冲刷、波浪要素及安全超高计算
- 格式:xls
- 大小:195.00 KB
- 文档页数:33
兴宁市罗坝河塘堤加固工程堤顶超高值\堤岸冲刷深度计算详解摘要:以工程实例数据对堤防工程堤顶超高值、堤岸冲刷深度公式详细分解计算,说明堤防工程的设计的科学重要性。
关键词:工程简介波浪爬高波浪周期波长风壅增水高度冲刷深度兴宁市罗坝河塘堤加固工程位于兴宁市刁坊镇内,刁坊镇位于兴宁市东南部,面积58.01km2,工程围内由宁江河中游右岸及樟坑沥回水支堤组成,总长7.9km,围内集雨面积12.4km2,现有耕地0.55万亩,人口1.32万人。
全镇工业总产值17135万元,农业总产值16589.48万元。
交通便利,有S225线、河梅高速公路及广梅汕铁路等穿过。
一、堤防堤顶超高值计算该工程的堤顶超高值均按《堤防工程设计规范》(GB50286—98)中的有关公式和有关规定进行计算。
堤顶超高的计算公式为:Y=R+e+A (1)式中Y——堤顶超高(m);R——设计波浪爬高(m);e——设计风壅增水高度(m);A——安全加高(m)。
本工程为不允许越浪的4级堤防工程,查本规范表2.2.1可知,A取值为0.6m。
设计波浪爬高R和设计风壅增水高度e均按本规范附录C中的公式和有关规定进行计算。
由于该工程堤线较长,堤的走向变化复杂,故选取工程中较有代表性的堤段进行计算。
(一)、宁江河主堤段(神光沥出口至樟坑沥出口)该堤段采用护坡式,堤外坡(迎水面)坡比为1:2.0。
由于堤线较长,只能选取水深较深,水域较宽的典型断面进行计算。
1、风浪要素的确定风浪要素的计算公式为:其中不规则波的波长为式中——平均波高(m);——平均波周期(S);V——计算风速(m/s);F——风区长度(m);d——水域的平均水深(m);g——重力加速度(9.81m/s2);tmin——风浪达到稳定状态的最小风时(S);L——波长(m)。
该堤段中,计算风速V=16m/s,水域平均水深d=8.25米,风区长度F=97米,风向按垂直于堤线计。
根据这些已知条件,利用公式(2)可求得波浪的平均高H。
关于波浪超高的计算
波浪的超高对于外海建筑物的结构,标高,外力等都有很大影响.我国海港水文规范波浪对桩柱作用一节中对于静水面以上的波峰高度ηmax 的数值可以查图计算,则波浪的超高△h 可以借用△h=ηmax-H/2来计算.但波峰高度的ηmax 的图是由斯托克斯二阶波理论和椭余波理论的平均值绘制的,在实际计算中,对于有些坡偏大.有些波偏小.例如当H/d=0.3时,Ah/H 的值用椭余波理论计算的则比用规范上的ηmax 图表计算出来的大0.04,假如波面高为7m,则△h 相差28cm,显然误差太大了.我们认为用ηmax 图表计算超两是不科学的,应该按不同波浪要素对应的波浪理论来计算波浪的超高.。
目录1、工程概况 (2)2、计算依据 (3)3、设计计算 (4)3.1堤顶高程的确定 (4)3.2冲刷计算 (6)3.3跌坎消能防冲计算 (7)3.4消力池后水流流速计算.......................... 错误!未定义书签。
3.5堤防稳定计算 (9)3.6暗涵过流能力计算 (12)1、工程概况智慧公园(A06-4/04号地块)明渠工程开发任务为防洪,同时具有岸坡治理、水土保持、美化环境等效益。
涉及河流为跃进河。
工程起于礼博路,终点为金通大道,治理河道长度为855.78m,新建堤防工程639.72m,穿路暗涵2处135.56m,跌水80.50m。
根据中华人民共和国国家标准《防洪标准》(GB50201-2014)之规定,本区域河道防洪标准应为100年一遇。
穿公路桥涵洪水标准提高一档考虑,采用200年一遇,相应评价标准采用200年一遇。
根据《防洪标准》(GB50201-2014)和《堤防工程设计规范》(GB50286-2013)规定,堤防工程级别为2级,主要建筑为2级,次要建筑物级别为3级,施工临时建筑物为4级。
按上述确定的工程等别及建筑物级别,本工程等别为Ⅱ等,工程类别为防洪工程,根据《水利水电工程合理使用年限及耐久性设计规范》(SL654-2014)表3.0.2的规定,确定工程合理使用年限为50年。
