二氧化硅薄膜及其钝化
- 格式:ppt
- 大小:2.64 MB
- 文档页数:24
潆蛰方蘩躐终=鬟能建薄搂翡餮凳粳蕞表艇擒要灌液蕊矗巷饕辩蘩黪下,甏耀瀵襁获接謇农礁纯蒜潦簇鬻嚣鬻鬣懿载偬蓬鬻骥,惹潦襻薅佼镰表露煞键纯藤。
之麓漾麓{薯糖秀予纛徽镜(S掰)、畿藏散射谱(EDX)、俄歇奄子豁潜(AES)、薅立》}燮捺缀熊炎漤(vrtR)髓襞鼗黢薄黢避纾势爨。
稳接魏子萎鼗镜照片鼹示出雯援餐纯穗薄貘乏滋瓣碘纯辕袭瓣逐蓬跑羧平毽熊:麓量数蕊港裘凝薄膜楚}羟毯秘戴褥耪嚣鬃缎溅,原子帮分比为l:8,不是l:2;出饿歇滚予§£港褥知薄膜蛉乎埯生长逡察凳1.43A/rain。
翦鼗溪戆妻长逶震赣褥予薄骥鹣臻每髓菠蘩寝蕊;璃壹跨照争}变换党灌表媚猩赛西簸漆在纯学键。
溉矫由既薄旗制侔的金满一氯化韵~半导体绪鞫的拣遵翡最}霉强壤胃选芋。
8冁:/cm。
磨建《擞痞滚撩瀛赣覆幂蕊l备翡戴蘧建滩骥霹爨稼_趣夫勰摸繁残惫鼹辩穗缘爱。
魏终,鼗褒又骰了壶滚攘沉积搜零舞l餐瓣筏纯懿游貘在耋长藩擞犍瓣徽攘尖艘擐方嚣魈霹燮,结果袭躜,裁载化骥哥以援塞攥为生长耀嬲蛙镪镓酶/瓣豫镓擞探尖秘掩旗。
茨缝嚣;餮鬣懿煞蓰戆薄壤;x射线蘸鬃觳蘩谱;麓鼗魏擎嫠落;簿妻瓣螯接鼗熟爱潜LPD方藏铡作二载纯娃薄貘戆磷梵及其凌嚣AbstractOxygen—richsiliconoxidethinfilmusedaspassivationlayerofgalliumarsenidesurfacehasbeenpreparedbyliquidphasedeposition(LPD)澎temperature碡◇℃.The氇瓤filmhasbeenstudiedwithEnergyDispersiveX-rays蕊蛰X隽AugerElectronSpectroscopy(AES)andFourierTransformInfrared(FTIR)。
EDXspectra蓟慧粼thatthe攮in爨lmconsistsofSiandOelements,atomicratiois1:6,insteadof1:2。
表面钝化工艺surface passivation technology在半导体器件表面覆盖保护介质膜,以防止表面污染的工艺。
1959年,美国人M.M.阿塔拉研究了硅器件表面暴露在大气中的不稳定性问题,提出热生长二氧化硅(SiO2)膜具有良好的表面钝化效果。
此后,二氧化硅膜得到广泛应用。
60年代中期,人们发现二氧化硅膜不能完全阻挡有害杂质(如钠离子)向硅(Si)表面的扩散,严重影响MOS器件的稳定性。
以后研究出多种表面钝化膜生长工艺,其中以磷硅玻璃(PSG)、低温淀积二氧化硅、化学汽相淀积氮化硅(Si3N4)、三氧化二铝(Al2O3)和聚酰亚胺等最为适用。
直接同半导体接触的介质膜通常称为第一钝化层。
常用介质是热生长的二氧化硅膜。
在形成金属化层以前,在第一钝化层上再生长第二钝化层,主要由磷硅玻璃、低温淀积二氧化硅等构成,能吸收和阻挡钠离子向硅衬底扩散。
为使表面钝化保护作用更好并使金属化层不受机械擦伤,在金属化层上面再生长第三层钝化层。
这第三层介质膜可以是磷硅玻璃、低温淀积二氧化硅、化学气相淀积氮化硅、三氧化二铝或聚酰亚胺。
这种多层结构钝化,是现代微电子技术中广泛采用的方式。
对于钝化层的基本要求是:能长期阻止有害杂质对器件表面的沾污;热膨胀系数与硅衬底匹配;膜的生长温度低;钝化膜的组份和厚度均匀性好;针孔密度较低以及光刻后易于得到缓变的台阶。
磷硅玻璃及其生长工艺1964年,发现硅在热氧化过程中通入少量三氯氧磷蒸汽后生成的二氧化硅膜具有磷硅玻璃特性,能捕获钠离子和稳定钠离子的污染作用,大大改善了器件的稳定性。
