同济理论力学有关自由度
- 格式:ppt
- 大小:268.50 KB
- 文档页数:13
《工程力学Ⅰ》课程教学大纲课程编号:125111 学分: 4 (4学时/周) 总学时:68大纲执笔人:陈洁大纲审核人:王斌耀一、课程性质与目的工程力学(Ⅰ)(包括静力学、材料力学两部分)是土木工程专业的一门重要的技术基础课,它是各门后续课程的基础,并在许多工程技术领域中有着广泛的应用。
本课程的目的是使学生掌握静力学中一般力系的简化与平衡问题的分析介绍方法;掌握材料力学中构件在拉、压、剪切、扭转和弯曲时的强度与刚度问题的分析计算方法,构件在组合变形时的强度与刚度问题的分析计算方法,以及构件在受压时稳定性问题的分析计算方法等;掌握材料的基本力学性能和基本的材料力学实验方法;初步学会应用基本概念、基本理论和基本分析方法去分析问题和解决问题,为学习一系列后继课程打好必要的基础。
同时结合本课程的特点培养学生分析、解决工程实际问题的能力,提高学生的综合素质。
二、课程基本要求1、掌握力的概念、力的投影和力矩的计算;2、掌握力系简化的方法和一般的简化结果;3、掌握刚体静力学的平衡条件和平衡方程;4、对材料力学的基本概念和基本的分析方法有明确的认识。
5、具有将简单受力杆件简化为力学简图的初步能力,具有力学建模的初步概念与能力。
6、能熟练地做出杆件在基本变形下的内力图、计算其应力和位移、并进行强度和刚度计算。
7、对应力状态理论和强度理论有明确的认识,并能将其应用于组合变形下杆件的强度计算。
8、理解掌握简单超静定问题的求解方法。
9、对能量法的有关基本原理有明确认识,并熟练地掌握一种计算位移的能量方法。
10、对压杆的稳定性概念有明确的认识,能熟练计算轴向受压杆的临界载荷与临界应力,并进行稳定性校核等计算。
11、掌握质点系的质心、刚体的转动惯量、惯性积、惯性主轴和惯性积的平行移轴公式;掌握截面的静矩,形心的位置,惯性矩和惯性积及它们的平行移轴公式,转轴公式。
组合截面的惯性矩、惯性积计算,截面的形心主惯性轴和形心主惯性矩的计算11、对于常用材料在常温下的基本力学性能及其测试方法有初步认识。
理论力学导学章虚位移原理第1616章第16章虚位移原理目录1. 内容提要... ... ... ... ... ... ... ... ... ... ... ... (3)2. 基本要求... ... ... ... ... ... ... ... ... ... ... ... (7)3. 典型例题... ... ... ... ... ... ... ... ... ... ... ... (8)4. 补充习题... ... ... ... ... ... ... ... ... ... ... ... (36)1.内容提要1)基本概念虚位移原理是用动力学的解题方法来研究静力学的平衡问题。
(1) 虚位移的概念及计算虚位移不是经过d t时间所发生的真实小位移,而是假想的、约束所允许的微小位移。
(2) 虚位移的计算方法大致可以分为以下两种:a. 虚速度法当时间“冻结”后,虚位移与速度具有相同的几何关系,所以可以利用运动学中研究速度的各种方法。
b. 解析法当质点系的广义坐标一旦确定,就将各质点的坐标表示为广义坐标的函数,然后通过对各质点坐标的变分,得到各质点的虚位移表示广义坐标的变更的关系式。
但必须注意,在应用解析法解题时,质点系中每一个质点都应处于一般位置。
0δ1=⋅∑=i ni i r F r r 0)δδδ(1=++∑=ni i iz i iy i ix z F y F x F (3)虚位移原理的应用几何形式对结构和机构都是适合的,但对机构,用解析法往往比较方便。
解析形式不能应用于处于特殊位置的机构。
应用虚位移原理解题时,对自由度为零的结构,根据题所要求的未知量,一般每次解除一个约束,使系统只有一个自由度,然后应用虚位移原理的几何形式(虚速度法)求解;对处于一般位置的机构,则可应用虚位移的解析形式求解。
虚位移原理的两种表达形式几何形式解析形式广义坐标形式的虚位移原理广义力以广义坐标表示的虚位移就是广义虚位移,与广义虚位移乘积后可以构成虚功的主动力就是广义力。
理论力学_同济大学中国大学mooc课后章节答案期末考试题库2023年1.只要平面力偶的力偶矩保持不变,可将力偶的力和力偶臂作相应的改变,而不影响其对刚体的效应。
参考答案:正确2.力可以沿着作用线移动而不改变它对物体的运动效应。
参考答案:错误3.一空间力系,若各力作用线垂直某一固定平面,则其独立的平衡方程最多有3个。
参考答案:正确4.一空间力系,若各力作用线与某一固定直线相交,则其独立的平衡方程最多有5个。
参考答案:正确5.由n个力组成的空间平衡力系,若其中(n-1)个力相交于A点,则另一个力___________________。