《水利工程建设标准强制性条文》(2020年版)《防洪标准》(GB50201-2014)《水利水电工程等级划分及洪水标准》(SL252-2017)《城市防洪工程设计规范》(GB/T50805-2012)《河道整治设计规范》(GB50707-2011)《堤防工程设计规范》(GB50286-2013)《水工挡土墙设计规范》(SL379-2007)《水利水电工程边坡设计规范》(SL386-2016)《水工混凝土结构设计规范》(SL191-2008)《建筑地基基础设计规范》(GB50007-2011)《水工建筑物荷载设计规范》(SL744-2016)《水工建筑物抗震设计标准》GB51247-2018《堤防工程管理设计规范》(SL/T171-2020)《水利水电工程施工组织设计规范》(SL303-2017)《水利水电工程设计洪水计算规范》(SL44-2006)《水利水电工程水文计算规范》(SL278-2020)《重庆两江新区城市管理局关于礼嘉智慧公园A06-4/06号地块(礼博路社区公园)项目河道综合整治工程洪水影响评价的审查意见》(渝两江城管发【2022】5号)3.1堤顶高程的确定1、安全加高的确定本工程堤防工程等别为2级,根据《堤防工程设计规范》(GB50286-2013),堤防工程安全加高值应根据堤防工程的级别和防浪要求确定,均按允许越浪的护岸工程,确定安全加高值均为0.4m 。
5.4 堤顶高程石川河阎良区段防洪工程防洪标准为50年一遇洪水,相应为2级堤防工程。
根据《堤防工程设计规范》(GB50286-98)要求,设计堤顶高程为设计洪水位加超高,超高为波浪爬高、风壅增高及安全加高三者之和。
(1)堤顶超高按下式计算:Y=R+e+A式中:Y ——堤顶超高(m); R ——设计波浪爬高(m); e ——设计风壅增水高度(m) A ——安全加高,取0.8(m)。
波浪的平均波高和平均波周期采用莆田公式计算:平均波高: 平均波周期:T m =4.438h m 0.5 式中: h m —平均波高,m ; T m —平均周期,s ;V —计算风速,m/s ;石川河历年汛期最大风速平均值的1.5倍(24m/s );D —风区长度,165m ; H m —水域平均水深,3.3m ; g —重力加速度,取9.81m/s 2。
⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=])(7.0[13.0)(0018.0])(7.0[13.07.0245.027.022V gH tg V gD th V gH th V gh m m m平均波长: L m =式中: L m —平均波长,m ; T m —平均波周期,s 。
(2)当m =1.5~5时,设计波浪爬高R p 按下式计算:式中:R P —累积频率为P 的波浪爬高(m);K △—斜坡的糙率,草皮护坡取0.85;K V —经验系数,可根据风速V(m/s)、堤前水深d(m)、重力加速度g(m/s 2)组成的无维量gd V / 确定;K P —爬高累积频率换算系数,对不允许越浪的堤防,爬高累积频率宜取2%;m =ctga,根据边坡比m=3; h m —堤前波浪的平均波高(m); L m —堤前波浪的波长(m)。
(3)设计风雍增水高度e 按下式计 算:式中:e —计算点的风壅水面高度(m);K —综合摩阻系数,取K=3.6×10-6;V —设计风速,按计算波浪的风速确定,取24m/s ; F —由计算点逆风向量到对岸的距离,165(m);)2(22mLH th m gT m ππmm P L h mK K K R 21+=P ∆νβ=cos 22gdFkV ed —水域的平均水深3.3(m);β—风向与垂直于堤轴线的法线的夹角,23o 。
1、工程等级划分及洪水标准根据《水闸设计规范》SL265-2001对工程规模的划分规定,确定本工程等别为IV 等,主要建筑物按4级设计,本设计确定防洪标准为20年一遇。
2、闸顶高程、闸门高程确定根据《水闸设计规范》,闸顶高程需根据水闸挡水和过水两种运用情况确定。
外江(西小江)设计洪水位为20年一遇高水位5.10m (钱清站),常水位为3.9m ;内河20年一遇设计洪水位5.38m (萧山站),常水位水位3.9m 。
