拐点问题配套练习
- 格式:doc
- 大小:99.00 KB
- 文档页数:2
平行线的拐点问题的练习一.选择题(共60小题)1.如图:已知AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于()A.180°B.270° C.360° D.450°2.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°B.∠α+∠β﹣∠γ=360°C.∠α﹣∠β+∠γ=180°D.∠α+∠β﹣∠γ=180°3.学习平行线的性质后,老师给小明出了一道题:如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是多少度?请你帮小明求出()A.120°B.130°C.140° D.150°4.如图,已知AB∥CD,∠EBA=45°,那么∠E+∠D的度数为()A.30°B.45°C.60°D.90°5.如图,直线l1∥l2,∠1=50°,∠2=22°,则∠3的度数为()A.28°B.38°C.68°D.82°6.如图,直线a∥b,∠1=50°,2=30°,则∠3的度数为()A.20°B.30°C.40°D.50°7.如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是()A.60°B.70°C.110° D.80°8.如图所示,AB∥DE,∠1=130°,∠2=36°,则∠3等于()A.50°B.86°C.94°D.166°9.已知,如图,AB∥CD,∠DCF=100°,则∠AEF的度数为()A.120°B.110°C.100° D.80°10.如图,AD∥CB,∠D=43°,∠B=25°,则∠DEB的度数为()A.72°B.68°C.63°D.18°11.如图,AB∥DE,∠B+∠C+∠D=()A.180°B.360°C.540° D.270°12.如图AB∥CD,∠ABE=120°,∠ECD=25°,则∠E=()A.75°B.80°C.85°D.95°13.如图,AB∥EF,BC⊥CD于C,∠ABC=30°,∠DEF=45°,则∠CDE等于()A.105°B.75°C.135° D.115°14.如图,AB∥CD,且∠BAP=60°﹣α,∠APC=45°+α,∠PCD=30°﹣α,则α=()A.10°B.15°C.20°D.30°15.如图,AB∥CD,用含α,β,γ的式子表示θ,则θ=()A.α+γ﹣βB.β+γ﹣αC.180°+γ﹣α﹣βD.180°+α+β﹣γ16.如图,AB∥MP∥CD,MN平分∠AMD,∠A=40°,∠D=60°,那么∠NMP的度数是()A.40°B.30°C.20°D.10°17.如图所示,AB∥CD,∠2=∠1,∠4=100°,则∠3=()A.100°B.120°C.140° D.160°18.如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于()A.180°B.360°C.540° D.720°19.如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A.23°B.16°C.20°D.26°20.如图所示,OP∥QR∥ST,若∠2=110°,∠3=120°,则∠1的度数为()A.60°B.50°C.40°D.10°21.如图,已知AB∥ED,则∠B+∠C+∠D的度数是()A.180°B.270° C.360° D.450°22.如图,已知△ABC中,AB∥EF,DE∥BC,则图中相等的同位角有()A.二组B.三组C.四组D.五组23.如图,∠ABE=110°,若CD∥BE,则∠1度数为()A.50°B.60°C.70°D.80°24.如图,在△ABC中,∠C=90°,若BD∥AE,∠DBC=20°,则∠CAE的度数是()A.40°B.60°C.70°D.80°25.在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD等于()A.40°B.50°C.45°D.60°26.如图,AB∥CD,∠ABF=∠ABE,∠CDF=∠CDE,则∠E:∠F=()A.2:1 B.3:1 C.3:2 D.4:327.如图所示,若AB∥CD,则∠A,∠D,∠E之间的度数关系是()A.∠A+∠E+∠D=180°B.∠A﹣∠E+∠D=180°C.∠A+∠E﹣∠D=180°D.∠A+∠E+∠D=270°28.(经典题)如图所示,两平面镜α、β的夹角为60°,入射光线AO平行于β入射到α上,经两次反射后的反射光线O′B平行于α,则∠1的度数为()A.60°B.45°C.30°D.75°29.如图,已知AB∥DC,AD∥BC,∠B=80°,∠EDA=40°,则∠CDO=()A.80°B.70°C.60°D.40°30.如图,已知∠AOP=∠BOP,PC∥OA,PD⊥OA,若∠OPD=75°,则∠BCP等于()A.15°B.30°C.35°D.75°31.如图,已知AB∥DE,∠B=20°,∠D=130°,那么∠BCD等于()A.60°B.70°C.80°D.90°32.如图AB∥CD,∠1=140°,∠2=90°,则∠3的度数是()A.40°B.45°C.50°D.60°33.如图,某市二环路修到长虹家电城区时,需拐弯绕城区而过.如果第一次拐的角A是130°,第二次拐的角B是150°,而第三次拐的角是C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C等于()A.130°B.140°C.150° D.160°34.如图,DE∥BC,∠D=2∠DBC,∠1=∠2,则∠DEB的度数为()A.30°B.45°C.60°D.无法计算35.如图,已知AB∥DE,∠A=136°,∠C=164°,则∠D的度数为()A.60°B.80°C.100° D.120°36.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有()A.6个 B.5个 C.4个 D.3个37.如图,AB∥CD,FG⊥CD于N,∠EMB=α,则∠EFG等于()A.180°﹣αB.90°+α C.180°+αD.270°﹣α38.如图所示,b∥c,EO⊥b于点D,OB交直线C于点B,∠1=130°,则∠2等于()A.60°B.50°C.40°D.30°39.如图,如果AB∥CD,CD∥EF,那么∠BCE等于()A.∠1+∠2 B.∠2﹣∠1 C.180°﹣∠2+∠1 D.180°﹣∠1+∠240.如图,直线a∥b,Rt△BCD如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°41.已知,如图,AB∥CD,∠A=70°,∠B=40°,则∠ACD=()A.55°B.70°C.40°D.110°42.如图,∠1=50°,如果AB∥DE,那么∠D=()A.40°B.50°C.130° D.140°43.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是()A.16°B.33°C.49°D.66°44.如图所示,直线a∥b,∠B=16°,∠C=50°,则∠A的度数为()A.24°B.26°C.34°D.36°45.如图,AB∥EF,BC∥DE,∠B=70°,则∠E的度数为()A.90°B.110°C.130° D.160°46.如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()A.30°B.35°C.40°D.45°47.已知:如图,AB∥CD∥EF,∠ABC=50°,∠CEF=150°,则∠BCE的值为()A.50°B.30°C.20°D.60°48.如图,直线a∥b,则∠ABD的度数是()A.38°B.48°C.42°D.100°49.如图,已知AB∥CD,∠DAB=60°,∠B=80°,AC是∠DAB的平分线,那么∠ACE的度数为()A.80°B.60°C.110° D.120°50.如图,直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A.115°B.125°C.155° D.165°51.如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°52.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110° D.35°53.将一直角三角板与两边平行的纸条如图放置.已知∠1=30°,则∠2的度数为()A.30°B.45°C.50°D.60°54.如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160°B.140°C.60°D.50°55.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.20°D.25°56.如图,已知AB∥CD,∠2=120°,则∠1的度数是()A.30°B.60°C.120° D.150°57.如图,桌面上有木条b、c固定,木条a在桌面上绕点O旋转n°(0<n<90)后与b平行,则n=()A.20 B.30 C.70 D.8058.如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A.45°B.40°C.35°D.30°59.如图,直线m∥n,则∠α为()A.70°B.65°C.50°D.40°60.如图,AB∥CD,∠BAC=120°,则∠C的度数是()A.30°B.60°C.70°D.80°。