适当增加磷的浓度还能降低膜的针孔密度,防止微裂,减少快态密度和平缓光刻台阶。
磷硅玻璃已成为重要的第二层钝化膜。
其不足之处是磷浓度较高时有极化和吸潮特性,浓度太低则不易达到流动和平缓台阶的作用。
另一种常用的生长磷硅玻璃的方法是化学汽相淀积法,即把磷烷PH3加到硅烷SiH4和氧的反应过程中,反应温度为400~500℃。
二氧化硅薄膜的制备及应用学号:************ **:**专业班级:应用物理指导老师:常启兵老师完成时间:2012-10-23 材料科学与工程学院摘要近年来,多孔Si02薄膜的制备及其性能表征的研究已成为材料相关领域的热点之一。
在众多的应用中,多孔Si02薄膜作为绝热材料的应用有着极其重要的意义,多孔Si02薄膜作为热绝缘材料层,用来阻隔硅基底中热电层上的热扩散。
本论文介绍了目前制备多孔Si02薄膜的主要工艺技术,对各工艺技术进行比较,对实验工艺进行了探索。
采用溶胶一凝胶法在硅基片上制备有隔热效果的多孔Si02薄膜材料,以正硅酸乙酯(TEOS)为原料,乙醇、乙二醇乙醚、异丙醇、水等为溶剂,再添加一定的有机添加剂、在碱催化条件下制备Si02溶胶,陈化后的胶体提拉成膜。
二氧化硅薄膜具有良好的硬度、光学、介电性质及耐磨、抗蚀等特性,在光学、微电子等领域有着广泛的应用前景,是目前国际上广泛关注的功能材料。
通过不同的实验条件制备出各种参数的薄膜,分析加水量的多少、溶胶配比、退火温度、陈化时间等因素对薄膜的影响。
凝胶在陈化过程发生的物理化学变化、对热处理工艺中对应力,毛细管力的处理方法、化学添加剂在干燥过程中的作用溶胶.凝胶法制备多孔Si02薄膜的最佳工艺进行了探讨。
经过实验分析讨论,得出正硅酸乙酯:H20=1:1.5时的加水量,采用混合溶剂的方法,用碱催化的方法,用真空干燥箱加速溶胶速度,采用分段方法进行加热,能够得到符合隔热要求的薄膜。
利用红外光谱分析、差热分析(DTA)、扫描电镜(SEM)、椭圆偏振仪等测试手段对薄膜的成分、表面形貌进行了分析,用粘度计测试了溶胶粘度变化、不同催化方式下的凝胶时间,用自制的设备测试了最终得到薄膜的热导率。
红外光谱分析表明所得薄膜的主要成分是Si02:差热分析结果表明从室温到250℃之间有大量的放热峰,是热处理中去除水和.OH基团最关键的时段,将这段时间的升温速度控制为0.5”C/min;椭圆偏振仪和扫描电镜(SEM)分析表明所得薄膜表面形貌良好,薄膜厚度为700-800rim;扫描电镜(SEM)分析表明薄膜由紧密排列的Si02颗粒组成,颗粒和孔径的大小为30-50nm;由通过椭圆偏振仪得到的折射率计算出薄膜的孔隙率为50%以上。
试析N型太阳能电池Al2O3薄膜钝化性能随着气候条件的不断恶化以及不可再生能源的不断开采,为了保证能源的持续利用,可再生能源受到青睐,尤其是太阳能不断被关注和利用。
但是由于其效率偏低且成本偏高,导致其利用率并未达到最大化。
为了进一步降低太阳能电池的生产成本并提高其转换效率,应用更薄的硅片成为太阳能行业的发展趋势。
随着硅片厚度的减薄,硅片的表面复合就越来越重要,因此需要开发更优异的表面钝化方法。
表面钝化的方法可以归纳为化学钝化和场效应钝化两类。
由于表面复合的速率直接与界面缺陷的密度相关,化学钝化是通过减少界面处的缺陷数量来达到减少表面复合速率的。
通常使用氢原子或一层薄的半导体膜来实现化学钝化作用,它们可以同未配位的原子(悬挂键)结合,从而减少界面缺陷密度。
场效应钝化是通过内建电场来减少硅片界面处电子或空穴的浓度从而达到表面钝化的作用。
由于复合过程需要同时有电子和空穴的存在,当两者在界面处的浓度在约同一个数量级(假定电子和空穴具有相同的捕获截面)时会达到最高的复合速率,其他情况下复合速率与界面处电子的浓度相关。
