=b11Z1+b12Z2+b13Z3……+b1n Z n+e1X2=b21Z1+b22Z2+b23Z3……+b2n Z n+e2X3=b31Z1+b32Z2+b33Z3……+b3n Z n+e3……X m=b m1Z1+b m2Z2+b m3Z3……+b mn Z n+en写成矩阵形式为:X=BZ+E。
其值X为原始变量向量,B为公因子负荷系数矩阵,Z为公因子向量,E为残差向量。
公因子Z1、Z2、Z3…Zn之间彼此不相关,称为正交模型。
因子分析的任务就是求出公因子负荷系数和残差。
如果残差E的影响很小可以忽略不计,数学模型变为X=BZ。
如果Z中各分量之间彼此不相关,形成特殊形式的因子分析,称为主成分分析。
主成分分析的数学模型可以写成:Z1=a11X 1+a12X2+a13X 3……+a1m X mZ2=a21X 1+a22X2+a23X 3……+a2m X mZ3=a31X 1+a32X2+a33X 3……+a3m X m……Z n=an1X 1+an2X2+an3X 3……+anm X m写成矩阵形式为:Z=AX。
市场研究——聚类分析法
聚类分析法在市场研究中有着广泛的应用。
通过对市场中消费者、产品、品牌等进行聚类分析,可以帮助市场研究人员更好地理解市场细分和
目标受众,并制定针对不同群体的市场营销策略。
下面将详细介绍聚类分
析法的原理、应用和步骤。
聚类分析的原理是将数据样本划分为不同的类别或群组,使得同类之
间的差异最小,而不同类之间的差异最大。
输入聚类分析的数据通常是多
维的,每个维度代表一个变量。
聚类分析的目标是找到一个最优的聚类方案,使得相同类别内的样本相似度最高,而不同类别的样本相似度最低。
聚类分析法的应用非常广泛。
在市场研究中,它可以用于客户细分、
产品定位、市场定位等方面。
通过对消费者进行聚类,可以发现隐藏在市
场中的不同消费者群体,并确定他们的特征、需求和偏好。
对产品和品牌
进行聚类分析,则可以帮助确定产品和品牌的差异化定位和市场竞争策略。
需要注意的是,聚类分析法只是一种分析工具,通过聚类分析得到的
结果并不一定代表真实的市场现象,仅供市场研究人员参考和决策。
在市场研究中,聚类分析法的应用是非常重要的。
它能够帮助市场研
究人员更好地理解市场细分和目标受众,并制定针对不同群体的市场营销
策略。
随着数据量的不断增加和分析技术的不断发展,聚类分析法在市场
研究中的应用前景将更加广阔。
多元统计分析智慧树知到课后章节答案2023年下浙江工商大学浙江工商大学第一章测试1.在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,可以解决下面哪几方面的问题。
()A:简化系统结构、探讨系统内核 B:进行数值分类,构造分类模型 C:变量之间的相依性分析 D:构造预测模型,进行预报控制答案:简化系统结构、探讨系统内核;进行数值分类,构造分类模型;变量之间的相依性分析;构造预测模型,进行预报控制2.只有调查来的才是数据。
()A:对 B:错答案:错3.以下都属于大数据范畴。
()A:行车轨迹 B:交易记录 C:问卷调查 D:访谈文本答案:行车轨迹;交易记录;问卷调查;访谈文本4.只要是数据,就一定有价值。
()A:对 B:错答案:错5.统计是研究如何搜集数据,如何分析数据的学问,它既是科学,也是艺术.()A:错 B:对答案:对第二章测试1.考虑了量纲影响的距离测度方法有()。
A:欧氏距离 B:Minkowski距离 C:马氏距离 D:切比雪夫距离答案:马氏距离2.不具有单调性的系统聚类方法有()。
A:离差平方和法 B:最短距离法 C:中间距离法 D:重心法 E:类平均距离法答案:中间距离法;重心法3.聚类分析是研究分类问题的一种多元统计分析方法。
()A:对 B:错答案:对4.聚类分析是有监督学习。
()A:错 B:对答案:错5.动态聚类法的凝聚点可以人为主观判别。
()A:对 B:错答案:对第三章测试1.判别分析是通过对已知类别的样本数据的学习、构建判别函数来最大程度区分各类,Fisher判别的准则要求()。
A:各类之间各个类内部变异尽可能大B:各类之间和各类内部变异尽可能小 C:各类之间变异尽可能大、各类内部变异尽可能小D:各类之间变异尽可能小、各类内部变异尽可能大答案:各类之间变异尽可能大、各类内部变异尽可能小2.常用判别分析的方法有()。
A:逐步判别法 B:贝叶斯判别法 C:费舍尔判别法 D:距离判别法答案:逐步判别法;贝叶斯判别法;费舍尔判别法;距离判别法3.较聚类分析,判别分析是根据已知类别的样本信息,对新样品进行分类。
9.1.3 分层聚类的应用举例表9-2 2006年各地区交通事故情况表地区发生数(起)死亡人数(人)受伤人数(人)损失折款(万元)地区发生数(起)死亡人数(人)受伤人数(人)损失折款(万元)北京 5 808 1 373 6 681 2 772 湖北9 590 2 304 11 976 4 750天津 4 913 878 5 865 3 319.2湖南12 202 3 563 16 493 5 745.5河北8 631 3 486 9 580 5 846 广东56 2178 828 67 637 16 384.9山西10 981 3 413 12 340 5 422.9广西8 895 3 016 11 337 2 803.6内蒙古 6 481 1 874 7 058 1 879.3海南 1 398427 1 960 603.1 …… …… …… …… …… ……………… …… …… 福建21 924 3 871 25 097 8 742.3青海939 662 1199 374.8 江西8 867 2 190 10 079 6 073.1宁夏 2 985666 3 434 748山东30 056 6 309 28 945 9 511.2新疆7 428 2 608 8 848 1 662.8河南18 402 4 046 19 193 6 849.2数据来源:中国发展门户网。
根据表9-2建立数据文件“2006年各地区交通事故情况.sav”,因聚类变量的数量级别不同,应先对其做标准化处理,即执行〖Analyze〗/〖Descriptives Statistics〗/〖Descriptives〗命令,打开“Descriptives”(描述性统计分析)对话框,如图9-2所示。
从左侧的变量列表框里选择变量“发生数”、“死亡人数”、“受伤人数”和“损失折款”,单击右向箭头按钮,将其移到“Variable(s)”(变量框)中;勾选“Savestandardized values as variables”对聚类变量进行标准化处理;单击“OK”按钮。