第思维导图核心考点聚焦与生活有关的平行线拐点问题【变式训练】2.如图,AB∥EF,则3.【变式】已知:AB EF∥、、满足的数量关系.∠∠∠B F C6.(1)如图①,如果AB ∥(2)如图②,AB CD ∥,根据上面的推理方法,直接写出___________.考点三、平行线中含多个拐点问题例题:7.如图,直线AB CD ∥,则23415∠+∠+∠-∠-∠的度数为(1)如图1, 1l ∥2l , 若65P ∠= , 计算并直接写出A B ∠∠+的大小.A.28︒B.54︒【变式训练】11.“绿水青山,就是金山银山”在两个景区之间建立上的一段观光索道如图所示,索道A .110︒B .11512.七年级四班在项目学习中研究生活中的平行关系,小明发现家中的护眼灯,如图是一款长臂折叠LED 护眼灯示意图,MN 平行时,120,DEF ∠=︒∠过关检测一、选择题13.如图,AB DE ∥,BC CD ⊥,系正确的是( )A .90αβ-=C .180αβ+= 14.如图,平行于主光轴MN 的光线的反向延长线交于主光轴MN16.如图,AB CD ∥,B ∠为 .三、解答题17.已知一个角的两边与另一个角的两边分别平行,请结合图形回答下列问题:(1)如图①,AB CD ,BE DF ∥,直接写出1∠与2∠的关系__________________(2)如图②,AB CD ,BE DF ∥,猜想1∠与2∠的关系,并说明理由;(3)由(1)(2),我们可以得出结论:一个角的两边与另一个角的分别平行,那么这两个角__________________;(4)应用:两个角的两边分别平行,且一个角比另一个角的3倍少60︒,求出这两个角的度数分别是多少度?①当点P在A,B两点之间运动时,②当点P在A,B两点外侧运动时(点α∠,∠β之间的数量关系,并说明理由..19.已知AB CD(1)如图1,AB CD ∥,点E 为AB 、CD 之间的一点.求证:12360MEN ∠+∠+∠=︒.(2)如图2,AB CD ∥,点E 、F 、G 、H 为AB 、CD 之间的四点.则123456∠+∠+∠+∠+∠+∠=______.(3)如图3,AB CD ∥,则123n ∠+∠+∠++∠= ______.1.66︒##66度【分析】如图所示,过点E 作EF AB ∥,则AB CD EF ∥∥,根据两直线平行内错角相等分别求出4026AEF CEF =︒=︒∠,∠,则66AEC AEF CEF =+=︒∠∠∠.【详解】解:如图所示,过点E 作EF AB ∥,∵EF AB AB CD ∥,∥,∴AB CD EF ∥∥,∴4026AEF A CEF C ==︒==︒∠∠,∠∠,∴66AEC AEF CEF =+=︒∠∠∠,故答案为:66︒.【点睛】本题主要考查了平行线的性质,正确作出辅助线求出4026AEF CEF =︒=︒∠,∠是解题的关键.2.360A C E ∠+∠+∠=︒【分析】根据两直线平行,同旁内角互补可直接得到答案.【详解】如下图所示,过点C 作//CD AB ,∵//CD AB ,∴180A ACD ∠+∠=︒(两直线平行,同旁内角互补),∵//AB EF ,//CD AB ,∴//CD EF ,∴180E DCE ∠+∠=︒(两直线平行,同旁内角互补),∴360A ACD E DCE ∠+∠+∠+∠=︒,∴360A ACE E ∠+∠+∠=︒,∴在原图中360A C E ∠+∠+∠=︒,故答案为:360A C E ∠+∠+∠=︒.【点睛】本题考查平行直线的性质,解题的关键是熟练掌握两直线平行,同旁内角互补.3.(1)见解析(2)见解析【分析】(1)利用平行线的性质即可求解.(2)过点C 作CG AB ∥,即可得出BCG B ∠=∠,由平行线公理的推论可得出∥CG EF ,故GCF F ∠=∠,即可得出BCG GCF B F ∠+∠=∠+∠,即可得出C ∠与B F ∠∠、之间的数量关系是:B F BCF ∠+∠=∠.【详解】(1)解:图(1)C ∠与B F ∠∠、之间的数量关系是:B F C ∠+∠=∠.理由:过点C 作CG AB ∥,∴BCG B ∠=∠,∵AB EF ∥,∴∥CG EF ,∴GCF F ∠=∠,∴BCG GCF B F ∠+∠=∠+∠,∴B F BCF ∠+∠=∠;图(2)C ∠与B F ∠∠、之间的数量关系是:F B C ∠-∠=∠.理由:过点C 作CG AB ∥,∴BCG B ∠=∠,∵AB EF ∥,∴∥CG EF ,∴GCF F ∠=∠,∴GCF BCG F B ∠-∠=∠-∠,∴F B BCF ∠-∠=∠;图(3)C ∠与B F ∠∠、之间的数量关系是:B F C ∠-∠=∠.理由:过点C 作CG AB ∥,∴BCG B ∠=∠,∵AB EF ∥,∴∥CG EF ,∴GCF F ∠=∠,∴BCG GCF B F ∠-∠=∠-∠,∴B F BCF ∠-∠=∠;图(4)C ∠与B F ∠∠、之间的数量关系是:360B F C ∠+∠+∠=︒.理由:过点C 作CG AB ∥,∴180BCG B ∠+∠=︒,∵AB EF ∥,∴∥CG EF ,∴180GCF F ∠+∠=︒,∴180180BCG B GCF F ∠+∠+∠+∠=︒+︒,∴360B F BCF ∠+∠+∠=︒;图(5)C ∠与B F ∠∠、之间的数量关系是:B F C ∠-∠=∠.理由:过点C 作CG AB ∥,∴BCG B ∠=∠,∵AB EF ∥,∴∥CG EF ,∴GCF F ∠=∠,∴BCG GCF B F ∠-∠=∠-∠,∴B F BCF ∠-∠=∠;图(6)C ∠与B F ∠∠、之间的数量关系是:F B C ∠-∠=∠.理由:过点C 作CG AB ∥,∴BCG B ∠=∠,∵AB EF ∥,∴∥CG EF ,∴GCF F ∠=∠,∴GCF BCG F B ∠-∠=∠-∠,∴F B BCF ∠-∠=∠;故B C F ∠∠∠、、之间的数量关系如下表:∠=∠,∴BCG B∵AB EF∥,CG EF,∴∥∠=∠,∴GCF F【详解】解:连接BD,如图,∵AB∥CD,∴∠ABD+∠CDB=180°,∵∠2+∠3+∠EBD+∠FBD=360°,∴∠2+∠3+∠EBD+∠FDB+∠ABD+∠CDB=540°,即∠1+∠2+∠3+∠4=540°.故答案为:540°.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5.30°##30度【分析】过A点作AB∥直线l1,过C点作CD∥直线l2,由平行线的性质可得∠5=∠1=40°,∠4=∠8,∠6=∠7,结合∠2比∠3大10°可得∠5+∠6-∠7-∠8=10°,进而可求解.【详解】解:过A点作AB∥直线l1,过C点作CD∥直线l2,∴∠5=∠1=40°,∠4=∠8,∵直线l1∥l2,∴AB∥CD,∴∠6=∠7,∵∠2比∠3大10°,∴∠2-∠3=10°,∵∠5+∠6=∠2,∠7+∠8=∠3,∴∠5+∠6-∠7-∠8=10°,∴40°-∠4=10°,解得∠4=30°.故答案为:30°.【点睛】本题主要考查平行线的性质,角的计算,作适当的辅助线是解题的关键.6.(1)见解析;(2)540︒;(3)x z y+-【分析】(1)过P 作PM AB ∥,利用平行线的判定与性质证明即可;(2)过点P 作PE AB ∥,过点Q 作QF AB ∥,根据平行线的性质即可求解;(3)过点P 作PN AB ∥,过点Q 作QM AB ∥,根据平行线的性质求解即可.【详解】(1)证明:过P 作PM AB ∥,如图,∴A APM ∠=∠,∵PM AB AB CD ∥,∥(已知),∴PM CD ∥,∴C CPM ∠=∠,∵APC APM CPM ∠=∠+∠,∴APC A C ∠=∠+∠;(2)如图,过点P 作PE AB ∥,过点Q 作QF AB ∥,∵AB DC ∥,PE AB ∥,QF AB ∥,∴AB PE QF CD ∥∥∥,∴180A APE ∠+∠=︒,180EPQ PQF ∠+∠=︒,=180FQC QCD ∠+∠︒,∴=540A APQ PQC C ∠+∠+∠+∠︒,故答案为:540︒;(3)过点P 作PE AB ∥,过点Q 作QF AB ∥,∵AB DC ∥,PE AB ∥,QF AB ∥,∴AB PE QF CD ∥∥∥,∴B BPE ∠=∠,QPE PQF ∠=∠,=FQC C ∠∠,∴=B PQC C BPQ ∠+∠∠+∠,即=x z m y ++,∴=m x z y +-,故答案为:x z y +-.【点睛】本题考查平行线的判定与性质,灵活运用平行线的性质和判定是解题的关键.7.360【分析】过E 作EF ∥CD ,过G 作GH ∥CD ,过M 作MN ∥CD ,根据平行线的判定得出EF ∥GH ∥MN ∥AB ∥CD ,根据平行线的性质得出即可.【详解】过E 作EF ∥CD ,过G 作GH ∥CD ,过M 作MN ∥CD ,如图所示:∵CD ∥AB ,∴EF ∥GH ∥MN ∥AB ∥CD ,∴∠1=∠BEF ,∠GEF +∠EGH =180°,∠HGM +∠GMN =180°,∠NMC =∠5,∵∠2=∠BEF +∠GEF ,∠3=∠EGH +∠HGM ,∠4=∠GMN +∠NMC ,∴23415∠+∠+∠-∠-∠BEF GEF EGH HGM GMN NMC BEF NMC=∠+∠+∠+∠+∠+∠-∠-∠360GEF EGH HGM GMN =∠+∠+∠+∠=︒.故答案为:360.【点睛】本题考查了平行线的性质,能灵活运用平行线的性质进行推理是解此题的关键.8.(1)65°(2)见解析(3)∠1+∠3+∠5=∠2+∠4【分析】(l)过P作PE∥l1,根据平行线的性质和角的和差即可得到结论;(2)过点P、Q分别作l1和l2的平行线分别记为l3和l4,根据平行线的性质和等量代换即可得到结论;(3)分别过P,Q,M作PC∥l1,QD∥l1,ME∥l1,根据平行线的性质和角的和差即可得到结论.【详解】(1)解:过P作PE∥l1∵l1∥l2∴PE∥l2∥l1∴∠A=∠1,∠B=∠2∴∠APB=∠1+∠2=∠A+∠B=65°即∠A+∠B=65°;(2)证明:过点P、Q分别作l1和l2的平行线分别记为l3和l4∵l1∥l2∴l1∥l2∥l3∥l4∵l1∥l3(已知)∴∠A=∠1(两直线平行,内错角相等)∵l3∥l4(已知)∴∠2=∠3(两直线平行,内错角相等)∵l2∥l4(已知)∴∠4+∠B=180°(两直线平行,同旁内角互补)∴∠A+∠3+∠4+∠B=∠1+∠2+180°又∵∠1+∠2=∠P ,∠3+∠4=∠Q ∴∠A +∠B +∠Q =∠P +180°.(3)解:如图,分别过P ,Q ,M 作PC ∥l 1,QD ∥l 1,ME ∥l 1,∵12l l ∥,∴12////////PC QD ME l l ∴∠1=∠APC ,∠QPC =∠PQD ,∠DQM =∠EMQ ,∠EMB =∠5,∴∠2=∠1+∠PQD ,∠4=∠5+∠DQM ,∴∠2+∠4=∠1+∠PQD +∠5+∠DQM =∠1+∠3+∠5,∴∠1+∠3+∠5=∠2+∠4.【点睛】本题考查了平行线的性质及平行公理的推论,熟练掌握平行线的性质是解题的关键.9.(1)A C AFC ∠∠∠+=;A C AFC ∠-∠∠=;C A AFC∠-∠∠=(2)360(3)-1180n ⨯︒()【分析】(1)根据平行线的性质可直接得到结论;(2)过点F 作AB 的平行线,利用平行线的性质,计算出A C AFC ∠∠∠++的度数;(3)过点E 作AB 的平行线,过点F 作AB 的平行线,利用平行线的性质,计算出A AEF EFC C ∠∠∠∠+++度数;通过前面的计算,找出规律.