参考答案:也一定通过A点;6.在合成运动问题中,静坐标系是被认为固定不动的坐标系,而动坐标系是相对于该静坐标系有运动的坐标系。
参考答案:正确7.系统在某一运动过程中,作用于系统的所有外力的冲量和的方向与系统在此运动过程中______________的方向相同。
参考答案:动量的改变量8.某一平面力系,如其力多边形不封闭,则该力系对任意一点的主矩都不可能为零。
参考答案:错误9.人重P1,车重P2,置于光滑水平地面上,人可在车上运动,系统开始时静止。
则不论人采用何种方式(走,跑)从车头运动到车尾,车的______________________。
参考答案:位移是不变的10.质点系动能的变化等于作用在质点系上全部外力所作的功。
参考答案:错误11.滚阻力偶的转向与物体滚动的转向相反。
参考答案:正确12.质心的加速度只与质点系所受外力的大小和方向有关,而与这些外力是否作用在质心上无关。
参考答案:正确13.在任何情况下,摩擦力的大小总等于摩擦因数与正压力的乘积。
参考答案:错误14.一个力不可能分解为一个力偶;一个力偶也不可能合成为一个力。
参考答案:正确15.若质点系的动量在x方向的分量守恒,则该质点系的质心的速度在x轴上的投影保持为常量。
参考答案:正确16.已知均质滑轮重P0=200N,物块A重P1=200N,B重P2=100N,拉力F2=100N,系统从静止开始运动,任一瞬时图(a)系统的物块A有加速度a1,图(b)系统的物块A有加速度a2,则_________。
理论力学练习册及答案同济一、静力学基础1. 题目:一个均匀的木杆,长度为2m,重量为50kg,一端固定在墙上,另一端自由。
求木杆的重心位置。
答案:木杆的重心位于其几何中心,即木杆的中点。
由于木杆均匀,其重心距离固定端1m。
2. 题目:一个质量为10kg的物体,受到三个力的作用:F1=20N向右,F2=30N向上,F3=15N向左。
求物体的合力大小和方向。
答案:合力F = F1 + F2 + F3 = (20N, 0) + (0, 30N) + (-15N, 0) = (5N, 30N)。
合力大小F = √(5² + 30²) = √(25 + 900) = √925 ≈30.41N。
合力方向与水平线的夹角θ满足tanθ = 30N / 5N = 6,所以θ ≈ 80.53°。
二、动力学基础1. 题目:一个质量为2kg的物体,从静止开始沿直线运动,加速度为5m/s²。
求物体在第3秒末的速度和位移。
答案:速度v = at = 5m/s² × 3s = 15m/s。
位移s = 0.5at² = 0.5 × 5m/s² × (3s)² = 22.5m。
2. 题目:一个质量为5kg的物体,以20m/s的初速度沿直线运动,受到一个恒定的阻力,大小为10N。
求物体在第5秒末的速度。
答案:加速度a = F/m = -10N / 5kg = -2m/s²。
速度v = v0 + at = 20m/s - 2m/s² × 5s = 0m/s。
三、转动动力学1. 题目:一个半径为0.5m的均匀圆盘,质量为10kg,绕通过其中心的轴旋转。
若圆盘的角加速度为10rad/s²,求圆盘的转动惯量。
答案:转动惯量I = mr² = 10kg × (0.5m)² = 2.5kg·m²。
静力学基本知识1试分别画出下列指定物体的受力图。
物体的重量除图上注明者外,均略去不计。
、假定接触处都是光滑的。
(d)(e)(f)2试分别画出图示各物体系统中每个物体以及整体的受力图。
物体的重量除图上注明外,均略去不计,所有接触处均为光滑。
(c)(f)平面力系(1)1.已知F1=3kN,F2=6kN,F3=4kN,F4=5kN,试用解析法和几何法求此四个力的合力。
2.图示两个支架,在销钉上作用竖直力P,各杆自重不计。
试求杆AB与AC所受的力。
3.压路机的碾子重P=20kN,半径r=40cm。
如用一通过其中心的水平力F将此碾子拉过高h=8cm 的石块。
试求此F力的大小。
如果要使作用的力为最小,试问应沿哪个方向拉?并求此最小力的值。
4.图示一拔桩架,ACB 和CDE 均为柔索,在D 点用力F 向下拉,即可将桩向上拔。
若AC 和CD 各为铅垂和水平,04=ϕ,F =400N ,试求桩顶受到的力。
5.在图示杆AB 的两端用光滑铰与两轮中心A 、B 连接,并将它们置于互相垂直的两光滑斜面上。
设两轮重量均为P ,杆AB 重量不计,试求平衡时θ 角之值。
如轮A 重量P A =300N ,欲使平衡时杆AB 在水平位置(θ=0),轮B 重量P B 应为多少?平面力系(2)1.如图所示,已知:F =300N ,r 1 =0.2m ,r 2 =0.5m ,力偶矩m =8N.m 。
试求力F 和力偶矩m 对A 点及O 点的矩的代数和。