2.1闸顶高程挡水运用情况闸顶高程需满足:闸顶高程≥正常蓄水位(或最高挡水位)+波浪计算高度+相应安全超高,泄水运用情况闸顶高程需满足:闸顶高程≥设计洪水位(或校核洪水位)+相应安全超高; ⑴波浪要素计算年最大风速v 0=22.5m/s 风区长度 D=80m 风区平均水深H m =3.9m根据SL265-2001规范规定,采用下列公式计算波浪要素:⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛=7.02045.0207.020207.013.00018.07.013.0v gH th v gD th v gH th v gh m mm5.02009.13⎪⎪⎭⎫ ⎝⎛=v gh v gT m mmm m L H th gT L ππ222=计算得平均波高h m =0.11m平均波周期T m =1.49s 平均波长L m =3.46m本工程主要建筑级别为4级,波浪累计频率为p=10%, 由h m /H m =0.11/4.02≈0.0,故计算波高h p=5%=0.11×1.71=0.188m ⑵闸顶高程确定挡水工况:闸顶高程≥(正常蓄水位)或最高挡水位+波浪计算高度+相应安全超高外江常水位3.9m ,安全超高为0.3m外江20年一遇设计洪水位5.10m ,安全超高值0.2m 正常蓄水位情况闸顶高程:m d 388.430.0188.09.3=++=∇ 最高当水情况闸顶高程:m c 488.52.0188.01.5=++=∇ 泄水工况:闸顶高程≥设计洪水位+相应安全超高 内河设计洪水位5.38m ,安全超高值0.5m , 故:泄水工况闸顶高程:m d 88.550.038.5=+=∇ 即:取闸顶高程为m 0.6=∇。
波浪力计算公式引言:波浪力是指波浪对于物体施加的力量,它是海洋工程中一个重要的参数。
通过对波浪力进行准确的计算,可以帮助我们设计和构建海洋结构物,预测其受力情况,从而确保结构的安全性和稳定性。
本文将介绍波浪力的计算公式及其应用。
一、波浪力的定义波浪力是波浪作用在物体上的力量,它的大小与波浪的高度、周期、波浪传播方向以及物体的形状和尺寸等因素有关。
波浪力的计算是海洋工程中的一个重要问题,也是一项挑战性的任务。
二、波浪力的计算公式波浪力的计算公式可以用以下公式表示:F = 0.5 * ρ * g * H^2 * L其中,F为波浪力,ρ为水的密度,g为重力加速度,H为波浪高度,L为波长。
三、波浪力的应用波浪力的计算在海洋工程中有着广泛的应用。
例如,在设计海洋平台、堤坝、海底管道等结构物时,需要考虑波浪对这些结构物施加的力量。
通过使用波浪力计算公式,可以预测结构物在不同波浪条件下的受力情况,从而指导工程设计和施工过程。
在海洋工程中,波浪力的计算还可以用于预测海洋结构物的疲劳寿命。
由于波浪力是结构物受力的主要因素之一,通过对波浪力进行准确的计算,可以评估结构物的疲劳损伤程度,为结构物的维护和修复提供依据。
波浪力的计算还可以应用于海洋能利用领域。
波浪能和潮汐能是海洋能资源中的两个重要组成部分。
通过准确计算波浪力,可以评估波浪能装置的性能和效益,为海洋能的开发和利用提供科学依据。
四、波浪力计算的挑战和改进尽管波浪力的计算公式已经相对成熟,但在实际应用中仍然存在一些挑战。
例如,波浪力的计算需要准确测量波浪的高度、周期和波长等参数,这对于海洋工程来说是一项技术难题。
另外,波浪力的计算还需要考虑波浪与结构物之间的相互作用,这也增加了计算的复杂性。
为了解决这些问题,研究人员正在不断改进波浪力的计算方法。
一方面,他们致力于改进波浪参数的测量技术,例如利用遥感技术和数值模拟方法来获取更准确的波浪参数。
另一方面,他们还在研究波浪与结构物之间的相互作用机理,以提高波浪力计算的准确性。
附录C 波浪计算C.1 波浪要素确定C.1.1 计算风浪的风速、风向、风区长度、风时与水域水深的确定,应符合下列规定:1 风速应采用水面以上10m 高度处的自记10min平均风速。
2 风向宜按水域计算点的主风向及左右22.5°、45°的方位角确定。