利用规律得到有n 个折点的结论;【详解】解:(1)如图1:A C AFC ∠∠∠+=,如图2:A C AFC ∠-∠∠=,如图3:C A AFC ∠-∠∠=,如图1说明理由如下:∵AB CD EF ∥∥,∴A AFE C EFC ∠∠∠∠=,=,∴A C AFE EFC ∠∠∠∠+=+,即A C AFC ∠∠∠+=;(2)如下图:过F 作FH AB ∥,∴180A AFH ∠∠︒+=,又∵AB CD ∥,∴CD FH ∥,∴180C CFH ∠∠︒+=,∴360A AFH C CFH ∠∠∠∠︒+++=,即360A C AFC ∠∠∠︒++=;故答案为:360;(3)如下图:AB CD ∥,过E 作EG AB ∥,过F 作FH AB ∥,∵AB CD ∥,∴AB EG FH CD ∥∥∥,∴180A AEG ∠∠︒+=,180GEF EFH ∠∠︒+=,180HFC C ∠∠︒+=,∴1803A AEG GEF EFH HFC C ∠∠∠∠∠∠︒⨯+++++=,即540A AEF EFC C ∠∠∠∠︒+++=;综上所述:由当平行线AB 与CD 间没有点的时候,180A C ∠∠︒+=,当A 、C 之间加一个折点F 时,2180A AFC C ∠∠∠⨯︒++=;当A 、C 之间加二个折点E 、F 时,则3180A AEF EFC C ∠∠∠∠⨯︒+++=;以此类推,如图5,1n A B A D ∥,当1A 、5A 之间加三个折点234A A A 、、时,则123454180A A A A A ∠+∠∠∠∠⨯︒+++=;…当1A 、n A 之间加n 个折点231n A A A -⋯、、时,则123-1180n A A A A n ∠∠∠⋯∠⨯︒+++=(),即1234n ∠∠∠∠∠+++++ 的度数是-1180n ⨯︒().【点睛】本题是探索型试题,主要考查了平行线的性质,根据题意作出辅助线,利用平行线的性质及三角形外角的性质等知识求解是解答此题的关键.10.B【分析】延长DC 交AE 于F ,依据AB CD ∥,77BAE ∠=︒,可得77CFE ∠=︒,再根据三角形外角性质,即可得到E DCE CFE ∠=∠-∠.【详解】解:如图,延长DC 交AE 于F ,∵AB CD ∥,77BAE ∠=︒,77CFE BAE ∴∠=∠=︒,又131DCE ∠=︒ ,E CFE DCE ∠+∠=∠,1317754E DCE CFE ∴∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.11.C 【分析】过点B 作∥BD AM ,则BD AM CN ∥∥,由平行线的性质可得65ABD MAB ∠=∠=︒,55CBD NCB ∠=∠=︒,由此进行计算即可得到答案.【详解】解:如图,过点B 作∥BD AM ,,AM CN ∥,A BD M CN ∴∥∥,65MAB ∠=︒,55NCB ∠=︒,65ABD MAB ∴∠=∠=︒,55CBD NCB ∠=∠=︒,6555120ABC ABD CBD ∴∠=∠+∠=︒+︒=︒,故选:C .【点睛】本题考查了平行线的性质,熟练掌握两直线平行,内错角相等是解此题的关键.12.100︒##100度【分析】过点D 作DG AB ∥,过点E 作EH AB ∥,根据平行线的性质和垂直的定义,进行求解即可.【详解】解:过点D 作DG AB ∥,过点E 作EH AB ∥,∵EF MN ⊥,∴90MFE ∠=︒,∵AB MN ∥,∴AB DG EH MN ∥∥∥,∴180ACD CDG ∠+∠=︒,DEH GDE ∠=∠,90HEF MFE ∠=∠=︒∵120,110DEF BCD ∠=︒∠=︒,∴30GDE DEH ︒∠=∠=,18011070CDG ∠︒=︒-︒=,∴100CDE CDG GDE =∠+∠=︒∠.故答案为:100︒【点睛】本题考查了平行线的判定和性质,解题的关键是过拐点构造平行线.13.A【分析】过C 作CM ∥AB ,得到CM ∥DE ,因此ABC BCM ∠=∠,MCD EDC β∠=∠=,由垂直的定义得到90ABC β∠=︒-,由邻补角的性质即可得到答案.【详解】解:过C 作CM ∥AB ,AB ∥DE ,CM DE ∴∥,ABC BCM ∴∠=∠,MCD EDC β∠=∠=,BC CD ⊥ ,9090BCM MCD β∴∠=︒-∠=︒-,90ABC β∴∠=︒-,180ABC ABF ∠+∠=︒ ,90180βα∴︒-+=︒,∴90αβ-= .故选:A .【点睛】本题考查平行线的性质,关键是过C 作//CM AB ,得到//CM DE ,由平行线的性质来解决问题.14.C【分析】首先求出ABP ∠和CDP ∠,再根据平行线的性质求出BPN ∠和DPN ∠即可.【详解】解:∵150160ABE CDF ∠=︒∠=︒,∴18030ABP ABE ∠=︒-∠=︒,18020CDP CDF ∠=︒-∠=︒,∵AB CD MN ∥∥,∴30BPN ABP ∠=∠=︒20DPN CDP ∠=∠=︒,∴50BPN D EPF PN ∠+∠=︒∠=,故选:C .【点睛】本题考查了平行线的性质,熟知两直线平行,内错角相等是解题的关键.15.65︒##65度【分析】过点P 作PE AB ,得到PE AB CD ∥∥,进而得到1,2180A CDP ∠=∠∠=︒-∠,再利用12∠+∠计算即可.本题考查平行线的判定和性质,解题的关键是过拐点作平行线.【详解】解:过点P 作PE AB ,∵AB CD ∥,∴PE AB CD ∥∥,∴125,218040A CDP ∠=∠=︒∠=︒-∠=︒,∴1265APD ∠=∠+∠=︒;故答案为:65︒.16.120EFG BEF DGF ∠=∠+∠-︒【分析】如图,过E 作EQ AB ∥,过F 作FN AB ∥,过G 作GK AB ∥,再证明AB EQ FN GK CD ∥∥∥∥,再结合平行线的性质可得结论.【详解】解:如图,过E 作EQ AB ∥,过F 作FN AB ∥,过G 作GK AB ∥,∵AB CD ∥,∴AB EQ FN GK CD ∥∥∥∥,∵120B D ∠=∠=︒,∴18060QEB B ∠=︒-∠=︒,18060DGK D ∠=︒-∠=︒,∵QE FN GK ∥∥,∴QEF EFN ∠=∠,KFG GFN ∠=∠,∴EFG EFN GFN QEF KGF ∠=∠+∠=∠+∠,∵6060120QEF KGF BEF DGF BEF DGF ∠+∠=∠-︒+∠-︒=∠+∠-︒,∴120EFG BEF DGF ∠=∠+∠-︒;故答案为:120EFG BEF DGF ∠=∠+∠-︒【点睛】本题考查的是平行公理的应用,平行线的性质,作出合适的辅助线是解本题的关键.17.(1)12∠=∠(2)12180∠+∠=︒,理由见解析(3)相等或互补(4)这两个角的度数分别为30︒,30︒,或60︒,120︒【分析】(1)根据两直线平行,内错角相等,即可作答;(2)根据两直线平行,内错角相,同旁内角互补,即可作答;(3)根据(1)、(2)结论直接归纳即可;(4)①当两角相等时,设一个角为x ,另一个角为()360x -︒,可得方程360x x =-︒,解方程即可求解;②当两角互补时,设一个角为x ,另一个角为()360x -︒,可得方程()360180x x ︒+-=︒,解方程即可求解.【详解】(1)∵AB CD ,BE DF ∥,∴13∠=∠,32∠=∠,∴12∠=∠,故答案为:12∠=∠;(2)12180∠+∠=︒,证明:∥ AB CD ,13∠∠∴=,BE DF ,23180∴∠+∠=︒,12180∴∠+∠=︒;(3)根据(1)、(2)的结果可知:一个角的两边与另一个角的分别平行,那么这两个角相等或互补,故答案为:相等或互补;(4)①当两角相等时,设一个角为x ,另一个角为()360x -︒,360x x ∴=-︒,30x ∴=︒,36030x ∴-︒=︒②当两角互补时,设一个角为x ,另一个角为()360x -︒,()360180x x ︒∴+-=︒,60x ∴=︒,360120x ︒∴-=︒.综上所述:这两个角的度数分别为30︒,30︒,或60︒,120︒.【点睛】本题主要考查了平行线的性质,掌握两直线平行,内错角相,同旁内角互补,是解答本题的关键.18.(1)110APC ∠=︒;(2)①CPD αβ∠=∠+∠;②CPD βα∠=∠-∠或CPD αβ∠=∠-∠.【分析】本题考查了平行线的性质和判定的应用,解决问题的关键是作辅助线构造内错角以及同旁内角.(1)过P 作PE AB ∥,构造同旁内角,利用平行线性质,可得110APC ∠=︒;(2)①过P 作PE AD ∥交CD 于E ,推出AD PE BC ∥∥,根据平行线的性质得出DPE α∠=∠,CPE β∠=∠,即可得出答案;②画出图形(分两种情况:点P 在BA 的延长线上,点P 在AB 的延长线上),根据平行线的性质得出DPE α∠=∠,CPE β∠=∠,即可得出答案.【详解】(1)解:过P 作PE AB ∥,∵AB CD ∥,∴PE AB CD ∥∥,∵130PAB ∠=︒,120PCD ∠=︒.∴18050APE PAB ∠=︒-∠=︒,18060CPE PCD ∠=︒-∠=︒,∴5060110APC ∠=︒+︒=︒;(2)解:①CPD αβ∠=∠+∠:如图3,过P 作PE AD ∥交CD 于E ,∵AD BC ∥,∴AD PE BC ∥∥,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE αβ∠=∠+∠=∠+∠;故答案为:CPD αβ∠=∠+∠;②当P 在AB 延长线时,CPD βα∠=∠-∠;理由:如图4,过P 作PE AD ∥交CD 于E ,∵AD BC ∥,∴AD PE BC ∥∥,∴DPE α∠=∠,CPE β∠=∠,∴CPD CPE DPE βα∠=∠-∠=∠-∠;当P 在BO 之间时,CPD ∠理由:如图5,过P 作PE ∥∵AD BC ∥,∴AD PE BC ∥∥,∴DPE α∠=∠,CPE β∠=∠CPD αβ∴∠=∠-∠综上所述,CPD ∠,α∠,∠βCPD αβ∠=∠-∠.19.(1)见解析;(2)见解析;【分析】()1过点E 作EM AB ∥∴∠=∠,ABE BEMAB CD,∥∴ ,CD EM∴∠=∠,CDE DEM∥AB CD,∴ ,AB EM FN CD∥,EM FN∴∠+∠=︒,MEF NFE180∥AB CD,∴ AB EM FN GH∥EM FN∥,FN GH ∴∠+∠=180 MEF NFE20.(1)证明见详解;(2)900︒;(3)()1801︒-n ;【分析】(1)过点E 作OE ∥A B ,可得OE AB CD ∥∥,根据平行线的性质可得1180MEO ∠+∠=︒,2180OEN ∠+∠=︒,再计算角度和即可证明;(2)分别过点E 、F 、G 、H 作AB 的平行线,在两相邻平行线间利用两直线平行同旁内角互补求得两角度和后,再将所有角度相加即可解答;(3)由(2)解答可知在AB 、CD 之间每有一条线段便可求得一个180°角度和,结合图3找出n 和线段条数的关系便可解答;【详解】(1)证明:如下图,过点E 作OE ∥A B ,∵AB CD ∥,OE ∥A B ,∴ OE CD ,根据两直线平行同旁内角互补可得:1180MEO ∠+∠=︒,2180OEN ∠+∠=︒,∴12360MEO OEN ∠+∠+∠+∠=︒,∴12360MEN ∠+∠+∠=︒;(2)解:如下图,分别过点E 、F 、G 、H 作1O E AB ∥,2O F AB ∥,3O G AB ∥,4O H AB ∥,结合(1)解答在两相邻平行线间可得:1180AME MEO ∠+∠=︒,12180O EF EFO ∠+∠=︒,23180O FG FGO ∠+∠=︒,34180O GH GHO ∠+∠=︒,4180O HN HNC ∠+∠=︒,将所有角度相加可得:1234561805900∠+∠+∠+∠+∠+∠=︒⨯=︒;(3)解:由(2)解答可知在AB 、CD 之间每有一条线段便可求得一个180°角度和,由图3可知:当AB 、CD 之间有2条线段时,3n =,当AB 、CD 之间有3条线段时,4n =,当AB 、CD 之间有4条线段时,5n =,当AB 、CD 之间有5条线段时,6n =,…,当AB 、CD 之间有()1n -条线段时,n n =,∴()1231801n n ∠+∠+∠++∠=︒- ;【点睛】本题考查了平行线公理的推论,平行线的性质,归纳总结的解题思路,通过作辅助线将角度按组计算是解题关键.。