2.T 字型杆AB 由铰链支座A 及杆CD 支持如图所示。
在AB 杆的一端B 作用一力偶(F,F ′ ),其力偶矩的大小为50N.m ,AC =2CB =0.2m ,030=α,不计杆AB 、CD 的自重。
求杆CD 及支座A 的反力。
3.三铰刚架如图所示。
已知:M =60kN .m ,l =2m 。
试求:(1)支座A ,B 的反力;(2)如将该力偶移到刚架左半部,两支座的反力是否改变?为什么?4.梁架AB 所受的载荷及支承情况如图所示。
想学好理论力学局必须总结好好总结,学习静力学基础静力学是研究物体平衡一般规律的科学。
这里所研究的平衡是指物体在某一惯性参考系下处于静止状态。
物体的静止状态是物体运动的特殊形式。
根据牛顿定律可知,物体运动状态的变化取决于作用在物体上的力。
那么在什么条件下物体可以保持平衡,是一个值得研究并有广泛应用背景的课题,这也是静力学的主要研究内容。
本章包括物体的受力分析、力系的简化、刚体平衡的基本概念和基本理论。
这些内容不仅是研究物体平衡条件的重要基础,也是研究动力学问题的基础知识。
一、力学模型在实际问题中,力学的研究对象(物体)往往是十分复杂的,因此在研究问题时,需要抓住那些带有本质性的主要因素,而略去影响不大的次要因素,引入一些理想化的模型来代替实际的物体,这个理想化的模型就是力学模型。
理论力学中的力学模型有质点、质点系、刚体和刚体系。
质点:具有质量而其几何尺寸可忽略不计的物体。
质点系:由若干个质点组成的系统。
刚体:是一种特殊的质点系,该质点系中任意两点间的距离保持不变。
刚体系:由若干个刚体组成的系统。
对于同一个研究对象,由于研究问题的侧重点不同,其力学模型也会有所不同。
例如:在研究太空飞行器的力学问题的过程中,当分析飞行器的运行轨道问题时,可以把飞行器用质点模型来代替;当研分析飞行器在空间轨道上的对接问题时,就必须考虑飞行器的几何尺寸和方位等因素,可以把飞行器用刚体模型来代替。
当研究飞行器的姿态控制时,由于飞行器由多个部件组成,不仅要考虑它们的几何尺寸,还要考虑各部件间的相对运动,因此飞行器的力学模型就是质点系、刚体系或质点系与刚体系的组合体。
二、基本定义力是物体间相互的机械作用,从物体的运动状态和物体的形状上看,力对物体的作用效应可分为下面两种。
外效应:力使物体的运动状态发生改变。
内效应:力使物体的形状发生变化(变形)。
对于刚体来说,力的作用效应不涉及内效应。
刚体上某个力的作用,可能使刚体的运动状态发生变化,也可能引起刚体上其它力的变化。
机械设计基础重点总结第一章 绪论机器、机构、机械构件是运动的单元,零件是制造的单元。
一部机器可包含一个或若干个机构,同一个机构可以组成不同的机器。
第二章 平面机构的自由度1. 所有构件都在相互平行的平面内运动的机构称为平面机构;2. 两构件直接接触并能产生一定相对运动的连接称为运动副。
两构件通过面接触组成的运动副称为低副,平面机构中的低副有移动副和转动副。
两构件通过点或线接触组成的运动副称为高副;3. 绘制平面机构运动简图;4. 机构自由度h l P P n F 123--=,原动件数小于机构自由度,机构不具有确定的相对运动;原动件数大于机构自由度,机构中最弱的构件必将损坏;机构自由度等于零的构件组合,它的各构件之间不可能产生相对运动;5. 计算平面机构自由度的注意事项:(1)复合铰链(图1-13),(2)局部自由度:从动件与滚子焊为一体,(3)虚约束:去除,(4)两个构件构成多个平面高副,各接触点的公共法线彼此重合时只算一个高副,各接触点的公共法线彼此不重合时相当于两个高副或一个低副,而不是虚约束;6. 自由度的计算步骤要全:1)指出复合铰链、虚约束和局部自由度,2)指出活动构件、低副、高副,3)计算自由度,4)指出构件有没有确定的运动。
例:计算图示机构的自由度,并指出机构具有确定运动时的原动件数,若图中含有局部自由度、复合铰链和虚约束等情况时,应具体指出。
第三章 平面连杆机构1. 平面连杆机构是由若干构件用低副(转动副、移动副)连接组成的平面机构,又称平面低副机构。
2. 铰链四杆机构:机构的固定构件称为机架;与机架用转动副相连接的构件称为连架杆;不与机架直接相连的构件称为连杆;铰链四杆机构分为曲柄摇杆机构、双曲柄机构、双摇杆机构。
3. 四杆机构的演化。
含一个移动副的四杆机构:曲柄滑块机构、转动导杆机构、摆动导杆机构、定块机构、摇块机构。
4. 铰链四杆机构有整转副的条件是最短杆和最长杆长度之和小于等于其余两杆长度之和;整转副是最短边及其邻边组成的;铰链四杆机构是否存在曲柄依据:1)取最短杆为机架时,机架上有两个整转副,故得双曲柄机构;2)取最短杆的邻边为机架时,机架上只有一个整转副,故得曲柄摇杆机构;3)取最短杆的对边为机架时,机架上没有整转副,故得双摇杆机构。