3 当计算风向两侧较宽广、水域周界比较规则时,风区长度可采用由计算点逆风向量到对岸的距离;当水域周界不规则、水域中有岛屿时,或在河道的转弯、汊道处,风区长度可采用等效风区长度Fe,Fe可按下式计算确定:式中ri——在主风向两侧各45°范围内,每隔Δα角由计算点引到对岸的射线长度(m);αi——射线ri与主风向上射线r0之间的夹角(度),αi=i×Δα。
计算时可取Δα=7.5°(i=0,±1,±2,…,±6),初步计算也可取Δα=15°(i=0,±1,±2,±3),(图C.1.1)。
图C.1.1 等效风区长度计算4 当风区长度F小于或等于100km 时,可不计入风时的影响。
5 水深可按风区内水域平均深度确定。
当风区内水域的水深变化较小时,水域平均深度可按计算风向的水下地形剖面图确定。
C.1.2 风浪要素可按下列公式计算确定:式中——平均波高(m);——平均波周期(s);V——计算风速(m/s);F——风区长度(m);d——水域的平均水深(m);g——重力加速度(9.81m/s2);tmin——风浪达到稳定状态的最小风时(s)。
C.1.3 不规则波的不同累积频率波高Hp与平均图C.1.1 等效风区长度计算波高之比值Hp/可按表C.1.3-1确定。
表C.1.3.1 不同累积频率波高换算不规则波的波周期可采用平均波周期表示,按平均波周期计算的波长L 可按下式计算,也可直接按表C.1.3-2确定。
表C.1.3.2 波长~周期~水深关系表L=f(T,d)续表 C.1.3.2C.1.4 设计波浪推算应符合下列规定:1 对河、湖堤防,设计波浪要素可采用风速推算的方法,并按本附录第C.1.2条计算确定。
安全超高计算公式安全超高这个概念,在很多工程领域里那可是相当重要的。
比如说水利工程啦、道路交通工程啦等等。
先来讲讲啥是安全超高。
简单说,就是为了应对一些可能出现的意外情况,在原本设计的高度之上额外增加的那一部分高度。
这就好比你去爬山,明明觉得自己能轻松爬到山顶,但还是多带了一瓶水,以防万一嘛,这多带的一瓶水就有点像安全超高的作用。
那安全超高到底咋算呢?这可没有一个能包打天下的公式。
不同的工程,不同的环境条件,那计算公式都不太一样。
就拿水利工程来说吧,安全超高的计算得考虑好多因素。
像是洪水的频率和大小、风浪的影响、坝体的结构和材料等等。
比如说一个水库大坝,要是处在一个经常有大风大浪的地方,那安全超高就得算得多一些,不然一个大浪打过来,水就漫过坝顶了,那可就危险啦!我记得有一次去参观一个在建的水利工程。
当时工地上热火朝天的,各种机器轰鸣。
我看到工程师们拿着图纸,在那认真地讨论安全超高的计算。
他们一会儿看看测量数据,一会儿又在计算器上按来按去,那股认真劲儿,让我印象特别深刻。
在道路交通工程里,安全超高的计算又有不同的考虑。
比如道路的弯道半径、车辆的行驶速度。
如果弯道很急,车速又快,那安全超高就得足够大,这样车子在转弯的时候才不容易侧翻。
再比如说建筑工程,要是盖个高层大楼,考虑安全超高的时候就得想想地震的影响、风压等等。
万一遇到个大风天或者小地震,大楼可不能出问题。
总之,安全超高的计算公式不是一成不变的,得根据具体的情况来灵活运用。
这就要求工程师们有扎实的专业知识,丰富的实践经验,还得特别细心,一个小数据算错了,都可能带来大麻烦。
所以说啊,搞工程可不是一件简单的事儿,每个细节都得考虑周全,才能保证咱们的工程安全可靠,让大家都能放心使用。
这安全超高的计算,就是其中一个重要的环节,可不能马虎!。
水闸的波浪要素计算(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)水闸波浪要素计算波浪要素可根据水闸运用条件,计算情况下闸前风向、风速、风区长度、风区内的平均水深等因素计算。
波浪压力应根据闸前水深和实际波态进行计算。
(1)平原、滨海地区水闸按莆田试验站公式计算20Vgh m和0V gT m:⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛=7.02045.0207.020207.013.00018.07.013.0v gH th v gD th v gH th v gh m mm (1) 5.02009.13⎪⎪⎭⎫ ⎝⎛=v gh v gT m m(2)式中 h m ——平均波高,m ;V 0——计算风速,m/s ,可采用当地气象台站提供的30年一遇10min 平均最大风速;D ——风区长度,m ,当对岸最远水面距离不超过水闸前沿水面宽度5倍时,可采用对岸至水闸前沿的直线距离;当对岸最远水面距离超过水闸前沿宽度5倍时,可采用水闸前沿水面宽度的5倍;H m ——风区内的平均水深,m ,可由沿风向的地形剖面图求得,其计算水位与相应计算情况下的静水位一致;T m ——平均波周期,S 。