七年级下册数学《第五章 相交线与平行线》专题 巧解平行线中的拐点问题【例题1】(2022春•内乡县期末)如图,AB ∥CD ,∠1=45°,∠2=30°,则∠3的度数为( )A .55°B .75°C .80°D .105°【变式1-1】(2022春•香洲区校级期中)如图,已知AB∥DE,∠B=150°,∠D=145°,则∠C= 度.【变式1-2】(2022•博山区一模)如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于( )A.360°B.300°C.270°D.180°【变式1-3】(2022春•信都区期末)为增强学生体质,某学校将“抖空竹”引入阳光体育一小时活动.图1是一位同学抖空竹时的一个瞬间,数学老师把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,∠ECD=110°.求∠AEC的度数.小明在解决过程中,过E点作EF∥CD,则可以得到EF∥AB,其理由是 ,根据这个思路可得∠AEC= .【变式1-4】如图,已知AB∥DE,∠1=120°,∠2=110°,求∠3的度数.【变式1-5】如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.【变式1-6】(2021秋•南召县期末)课堂上老师呈现一个问题:下面提供三种思路:思路一:过点F作MN∥CD(如图(1));思路二:过点P作PN∥EF,交AB于点N;思路三:过点O作ON∥FG,交CD于点N.解答下列问题:(1)根据思路一(图(1)),可求得∠EFG的度数为 ;(2)根据思路二、思路三分别在图(2)和图(3)中作出符合要求的辅助线;(3)请你从思路二、思路三中任选其中一种,试写出求∠EFG的度数的解答过程.【例题2】如图,直线l 1∥l 2,∠A =125°,∠B =85°,则∠1+∠2等于( )A .40°B .35°C .36°D .30°【变式2-1】(2022春•新洲区期末)如图,AB ∥EF ,则∠A ,∠C ,∠D ,∠E 满足的数量关系是( )A .∠A +∠C +∠D +∠E =360°B .∠A +∠D =∠C +∠E C .∠A ﹣∠C +∠D +∠E =180°D .∠E ﹣∠C +∠D ﹣∠A =90°【变式2-2】如图所示,若AB ∥CD ,则∠1+∠2+∠3+∠4+∠5+∠6的度数是 .【变式2-3】(2022春•金湖县期末)如图,AB∥CD,E、F分别是AB、CD上的点,EH、FH分别是∠AEG 和∠CFG的角平分线.若∠G=110°,则∠H= °.【变式2-4】(2022春•潜山市月考)如图,AB∥CD,点E,F分别是AB,CD上的点,点M位于AB与CD之间且在EF的右侧.(1)若∠M=90°,则∠AEM+∠CFM= ;(2)若∠M=n°,∠BEM与∠DFM的角平分线交于点N,则∠N的度数为 .(用含n的式子表示)【变式2-5】(1)填空:如图1,MA1∥NA2,则∠A1+∠A2= °.如图2,MA1∥NA3,则∠A1+∠A2+∠A3= °.如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4= °.如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5= °.(2)归纳:如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n= °.(3)应用:如图6,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=80°,求∠BFD的度数.【例题3】小华在学习“平行线的性质”后,对图中∠B ,∠D 和∠BOD 的关系进行了探究:(1)如图1,AB ∥CD ,点O 在AB ,CD 之间,试探究∠B ,∠D 和∠BOD 之间有什么关系?并说明理由;小华添加了过点O 的辅助线OM ,并且OM ∥CD 请帮助他写出解答过程;(2)如图2,若点O 在CD 的上侧,试探究∠B ,∠D 和∠BOD 之间有什么关系?并说明理由;(3)如图3,若点O 在AB 的下侧,试探究∠B ,∠D 和∠BOD 之间有什么关系?请直接写出它们的关系式.【变式3-1】如图,已知∠1=70°,∠2=30°, EF平分∠BEC,∠BEF=50°,求证:AB∥CD.【变式3-2】如图,点E在线段AC上,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.【变式3-3】(2022春•阳江期末)如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)试证明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.【变式3-4】(2022秋•驿城区校级期末)问题情境:如图1,AB∥CD,∠PAB=135°,∠PCD=125°.求∠APC 度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可求得∠APC的度数.请写出具体求解过程.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【变式3-5】阅读下面内容,并解答问题在学习了平行线的性质后,老师请同学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,AB∥CD,直线EF分别交AB,C于点E,F.∠BEF的平分线与∠DFE的平分线交于点G.(1)直线EG,FG有何关系?请补充结论:求证:“ ”,并写出证明过程;(2)请从下列A、B两题中任选一题作答,我选择 题,并写出解答过程.A.在图1的基础上,分别作∠BEG的平分线与∠DFG的平分线交于点M,得到图2,求∠EMF的度数.B.如图3,AB∥CD,直线EF分别交AB,CD于点E,F.点O在直线AB,CD之间,且在直线EF右侧,∠BEO的平分线与∠DFO的平分线交于点P,请猜想∠EOF与∠EPF满足的数量关系,并证明它.【例题4】(2022秋•小店区校级期末)(1)问题背景:如图1,已知AB∥CD,点P的位置如图所示,连结PA,PC,试探究∠APC与∠A、∠C之间的数量关系,以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):解:过点P作PE∥AB∵AB∥CD(已知),∴PE∥CD( ),∴∠A=∠APE,∠C=∠CPE( ),∴∠A+∠C= + (等式的性质).即∠APC,∠A,∠C之间的数量关系是 .(2)类比探究:如图2,已知AB∥CD,线段AD与BC相交于点E,点B在点A右侧.若∠ABC=41°,∠ADC =78°,则∠AEC= .(3)拓展延伸:如图3,若∠ABC与∠ADC的角平分线相交于点F,请直接写出∠BFD与∠AEC之间的数量关系 .【变式4-1】(2021秋•长春期末)小明同学遇到这样一个问题:如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.求证:∠BED=∠B+∠D.小亮帮助小明给出了该问的证明.证明:过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D.请你参考小亮的思考问题的方法,解决问题:直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.【变式4-2】(2022春•龙亭区校级期末)如图,已知AB∥CD,E、F分别在AB、CD上,点G在AB、CD之间,连接GE、GF.(1)当∠BEG=40°,EP平分∠BEG,FP平分∠DFG时:①如图1,若EG⊥FG,则∠P的度数为 ;②如图2,在CD的下方有一点Q,EG平分∠BEQ,FD平分∠GFQ,求∠Q+2∠P的度数;(2)如图3,在AB的上方有一点O,若FO平分∠GFC.线段GE的延长线平分∠OEA,则当∠EOF+∠EGF =100°时,请直接写出∠OEA与∠OFC的数量关系.【变式4-3】(2021春•安徽月考)(1)如图1,直线AB∥CD.点P在直线AB,CD之间,试说明:∠BAP+∠APC+∠PCD=360°.小明说明的过程是这样的:“过点P作PE∥AB,…”请按照小明的思路写出完整的解答说明过程.(2)①直线AB∥CD,点P,Q在直线AB,CD之间,且点P,Q在直线AC的同侧,如图2,试探究∠BAP,∠APQ,∠PQC,∠QCD之间的数量关系,并说明理由;②直线AB∥CD,点P,Q在直线AB,CD之间,且点P,Q在直线AC的两侧.如图3,试探究∠BAP,∠APQ,∠PQC,∠QCD之间的数量关系,并说明理由.请在①②任选一个问题进行解答.(3)如图4,若a∥b,直接写出图中x的度数(不用说理).【变式4-4】(2022春•兴国县期末)【感知】(1)如图①,AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF 的度数.小乐想到了以下方法,请帮忙完成推理过程.解:如图①,过点P作PM∥AB,【探究】(2)如图②,AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数;【应用】(3)如图③,在以上【探究】条件下,∠PEA的平分线和∠PFC的平分线交于点G,求∠G的度数.(4)已知直线a∥b,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接AD,BC,∠ABC的平分线与∠ADC的平分线所在的直线交于点E,设∠ABC=α,∠ADC=β(α≠β),请画出图形并求出∠BED的度数(用含α,β的式子表示).。