在场效应钝化中,硅片界面处的电子或空穴的浓度被界面处的内建电场屏蔽。
这种内建电场可以通过向界面下掺杂或是在界面处形成固定电荷来获得。
1 Al2O3薄膜的制备方法沉积Al2O3薄膜的方法有原子层沉积法(ALD)、等离子增益化学气相沉积法(PECVD)、溶胶凝胶法(Sol-gel)以及属于物理气相沉积的溅射法(sputtering)。
原子层沉积法分为热原子层沉积和等离子辅助原子层沉积,通常使用三甲基铝(TMA)为前驱体,使用水、臭氧或氧气作为氧化剂。
ALD工艺可以分为两个自限制的半反应。
每个半反应前驱原子通过精确地单个原子层的生长使表面达到饱和。
第一个半反应中TMA分子与吸附于表面的OH基团反应。
最后铝原子和甲基覆盖了表面,而沉积腔室中剩余的TMA分子将不再与表面反应。
用惰性气体或是氧气吹扫沉积腔室后,再进行第二个半反应,交替进行。
硅基板钝化二氧化硅
硅基板是一种用于制造集成电路和其他半导体器件的基础材料,通常由单晶硅或多晶硅制成。
它具有优良的电学特性、热稳定性和机械强度。
钝化是指在硅基板表面形成一层二氧化硅(SiO2)薄层。
这种薄层可以用来保护硅基板免受外界环境的侵蚀,同时还可以提供辅助功能,如调节表面能、调整介电常数等。
通常,钝化层是通过在硅基板表面暴露于氧气或水蒸气中进行氧化反应形成的。
二氧化硅是一种无机化合物,化学式为SiO2。
它是一种常见的材料,拥有很高的硬度和热稳定性。
在半导体制造中,二氧化硅常用作钝化层、绝缘层或光掩膜材料。
它也是制备硅基板上的微电子元件和微纳米结构的重要材料。
二氧化硅薄膜的制备及应用班级:08 微电子一班姓名:袁峰学号:087305136摘要:二氧化硅薄膜具有良好的硬度、光学、介电性质及耐磨、抗蚀等特性,在光学、微电子等领域有着广泛的应用前景,是目前国际上广泛关注的功能材料。
论述了有关二氧化硅薄膜的制备方法, 相应性质及其应用前景。
关键词:二氧化硅,薄膜,制备,应用,方法引言:二氧化硅具有硬度高、耐磨性好、绝热性好、光透过率高、抗侵蚀能力强以及良好的介电性质。
通过对各种制备方法、制备工艺的开发和不同组分配比对二氧化硅薄膜的影响研究,制备具有优良性能的透明二氧化硅薄膜的工作已经取得了很大进展。
薄膜在诸多领域得到了很好的应用,如用于电子器件和集成器件、光学薄膜器件等相关器件中。
利用纳米二氧化硅的多孔性质可应用于过滤薄膜、薄膜反应和相关的吸收剂以及分离技术、分子工程和生物工程等, 从而在光催化、微电子和透明绝热等领域具有很好的发展前景。
本文将对二氧化硅薄膜的制备、性能及其应用研究进行了综述。
1 二氧化硅( SiO2 )薄膜的制备针对不同的用途和要求,很多SiO2 薄膜的制备方法得到了发展与应用,主要有化学气相淀积,物理气相淀积,热氧化法,溶胶凝胶法和液相沉积法等。
1.1 化学气相淀积( CVD)1969 年,科莱特( Collett )首次利用光化学反应淀积了Si3N4 薄膜,从此开辟了光化学气相淀积法在微电子方面的应用。
化学气相淀积是利用化学反应的方式,在反应室内,将反应物(通常是气体)生成固态生成物,并淀积在硅片表面是的一种薄膜淀积技术。
因为它涉及化学反应,所以又称CVD (Chemical V apour Deposition )。
CVD 法又分为常压化学气相沉积(APCVD) 、低压化学气相沉积(LPCVD) 、等离子增强化学气相沉积(PECVD) 和光化学气相沉积等。
此外CVD 法制备SiO2 可用以下几种反应体系:SiH4-O2、SiH4-N2O、SiH2CI2-N2O、Si(OC2H5)4 等。