(2)根据水闸级别,由下表查得水闸的设计波列累积频率P (%)值。
表1 P 值表(3)累积频率为P (%)的波高h P 与平均波高h m 的比值可由下表查得,从而计算出h P 。
表2 h p 与h m 的比值(4)按下式计算平均波长L m 值m m m L H thgT L ππ222= (3) 式中 H ——闸前水深,m 。
平均波长L m 值也可由下表查得。
表3 Lm 值标签:波长波高周期风区长度计算风速累积频率第34卷第4期广东海洋大学学报V ol.34 No.42021年8月Journal of Guangdong Ocean University Aug. 2021收稿日期:2021-03-17基金项目:广东省博士启动项目(1209386,广东海洋大学博士启动项目(E11098一种近岸波浪动能发电装置童军杰1,凌长明1,马晓茜2(1. 广东海洋大学工程学院,广东湛江524006;2. 华南理工大学电力学院广东广州510641摘要:设计了一种近岸波浪动能发电设备,其特有的双通道结构可将海水的双向流动转化为叶轮的单向旋转。
V(m/s)F(m)d(m)m β(°)K ΔA(m)6200 2.20760.80.5H(m)T(s)t min (s)L(m)Kv Kp R 00.039
0.876
354.868
1.198
1.012
1.640
1.24
A B C 假设 L 计算 L ΔL V/(gd)^0.5
0.05897
0.18244
1.43295 1.198
1.198
0.000
11.2921.511.52K Δ-----斜坡的糙率渗透性系数β-----风向与坝轴法线夹角 2.5K p -----爬高累积频率换算系数
t min -----风浪稳定时最小风时33.545
光滑不透水护面(沥青混凝混凝土或混凝土板草皮砌石
抛填两层块石(不透水基础抛填两层块石(透水基础)
四脚空心方块(安放一层)四脚锥体(安放二层)扭工字块体(安放二层)
L------平均波长e-----风雍水面度K-----综合摩阻系数Kw------经验系数
m-----坡度系数
R0、Rp----波浪爬高
计算公式区
护面
KΔ)
V------计算风速F-----风区长度d-----水域平均水深H------平均波高T-----平均波周期A-----安全超高L 值 辅助计算区
Kv 值 辅助计算区
名词解释区
堤防高程计算 (莆田试验公式)
单变量求解
(体(值 公式)。
海堤波浪要素及安全超高计算海堤是指建筑在海岸线上的一种结构工程,主要用于保护陆地免受海浪冲击。
对于海堤的设计和构建,需要考虑波浪的多个要素以及安全超高的计算。
1.波浪要素在设计海堤时,需要考虑以下几个重要的波浪要素:1.1引起海堤冲击的波浪高度(H):波浪高度是指波浪顶部与静水面的垂直距离,通常采用H1/3、H1/10或H1/100来表示。
选择适当的波浪高度可以确保海堤能够抵御常见的波浪冲击作用。
1.2波浪周期(T):波浪周期是指相邻波浪通过其中一点所需的时间,也叫波浪间隔。
不同的波浪周期对于海堤的冲击力有不同的影响。
1.3波浪方向(θ):波浪方向是指波浪传播的方向,通常是以度数表示。
波浪方向的不同会导致不同的波浪冲击力,需要进行准确测量和分析。
1.4波浪频率(f):波浪频率是指单位时间内波浪通过其中一点的次数,通常以波浪周期的倒数表示。
波浪频率越高,对海堤的冲击力就越大。
安全超高是指海堤的高度要超过理论波浪高度与预测洪水水位之和,以防止海水溢出堤体而对陆地造成伤害。
通常根据不同的海堤用途和地理条件,安全超高计算可分为以下几个步骤:2.1确定理论波浪高度:根据所在地域的波浪历史资料和波浪预报,通过数学模型计算得出预测的理论波浪高度。