拐点练习题含详细答案拐点是数学中一个重要的概念,它标志着函数图像从凹向上凸,或者从凸向下凹的转折点。
对于函数而言,拐点处的导数发生变化,导致函数图像的凹凸性发生改变。
在这篇文章中,我们将讨论一些拐点练习题,并提供详细的解答。
题目1:求函数f(x) = x^3 - 6x^2 + 9x的拐点。
解答1:首先,我们需要求出函数的导数。
对于给定的函数f(x) = x^3 - 6x^2 + 9x,求导得到f'(x) = 3x^2 - 12x + 9。
然后,我们需要找到导数f'(x)的根,因为函数的拐点发生在导数的根处。
我们可以利用因式分解或者配方法求得f'(x) = 0的解为x = 1和x = 3。
接下来,我们可以求得函数f(x)在x = 1和x = 3处的二阶导数。
对于f(x) = x^3 - 6x^2 + 9x,求二阶导数得f''(x) = 6x - 12。
然后,我们将x = 1和x = 3代入f''(x)得到f''(1) = -6和f''(3) = 6。
最后,我们可以通过观察二阶导数的值来判断拐点的性质。
当二阶导数的值从正数变为负数时,函数图像从凸形状转为下凹形状,此时发生一个拐点。
类似地,当二阶导数的值从负数变为正数时,函数图像从下凹形状转为凸形状,也会发生一个拐点。
根据我们计算得到的二阶导数的值,我们可以确定函数f(x)在x = 1处有一个下凹的拐点,而在x = 3处有一个上凸的拐点。
题目2:给定函数g(x) = x^4 - 12x^3 + 48x^2 - 64x,求其拐点。
解答2:首先,我们需要求出函数g(x)的导数。
对于给定的函数g(x) = x^4 - 12x^3 + 48x^2 - 64x,求导得到g'(x) = 4x^3 - 36x^2 + 96x - 64。
然后,我们需要找到导数g'(x)的根。
拐点练习册答案问题一:某函数f(x)在点x=a处的导数为0,且在x=a处的二阶导数大于0,根据这些信息,我们可以推断出什么?答案:根据导数的定义,函数f(x)在点x=a处的导数为0意味着该点是函数的驻点。
而二阶导数大于0则表明函数在该点处是凹的。
结合这两个条件,我们可以推断出x=a是函数f(x)的一个局部最小值点,即拐点。
问题二:如果一个函数在某区间内是单调递增的,那么这个区间内是否存在拐点?答案:一个函数在某区间内单调递增,说明该区间内导数始终大于或等于0。
由于拐点的定义是函数在该点导数为0且二阶导数改变符号,所以在单调递增的区间内不存在拐点。
问题三:给定函数f(x) = x^3 - 3x^2 + 2x,求该函数的拐点。
答案:首先计算一阶导数:f'(x) = 3x^2 - 6x + 2。
令f'(x) = 0,解得x = 1。
接着计算二阶导数:f''(x) = 6x - 6。
将x=1代入二阶导数,得到f''(1) = 0。
由于二阶导数在x=1处的符号没有改变,所以x=1不是拐点。
问题四:函数g(x) = x^4 - 4x^3 + 4x^2,求该函数的拐点。
答案:计算一阶导数:g'(x) = 4x^3 - 12x^2 + 8x。
令g'(x) = 0,解得x = 0, 1。
计算二阶导数:g''(x) = 12x^2 - 24x + 8。
将x=0代入二阶导数,得到g''(0) = 8 > 0,所以x=0是局部最小值点,但不是拐点。
将x=1代入二阶导数,得到g''(1) = 4 > 0,所以x=1是局部最小值点,且是拐点。
问题五:已知函数h(x) = x^5 - 5x^4 + 10x^3 - 10x^2 + 5x,求该函数的拐点。
答案:计算一阶导数:h'(x) = 5x^4 - 20x^3 + 30x^2 - 20x + 5。
七年级数学下册平行线中的“拐点”问题专题练习模型1M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E 作EF∥AB,于是BE,DE就可以作为第三条直线了.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.拓展平行线间有多个拐点2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?拓展平行线间有多个拐点3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=度.小专题(二)利用平行线的性质求角的度数类型1直接利用平行线的性质与判定求角度1.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为( ) A.52°B.54°C.64°D.69°2.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是( )A.20°B.25°C.30°D.35°3.如图,AB∥CD,CB∥DE,∠B=50°,则∠D=.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.类型2借助学具的特征求角度5.如图,将直尺与30°角的三角尺叠放在一起.若∠1=40°,则∠2的大小是( ) A.40° B.60° C.70° D.80°6.如图,一块直角三角板的两锐角的顶点刚好落在平行线l1,l2上,已知∠C是直角,则∠1+∠2的度数等于( )A.75° B.90° C.105° D.120°类型3折叠问题中求角度7.将一个长方形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是.类型4抽象出平行线模型求角度(建模思想)9.如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB 平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,已知∠ADC =∠ODE.则∠DEB的度数是度.10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是.小专题(三)平行线的性质与判定的综合运用——教材P37T13的变式与应用教材母题(教材P37T13):完成下面的证明.(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=.∵DF∥CA,∴∠A=.∴∠FDE=∠A.(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD( ),∴∠C=.∴AC∥BD(内错角相等,两直线平行).(1)判定两直线平行的方法有五种:①平行线的定义;②平行公理的推论;③同位角相等,两直线平行;④内错角相等,两直线平行;⑤同旁内角互补,两直线平行.(2)判定两直线平行时,定义一般不常用,其他四种方法要灵活运用,推理时要注意书写格式.(3)由两条直线平行得到同位角相等、内错角相等或同旁内角互补,解题时应结合图形先确认所成的角是不是两平行线被第三条直线所截得的同位角或内错角或同旁内角,同时要学会简单的几何说理,做到每一步有理有据.1.如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:因为AD⊥BC,EF⊥BC(已知),①所以∠ADB=∠EFB=(垂直的定义).②所以(同位角相等,两直线平行).③所以∠1+∠2=(两直线平行,同旁内角互补).④又因为∠2+∠3=180°( ),⑤所以∠1=∠3( ).⑥所以AB∥DG( ).⑦所以∠GDC=∠B( ).2.如图,点G在射线BC上,射线DE与AB,AG分别交于点H,M.若DF∥AB,∠B=75°,∠D=105°,求证:∠AME=∠AGC.3.如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD∥BC.4.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的平分线.你能判断DF与AB的位置关系吗?请说明理由.5.如图,AB⊥BD于点B,点E是BD上的点,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.求证:CD⊥BD.6.如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,求∠1,∠2的度数.7.如图,已知BC∥GE,∠AFG=∠1=50°.(1)求证:AF∥DE;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACQ的度数.参考答案:小专题(一)平行线中的“拐点”问题模型1M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E 作EF∥AB,于是BE,DE就可以作为第三条直线了.【解答】∠BED=∠B+∠D.理由:过点E作EF∥AB,则EF∥CD.∴∠B=∠BEF,∠D=∠DEF.∴∠BED=∠BEF+∠DEF=∠B+∠D.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.解:(1)∠B=∠BED+∠D.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D.(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.拓展平行线间有多个拐点2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?解:(1)∠BEF+∠FGD=∠B+∠EFG+∠D.理由:过点E,F,G分别作EM∥AB,FN∥AB,GH∥AB,由AB∥CD,得AB∥EM∥FN∥GH∥CD.∴∠BEM=∠B,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D.∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D.(2)在图2中,有∠E1+∠E2+∠E3+…+∠E n=∠B+∠F1+∠F2+…+∠F n-1+∠D.如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?【解答】∠B+∠BED+∠D=360°.理由:过点E作EF∥AB.∵AB∥CD,∴AB∥CD∥EF.∴∠B+∠BEF=180°,∠D+∠DEF=180°.∴∠B+∠BEF+∠D+∠DEF=360°,即∠B+∠BED+∠D=360°.拓展平行线间有多个拐点3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=180度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=360度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=540度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=720度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=180(n-1)度.解:每增加一个角,度数增加180°.小专题(二)利用平行线的性质求角的度数类型1直接利用平行线的性质与判定求角度1.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为( C ) A.52°B.54°C.64°D.69°2.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是( D )A.20°B.25°C.30°D.35°3.如图,AB∥CD,CB∥DE,∠B=50°,则∠D=130°.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AB∥DG(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=80°,∴∠AGD=100°.类型2借助学具的特征求角度5.如图,将直尺与30°角的三角尺叠放在一起.若∠1=40°,则∠2的大小是( D ) A.40° B.60° C.70° D.80°6.如图,一块直角三角板的两锐角的顶点刚好落在平行线l1,l2上,已知∠C是直角,则∠1+∠2的度数等于( B )A.75° B.90° C.105° D.120°类型3折叠问题中求角度7.将一个长方形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=128°.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是65°.类型4抽象出平行线模型求角度(建模思想)9.如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB 平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,已知∠ADC =∠ODE.则∠DEB的度数是76度.10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90°.小专题(三)平行线的性质与判定的综合运用——教材P37T13的变式与应用教材母题(教材P37T13):完成下面的证明.(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=∠BFD(两直线平行,内错角相等).∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等).∴∠FDE=∠A.(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD(对顶角相等),∴∠C=∠D.∴AC∥BD(内错角相等,两直线平行).(1)判定两直线平行的方法有五种:①平行线的定义;②平行公理的推论;③同位角相等,两直线平行;④内错角相等,两直线平行;⑤同旁内角互补,两直线平行.(2)判定两直线平行时,定义一般不常用,其他四种方法要灵活运用,推理时要注意书写格式.(3)由两条直线平行得到同位角相等、内错角相等或同旁内角互补,解题时应结合图形先确认所成的角是不是两平行线被第三条直线所截得的同位角或内错角或同旁内角,同时要学会简单的几何说理,做到每一步有理有据.1.如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:因为AD⊥BC,EF⊥BC(已知),①所以∠ADB=∠EFB=90°(垂直的定义).②所以AD∥EF(同位角相等,两直线平行).③所以∠1+∠2=180°(两直线平行,同旁内角互补).④又因为∠2+∠3=180°(已知),⑤所以∠1=∠3(同角的补角相等).⑥所以AB∥DG(内错角相等,两直线平行).⑦所以∠GDC=∠B(两直线平行,同位角相等).2.如图,点G在射线BC上,射线DE与AB,AG分别交于点H,M.若DF∥AB,∠B=75°,∠D=105°,求证:∠AME=∠AGC.证明:∵DF∥AB(已知),∴∠D=∠BHM(两直线平行,同位角相等).又∵∠B=75°,∠D=105°(已知),∴∠B+∠BHM=75°+105°=180°.∴DE∥BC(同旁内角互补,两直线平行).∴∠AME=∠AGC(两直线平行,同位角相等).3.如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD∥BC.证明:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义).∵AB∥CD(已知),∴∠1=∠CFE(两直线平行,同位角相等).又∵∠1=∠2(已证),∠CFE=∠E(已知),∴∠2=∠E(等量代换).∴AD∥BC(内错角相等,两直线平行).4.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的平分线.你能判断DF与AB的位置关系吗?请说明理由.解:DF∥AB.理由:∵BE是∠ABC的平分线,∴∠1=∠2(角平分线的定义).∵∠E=∠1(已知),∴∠E=∠2(等量代换).∴AE∥BC(内错角相等,两直线平行).∴∠A+∠ABC=180°(两直线平行,同旁内角互补).∵∠3+∠ABC=180°(已知),∴∠A=∠3(等量代换).∴DF∥AB(同位角相等,两直线平行).5.如图,AB⊥BD于点B,点E是BD上的点,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.求证:CD⊥BD.证明:∵AE平分∠BAC,CE平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的性质).∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2).∵∠1+∠2=90°(已知),∴∠BAC+∠ACD=180°.∴AB∥CD(同旁内角互补,两直线平行).∴∠B+∠D=180°(两直线平行,同旁内角互补).∴∠D=180°-∠B(等式的性质).∵AB⊥BD(已知),∴∠B=90°(垂直的定义).∴∠D=90°,即CD⊥BD.6.如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,求∠1,∠2的度数.解:∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°(两直线平行,内错角相等).由折叠,知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠2=110°.∴∠1=180°-∠2=70°(两直线平行,同旁内角互补).7.如图,已知BC∥GE,∠AFG=∠1=50°.(1)求证:AF∥DE;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACQ的度数.解:(1)证明:∵BC∥GE,∴∠E=∠1=50°.∵∠AFG=∠1=50°,∴∠E=∠AFG=50°.∴AF∥DE.(2)过点A作AP∥GE,∵BC∥GE,∴AP∥GE∥BC.∴∠FAP=∠AFG=50°,∠PAQ=∠Q=15°.∴∠FAQ=∠FAP+∠PAQ=65°.∵AQ平分∠FAC,∴∠CAQ=∠FAQ=65°.∴∠CAP=80°.∴∠ACQ=180°-∠CAP=100°.。
平行线中“拐点”问题专题培优训练一.选择题1.如图,直线AB∥CD,AE⊥CE,∠1=125°,则∠C等于()A.35°B.45°C.50°D.55°2.如图,BA∥DE,∠B=30°,∠D=40°,则∠C的度数是()A.10°B.35°C.70°D.80°3.如图,AB∥DE,BC⊥CD,则以下说法中正确的是()A.α,β的角度数之和为定值B.α,β的角度数之积为定值C.β随α增大而增大D.β随α增大而减小4.如图,AB∥CD,EMNF是直线AB、CD间的一条折线.若∠1=40°,∠2=60°,∠3=70°,则∠4的度数为()A.55°B.50°C.40°D.30°5.已知,如图,AB∥CD,则∠α、∠β、∠γ之间的关系为()A.∠α+∠β+∠γ=360°B.∠α﹣∠β+∠γ=180°C.∠α+∠β﹣∠γ=180°D.∠α+∠β+∠γ=180°二.填空题6.如图,a∥b,∠2=95°,∠3=150°,则∠1的度数是.7.如图,一环湖公路的AB段为东西方向,经过四次拐弯后,又变成了东西方向的FE段,则∠B+∠C+∠D+∠E的度数是.8.一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=度.9.如图,AB∥CD,∠A=75°,∠C=30°,∠E的度数为.10.如图,AB∥CD,∠A=20°,∠CDP=145°,则∠P=°.11.如图,已知AB∥CD,∠AFC=120°,∠EAF=∠EAB,∠ECF=∠ECD,则∠AEC =度.三.解答题12.看图填空:如图,已知AB∥CD,∠ABE=130°,∠CDE=152°,求∠BED的度数.解:过E点作EF∥CD∴∠CDE+=180°∴∠DEF=又∵AB∥CD,∴EF∥∴∠ABE+=180°,∴∠BEF=∴∠BED=∠BEF+∠DEF=.13.如图,已知直线AB∥CD,∠ABE=60°,∠CDE=20°,求∠BED的度数.14.如图:已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于F.(1)如图1,若∠E=80°,求∠BFD的度数.(2)如图2:若∠ABM=∠ABF,∠CDM=∠CDF,写出∠M和∠E之间的数量关系并证明你的结论.15.先阅读下面的解题过程,再解答问题:如图①,已知AB∥CD,∠B=40°,∠D=30°,求∠BED的度数.解:过点E作EF∥AB,则AB∥CD∥EF,因为EF∥AB,所以∠1=∠B=40°又因为CD∥EF,所以∠2=∠D=30°所以∠BED=∠1+∠2=40°+30°=70°.