2.2确定预测洪水水位:通过对该地区历史降雨和洪水资料的分析,结合水文数据模型,得出预测的洪水水位。
2.3确定安全超高:理论波浪高度与预测洪水水位之和即为安全超高。
根据该数值,设计海堤的高度应该超过此数值,以确保堤体的安全性。
3.其他考虑因素除了波浪要素和安全超高外,设计和构建海堤还需要考虑其他因素,如土质条件、地理特征、地震风险等。
这些因素将直接影响到海堤的稳定性和抗冲击能力。
综上所述,海堤设计和构建需要综合考虑波浪要素和安全超高计算,以确保海堤能够有效地抵御海浪冲击并保护陆地安全。
同时,还需要考虑其他因素的影响,确保海堤的稳定性和可靠性。
海堤的设计和施工需要专业的工程师和科学家共同合作,结合实际情况进行准确计算和方案制定。
附录C 波浪计算C.1 波浪要素确定C.1.1 计算风浪的风速、风向、风区长度、风时与水域水深的确定,应符合下列规定:1 风速应采用水面以上10m 高度处的自记10min平均风速。
2 风向宜按水域计算点的主风向及左右22.5°、45°的方位角确定。
3 当计算风向两侧较宽广、水域周界比较规则时,风区长度可采用由计算点逆风向量到对岸的距离;当水域周界不规则、水域中有岛屿时,或在河道的转弯、汊道处,风区长度可采用等效风区长度Fe,Fe可按下式计算确定:式中ri——在主风向两侧各45°范围内,每隔Δα角由计算点引到对岸的射线长度(m);αi——射线ri与主风向上射线r0之间的夹角(度),αi=i×Δα。
计算时可取Δα=7.5°(i=0,±1,±2,…,±6),初步计算也可取Δα=15°(i=0,±1,±2,±3),(图C.1.1)。
图C.1.1 等效风区长度计算4 当风区长度F小于或等于100km 时,可不计入风时的影响。
5 水深可按风区内水域平均深度确定。
当风区内水域的水深变化较小时,水域平均深度可按计算风向的水下地形剖面图确定。
C.1.2 风浪要素可按下列公式计算确定:式中——平均波高(m);——平均波周期(s);V——计算风速(m/s);F——风区长度(m);d——水域的平均水深(m);g——重力加速度(9.81m/s2);tmin——风浪达到稳定状态的最小风时(s)。
C.1.3 不规则波的不同累积频率波高Hp与平均图C.1.1 等效风区长度计算波高之比值Hp/可按表C.1.3-1确定。
表C.1.3.1 不同累积频率波高换算不规则波的波周期可采用平均波周期表示,按平均波周期计算的波长L 可按下式计算,也可直接按表C.1.3-2确定。
表C.1.3.2 波长~周期~水深关系表L=f(T,d)续表 C.1.3.2C.1.4 设计波浪推算应符合下列规定:1 对河、湖堤防,设计波浪要素可采用风速推算的方法,并按本附录第C.1.2条计算确定。
参考规范:《堤防工程设计规范GB50286-98》
计算风速V m/s
15风区长度F m 500水域平均水深d
m 4.5平均波高H m #NAME?平均波周期T
s #NAME?风浪达到稳定的最小风时tmin
s
#NAME?H/d #NAME?Hp/H
1.82不同频率波高Hp
m #NAME?假设波长L m 4.9762889计算波长m #NAME?平均波长
m
4.976综合摩阻系数K
0.0000036
风向与堤轴线法向量夹角β
°0夹角弧度θ0风浪壅高e
m
0.005越浪选择允许断面型式复合坡率上坡率m1 2.00下坡率m2 2.00洪水位m 334.00平台高程m 332.00平台水深dw m 2.000平台宽度B m
2.0复合坡率me
-2.68K Δ
0.9V/(gd)^0.5
2.26Kv #NAME?Kp
#NAME?斜坡坡率m
2.0R0
m #NAME?波浪爬高R1m #NAME?波浪爬高R2m #NAME?波浪爬高R3m #NAME?波浪爬高Rp
m #NAME?K β
1波浪爬高R13%
m
#NAME?
堤防计算
提防级别4
安全加高A m0.3
堤顶超高Y m#NAME?
=======================================================
#NAME?
允许单一坡率
不允许复合坡率
12345
10.80.70.60.5
0.50.40.40.30.3。