如图②是小军设计的智力拼图玩具的一部分,现在小军遇到两个问题,请你帮他解决:(1)如图②∠B=45°,∠BED=75°,为了保证AB∥CD,∠D必须是多少度?请写出理由.(2)如图②,当∠G、∠GFP、∠P满足什么关系时,GH∥PQ,请直接写出满足关系的式子,并在如图②中画出需要添加的辅助线.16.如图(1)所示,AB∥CD,根据平行线的性质可知内错角∠B与∠C相等,观察图(2),(3)与(4),回答下列问题.①如图(2)所示,AB∥CD,试问∠E+∠C与∠B+∠F哪个大?请说明理由;②如图(3)所示,AB∥CD,试问∠E+∠G+∠C与∠B+∠H+∠F哪个大?(直接写出答案,不必说明理由)③根据第①,②小题的结论,在图(4)中,若AB∥CD,你又能得到什么结论?17.如图所示,直线AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF、∠DFE的平分线相交于点K.(1)求∠EKF的度数;(2)如图(2)所示,作∠BEK、∠DFK的平分线相交于点K1,问∠K1与∠K的度数是否存在某种特定的等量关系?写出结论并证明.(3)在图(2)中作∠BEK1、∠DFK1的平分线相交于点K2,作∠BEK2、∠DFK2的平分线相交于点K3,依此类推,……,请直接写出∠K4的度数.参考答案一.选择题1.解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.2.解:过点C作FC∥AB,∵BA∥DE,∴BA∥DE∥FC,∴∠B=∠BCF,∠D=∠DCF,∵∠B=30°,∠D=40°,∴∠BCF=30°,∠DCF=40°,∴∠BCD=70°,故选:C.3.解:过C点作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠α=∠BCF,∠β+∠DCF=180°,∵BC⊥CD,∴∠BCF+∠DCF=90°,∴∠α+180°﹣∠β=90°,∴∠β﹣∠α=90°,∴β随α增大而增大,故选:C.4.解:如图2,过M作OM∥AB,PN∥AB,∵AB∥CD,∴AB∥OM∥PN∥CD,∴∠1=∠EMO,∠4=∠PNF,∠OMN=∠PNM,∴∠EMN﹣∠MNF=(∠1+∠MNP)﹣(∠MNP+∠4)=∠1﹣∠4,∴60°﹣70°=40°﹣∠4,∴∠4=50°.故选:B.5.解:过点E作EF∥AB,则EF∥CD.∵EF∥AB∥CD,∴∠α+∠AEF=180°,∠FED=∠γ,∴∠α+∠β=180°+∠γ,即∠α+∠β﹣∠γ=180°.故选:C.二.填空题6.解:过点C作CD∥a,∵a∥b,∴CD∥a∥b,∴∠1+∠ECD=180°,∠3+∠DCF=180°,∵∠2=95°,∠3=150°,∴∠1+∠2+∠3=360°,∴∠1=360°﹣∠2﹣∠3=360°﹣150°﹣95°=115°,故答案为:115°.7.解:如图,根据题意可知:AB∥EF,分别过点C,D作AB的平行线CG,DH,所以AB∥CG∥DH∥EF,则∠B+∠BCG=180°,∠GCD+∠HDC=180°,∠HDE+∠DEF=180°,∴∠B+∠BCG+∠GCD+∠HDC+∠HDE+∠DEF=180°×3=540°,∴∠B+∠BCD+∠CDE+∠E=540°.故答案为540°.8.解:如图,连接BF,BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.9.解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,EF∥CD,∴∠AEF=∠A=75°,∠CEF=∠C=30°,∴∠AEC=∠AEF﹣∠CEF=75°﹣30°=45°.故答案为:45°.10.解:如图,过点P作PE∥AB,∴∠APE=∠A=20°,∵AB∥CD,∴PE∥CD,∴∠EPD=180°﹣∠CDP=35°,∴∠APD=∠APE+∠EPD=20°+35°=55°.故答案为:55.11.解:过点E作EM∥AB,过点F作FN∥AB,如图所示.∵EM∥AB,AB∥CD,∴EM∥CD,∴∠AEM=∠EAB,∠CEM=∠ECD.同理,可得:∠AFN=∠F AB,∠CFN=∠FCD.又∵∠EAF=∠EAB,∠ECF=∠ECD,∴∠EAB=∠F AB,∠ECD=∠FCD.∴∠AEC=∠AEM+∠CEM=∠EAB+∠ECD=(∠F AB+∠FCD)=(∠AFN+∠CFN)=∠AFC=90°.故答案为:90.三.解答题12.解:过E点作EF∥CD∴∠CDE+∠DEF=180°,∴∠DEF=180°﹣152°=28°,又∵AB∥CD,∴EF∥AB,∴∠ABE+∠BEF=180°,∴∠BEF=180°﹣130°=50°,∴∠BED=∠BEF+∠DEF=27°+50°=77°.故答案为:∠DEF,180°﹣152°=28°,CD,∠BEF,180°﹣130°=50°,28°+50°=78°.13.解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠1=∠ABE,∠2=∠CDE,∴∠BED=∠1+∠2=60°+20°=80°.14.解:(1)如图1,作EG∥AB,FH∥AB,∴EG∥AB∥FH∥CD,∴∠ABF=∠BFH,∠CDF=∠DFH,∠ABE+∠BEG=180°,∠GED+∠CDE=180°,∴∠ABE+∠BEG+∠GED+∠CDE=360°∵∠BED=∠BEG+∠DEG=80°,∴∠ABE+∠CDE=280°,∵∠ABF和∠CDF的角平分线相交于E,∴∠ABF+∠CDF=140°,∴∠BFD=∠BFH+∠DFH=140°;(2)∵∠ABM=∠ABF,∠CDM=∠CDF,∴∠ABF=3∠ABM,∠CDF=3∠CDM,∵∠ABE与∠CDE两个角的角平分线相交于点F,∴∠ABE=6∠ABM,∠CDE=6∠CDM,∴6∠ABM+6∠CDM+∠E=360°,∵∠M=∠ABM+∠CDM,∴6∠M+∠E=360°.15.解:(1)∠D=30°,理由如下:过E作EM∥AB,如图,则∠B=∠2=45°,∴∠1=∠BED﹣∠2=30°,∴∠1=∠D,∴EM∥CD,又∵EM∥AB,(2)当∠G+∠GFP+∠P=360°时,GH∥PQ,理由如下:过F作FN∥GH,如图,则∠G+∠4=180°,又∵∠G+∠GFP+∠P=360°∴∠3+∠P=180°,∴FN∥PQ,∴GH∥PQ.16.解:①如图,分别过E,F作AB的平行线EM,FN,∵AB∥CD,∴AB∥CD∥EM∥NF,∴∠ABE=∠BEM,∠MEF=∠EFN,∠NFC=∠FCD,∴∠BEF+∠C=∠B+∠EFC,∴∠E+∠C=∠B+∠F;②分别过E,F,G,H作AB的平行线EM,NF,GP,QH,和①的方法一样可得∠E+∠G+∠C=∠B+∠H+∠F;③∠E1+∠E2+…+∠E n+∠C=∠F1+∠F2+…+∠F n+∠B(开口朝左的所有角度之和与开口朝右的所有角度之和相等).17.解:(1)如图(1),过K作KG∥AB,交EF于G,∵AB∥CD,∴∠BEK=∠EKG,∠GKF=∠KFD,∵EK、FK分别为∠BEF与∠EFD的平分线,∴∠BEK=∠FEK,∠EFK=∠DFK,∵AB∥CD,∴∠BEK+∠FEK+∠EFK+∠DFK=180°,即2(∠BEK+∠DFK)=180°,∴∠BEK+∠DFK=90°,则∠EKF=∠EKG+∠GKF=90°;(2)∠K=2∠K1,理由为:∵∠BEK、∠DFK的平分线相交于点K1,∴∠BEK1=∠KEK1,∠KFK1=∠DFK1,∵∠BEK+∠FEK+∠EFK+∠DFK=180°,即2(∠BEK+∠KFD)=180°,∴∠BEK+∠KFD=90°,即∠BEK1+∠DFK1=45°,同理得∠K1=∠BEK1+∠DFK1=45°,则∠K=2∠K1;(3)如图(3),根据(2)中的规律可得:∠K2=∠K1=22.5°,∠K3=∠K2=11.25°,∠K4=∠K3=5.625°.。
拐点问题配套练习1.如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上,若∠1=72°,∠2=48°,则∠ABC=()A.24°B.120°C.96°D.132°第1题图第2题图第3题图第4题图2.如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°3.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°4.如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD为()A.162°B.152° C.142° D.128°5.把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°第5题图第6题图第7题图第8题图6.如右图,AB∥CD,则下列式子一定成立的是()A.∠1=∠3 B.∠2=∠3 C.∠1=∠2+∠3 D.∠3=∠1+∠27.直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°8.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20° B.30°C.35°D.55°9.已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°第9题图第10题图第11题图第12题图10.如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于()A.19°B.38°C.42°D.52°11.如图,BC∥DE,若∠A=35°,∠C=24°,则∠E等于()A.24°B.59°C.60°D.69°12.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°13.如图,若∠A+∠ABC=180°,则下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠2=∠4第13题图第14题图第15题图第16题图14.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20°B.30°C.40°D.70°15.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136° D.138°16.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°17.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为()A.35° B.15°C.10°D.5°第17题图第18题图18.如图,AB∥EF,CD⊥EF,∠ACD=130°,则∠BAC=()A.40°B.50°C.60°D.70°。
专题01 平行线间的拐点问题类型一:“猪蹄”模型类型二:“铅笔”模型类型三:“鹰嘴”模型平行线间的拐点问题均过拐点作平行线的平行线,有多少个拐点就作多少条平行线。
一.选择题1.(2023•新城区校级一模)如图,直线m∥n,含有45°角的三角板的直角顶点O在直线m上,点A在直线n上,若∠1=20°,则∠2的度数为()A.15°B.25°C.35°D.45°2.(2023•海南)如图,直线m∥n,△ABC是直角三角形,∠B=90°,点C在直线n上.若∠1=50°,则∠2的度数是()A.60°B.50°C.45°D.40°3.(2023秋•渝中区校级期中)如图,直线AB∥CD,GE⊥EF于点E.若∠EFD=32°,则∠BGE的度数是()A.62°B.58°C.52°D.48°4.(2022秋•杜尔伯特县期末)如图,已知AB∥CD,BE,DE分别平分∠ABF和∠CDF,且交于点E,则()A.∠E=∠F B.∠E+∠F=180°C.2∠E+∠F=360°D.2∠E﹣∠F=180°5.(2022秋•榆树市期末)如图,AB∥CD,则图中∠1、∠2、∠3关系一定成立的是()A.∠1+∠2+∠3=180°B.∠1+∠2+∠3=360°C.∠1+∠3=2∠2D.∠1+∠3=∠26.(2023秋•湖北月考)将含有30°角的直角三角板在两条平行线中按如图所示摆放.若∠1=120°,则∠2为()A.120°B.130°C.140°D.150°二.填空题7.(2023•江油市开学)如图,AB∥CD,P为AB,CD之间的一点,已知∠2=28°,∠BPC=58°,则∠1=.8.(2023秋•南岗区校级期中)如图,已知DE∥BC,∠ABC=105°,点F在射线BA上,且∠EDF=125°,则∠DFB的度数为.9.(2023秋•道里区校级期中)为增强学生体质,望一观音湖学校将“跳绳”引入阳光体育一小时活动.图1是一位同学跳绳时的一个瞬间.数学老师把它抽象成图2的数学问题:已知AB∥CD,∠EAB=70°,∠ECD=105°,则∠AEC=.10.(2022秋•雅安期末)如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=60°,则∠E=.11.(2023秋•南岗区校级期中)已知:如图,AB∥CD,∠ABG的平分线与∠CDE的平分线交于点M,∠M=45°,∠F=64°,∠E=66°,则∠G=°.三.解答题12.(2022秋•宝丰县期末)已知直线MN、PQ,点A、B为分别在直线MN、PQ上,点C为平面内一点,连接AC、BC,且∠C=∠NAC+∠CBQ.(1)求证:MN∥PQ;(2)如图2,射线AE、BD分别平分∠MAC和∠CBQ,AE交直线PQ于点E,BD与∠NAC内部的一条射线AD交于点D,若∠C=2∠D,求∠EAD的度数.13.(2022秋•莘县期末)综合与实践如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD 于点F.(1)当所放位置如图①所示时,∠PFD与∠AEM的数量关系是∠PFD+∠AEM=90°;(2)当所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.14.(2022秋•洛宁县期末)问题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP =∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.15.(2023春•鼎城区期末)已知直线AB∥CD,点P为直线AB,CD所确定的平面内的一点.问题提出:(1)如图1,∠A=120°,∠C=130°,求∠APC的度数;问题迁移:(2)如图2,写出∠APC,∠A,∠C之间的数量关系,并说明理由;问题应用:(3)如图3,点E在射线BA上,过点E作EF∥PC,作∠PEG=∠PEF,点G在直线CD上,作∠BEG的平分线EH交PC于点H,若∠APC=20°,∠P AB=150°,求∠PEH的度数.16.(2023秋•南岗区校级期中)已知:如图,AB∥CD,直线EF分别交AB,CD于点G,H,点P为直线EF上的点,连接AP,CP.(1)如图1,点P在线段GH上时,请你直接写出∠BAP,∠DCP,∠APC的数量关系;(2)如图2,点P在HG的延长线上时,连接CP交AB于点Q,连接HQ,AC,若∠ACP+∠PHQ=∠CQH,求证:AC∥EF;(3)在(2)的条件下,如图3,CK平分∠ACP,GK平分∠AGP,GK与CK交点K,连接AK,若∠PQH=4∠PCK+2∠PHQ,∠CKG=∠CHQ,∠AKC+∠KAC=159°,求∠BAC的大小.17.(2023秋•道里区校级期中)已知:直线AB与直线CD内部有一个点P,连接BP.(1)如图1,当点E在直线CD上,连接PE,若∠B+∠PEC=∠P,求证:AB∥CD;(2)如图2,当点E在直线AB与直线CD的内部,点H在直线CD上,连接EH,若∠ABP+∠PEH=∠P+∠EHD,求证:AB∥CD;(3)如图3,在(2)的条件下,BG、EF分别是∠ABP、∠PEH的角平分线,BG和EF相交于点G,EF和直线AB相交于点F,当BP⊥PE时,若∠BFG=∠EHD+10°,∠BGE=36°,求∠EHD的度数.18.(2023秋•南岗区校级期中)已知,过∠ECF内一点A作AD∥/EC交CF于点D,作AB∥/CF交CE于点B.(1)如图1,求证:∠ABE=∠ADF;(2)如图2,射线BM,射线DN分别平分∠ABE和∠ADF,求证:BM∥DN;(3)如图3,在(2)的条件下,点G,Q在线段DF上,连接AG,AQ,AC,AQ与DN交于点H,反向延长AQ交BM于点P,如果∠GAC=∠GCA,AQ平分∠GAD,∠QAC=50°,求∠MP A+∠PQF的度数.19.(2023秋•南岗区校级期中)已知,射线FG分别交射线AB、DC于点F、G,点E为射线FG上一点.(1)如图1,若∠A+∠D=∠AED,求证:AB∥CD.(2)如图2,若AB∥CD,求证:∠A﹣∠D=∠AED.(3)如图3,在(2)的条件下,DI交AI于点Ⅰ,交AE于点K,∠EDI=∠CDE,∠BAI=∠EAI,∠I=∠AED=25°,求∠EKD的度数.20.(2023春•栾城区校级期中)【问题解决】:如图①,AB∥CD,点E是AB,CD内部一点,连接BE,DE.若∠ABE=40°,∠CDE=60°,求∠BED的度数;嘉琪想到了如图②所示的方法,请你帮她将完整的求解过程补充完整;解:过点E作EF∥AB∴∠ABE=∠BEF();∵EF∥AB,AB∥CD(已知);∴EF∥CD();∴∠CDE=()();又∵∠BED=∠BEF+∠DEF();∴∠BED=∠ABE+∠CDE();∵∠ABE=40°,∠CDE=60°(已知);∴∠BED=∠ABE+∠CDE=100°(等量代换);【问题迁移】:请参考嘉琪的解题思路,解答下面的问题:如图③,AB∥CD,射线OM与直线AB,CD分别交于点A,C,射线ON与直线AB,CD分别交于点B,D,点P在射线ON上运动,连接AP,CP,设∠BAP=α,∠DCP=β.(1)如图③,当点P在B,D两点之间运动时(点P不与点B,D重合),写出α,和∠APC之间满足的数量关系,并说明理由;(2)当点P在B,D两点外侧运动时(点P不与点B,D重合),请画出图形,并直接写出α,β和∠APC之间满足的数量关系.。
拐点问题配套练习
1.如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上,若∠1=72°,∠2=48°,则∠ABC=()A.24°B.120°C.96°D.132°
第1题图第2题图第3题图第4题图2.如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°
3.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°
4.如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD为()A.162°B.152° C.142° D.128°
5.把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°
第5题图第6题图第7题图第8题图6.如右图,AB∥CD,则下列式子一定成立的是()
A.∠1=∠3 B.∠2=∠3 C.∠1=∠2+∠3 D.∠3=∠1+∠2
7.直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()
A.60°B.50°C.40°D.30°
8.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20° B.30°C.35°D.55°
9.已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°
第9题图第10题图第11题图第12题图10.如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于()A.19°B.38°C.42°D.52°
11.如图,BC∥DE,若∠A=35°,∠C=24°,则∠E等于()
A.24°B.59°C.60°D.69°
12.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()
A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°
13.如图,若∠A+∠ABC=180°,则下列结论正确的是()
A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠2=∠4
第13题图第14题图第15题图第16题图
14.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20°B.30°C.40°D.70°
15.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()
A.132°B.134°C.136° D.138°
16.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°
17.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为()A.35° B.15°C.10°D.5°
第17题图第18题图
18.如图,AB∥EF,CD⊥EF,∠ACD=130°,则∠BAC=()
A.40°B.50°C.60°D.70°。