镁合金加工工艺流程以及切削加工要点
- 格式:doc
- 大小:36.00 KB
- 文档页数:10
镁合金生产工艺流程
镁合金生产工艺流程主要包括原材料准备、熔炼制备、浇铸成型、热处理和表面处理等环节。
首先,原材料准备。
镁合金的主要原材料是镁及其合金中的其它金属元素,包括镁粉、纯镁、锌、锰、铝等。
这些原材料需要经过矿石选矿、粉碎筛分等步骤,保证原材料的纯度和粒度,以便后续的熔炼制备。
其次,熔炼制备。
将准备好的原材料按照一定比例混合,然后放入电炉或真空炉中进行熔炼。
熔炼时需要控制熔炼温度、熔炼时间和气氛成分等参数,以保证熔炼获得的合金成分符合要求。
然后,浇铸成型。
将熔融的镁合金倒入模具中,经过凝固和冷却,使其形成所需的工件、铸件或半成品。
浇注时需要避免气体和杂质的混入,以及温度的过快或过慢,以免引起缺陷和变形。
接下来,热处理。
这一步骤用于改善镁合金的组织和性能。
常见的热处理方法包括固溶处理、时效处理和变形热处理等。
固溶处理用于溶解合金中的析出相,提高合金的塑性和韧性;时效处理用于产生弥散弱化相,提高合金的强度和硬度;变形热处理用于通过塑性变形和热处理相结合的方式来改善合金的组织和性能。
最后,表面处理。
根据具体需求,镁合金的表面可以进行防腐
蚀处理、电镀、喷涂、阳极氧化等。
这些处理可以提高镁合金的耐蚀性、外观质量和装饰效果,从而满足不同应用领域的需求。
总之,镁合金生产工艺流程包括原材料准备、熔炼制备、浇铸成型、热处理和表面处理等环节。
每个环节都需要严格控制工艺参数,以确保生产出符合要求的镁合金产品。
镁合金操作工安全操作规程(6篇范文)第1篇镁合金操作工安全操作规程1.对镁合金进行车、铣、刨、钻等切削加工时,必须正确选择刀具的几何角度和切削用量,避免产生很大的摩擦和切削力,防止温度显著升高而引起的燃烧。
2.所使用刀具应符合下列要求:(1)应有足够断屑空间,采用齿数少、排屑槽宽、螺旋角大的刀具;(2)应采用锋利和前后角较大的刀具。
3.尽量采用大的吃刀量和光刀量,一般不宜选用小于0.05毫米的进给量。
4.钻孔时应经常把切屑排出,防止切屑打卷和堵塞钻头排屑槽以及与零件产生的摩擦。
5.切削时应尽量不采用冷却液,如必须冷却时,应用矿物油冷却。
冷却油不应有酸水,不得使用油水混合冷却液(如乳化液)。
6.在切削过程中当走刀停止时,注意必须立即将刀具退出,防止刀具与工件摩擦使温度升高,产生燃烧。
7.不准在机床上下或工作地点附近堆积镁合金切屑。
切屑应收集并放入专用铁箱内。
干、湿切屑必须分开存放。
箱内切屑必须当日清除运出车间。
8.镁合金加工地点不得存放易燃物品和堆积大批镁合金零件。
9.工作地点应备有防火用干砂和干铸铁粉。
注意砂中或铸铁粉内不得有镁合金切屑。
10.万一发生燃烧应立即切断电源,用干砂或干铸铁粉扑灭,并尽可能把切屑及时取出,禁止用水和泡沫灭火机灭火。
11.镁合金加工机床应与加工黑色金属的机床隔离开来。
墙壁上粘积的镁屑要经常清除,以防燃烧。
第2篇镁合金金工安全操作规程1.对镁合金进行车、铣、刨、钻等切削加工时,必须正确选择刀具的几何角度和切削用量,避免产生很大的摩擦和切削力,防止温度显著升高而引起的燃烧。
2.所使用刀具应符合下列要求:(1)应有足够断屑空间,采用齿数少、排屑槽宽、螺旋角大的刀具;(2)应采用锋利和前后角较大的刀具。
3.尽量采用大的吃刀量和光刀量,一般不宜选用小于0.05毫米的进给量。
4.钻孔时应经常把切屑排出,防止切屑打卷和堵塞钻头排屑槽以及与零件产生的摩擦。
5.切削时应尽量不采用冷却液,如必须冷却时,应用矿物油冷却。
镁合金外壳制作工艺流程本文档旨在介绍镁合金外壳制作的工艺流程,以帮助读者了解该过程的步骤和操作要点。
1. 材料准备首先,需要准备以下材料和设备:- 镁合金材料- 模具- 手动或自动剪切机- 冷却液- 研磨机和磨料2. 切割和预加工2.1 切割将镁合金材料根据需求的尺寸使用手动或自动剪切机进行切割。
确保切割时刀具锋利,避免产生过多的切割痕迹。
2.2 预加工在切割完成后,对镁合金外壳的边缘和表面进行预加工。
使用研磨机和适当的磨料对切割边缘进行修整,以确保边缘光滑且无毛刺。
3. 模具制作和注塑成型3.1 模具制作根据所需的外壳形状和尺寸,制作适用的模具。
如果需要,可以寻求专业模具制作厂商的帮助。
3.2 注塑成型将处理好的镁合金材料放入模具中,然后使用注塑设备将其加热并注入模具中。
确保模具充满,并使镁合金材料完全填充模具的每一个细节。
4. 冷却和固化注塑成型完成后,将模具放置在冷却液中,以降低温度并加快固化过程。
确保完全固化后才移除模具。
5. 后处理在固化完成后,进行必要的后处理步骤,如去除模具痕迹、打磨表面等,以提高外壳的质量和外观。
6. 检验和质量控制最后,对制作好的镁合金外壳进行检验和质量控制。
检查外壳的尺寸、表面质量和强度等参数,确保符合设计要求和标准。
以上为镁合金外壳制作的简要工艺流程介绍,其中的具体细节和步骤可能因使用的设备和具体要求而有所不同。
在实际操作过程中,请遵循相关安全规范和操作指南,并根据实际情况适当调整工艺流程。
(字数:243)。
镁合金锻造工艺流程(一)镁合金锻造工艺流程(一)(1)坯料准备镁合金锻造用的原材料有铸锭和挤压毛坯。
为了保证毛坯在锻造时具有较高塑性以及保证成品零件具有必要的力学性能,大多数情况下都采用挤压毛坯。
在锻造大型模锻件时,由于采用大截面的挤压毛坯有困难,才采用铸锭作为锻造毛坯。
目前镁合金铸锭多采用半连续浇注的方法制造。
半连续浇注由于结晶速度高,铸锭的结晶组织比较均匀,柱状晶区域不大,铸锭中化学成分均匀,氧化膜和夹杂少。
此外,铸锭的补缩条件好,中心没有疏松,因此沿整个橫截面都具有较高的塑性。
镁合金铸锭宏观组织的均匀程度还与合金中所含合金元素种类和含量有关,例如,镁锰系合金(MB1 MB8)在铸锭结晶时,形成柱状晶和粗大结晶组织的倾向性较大,对MG-CE系合金(MB14)而言,CE和MG形成高熔点的金属间化合物MG9CE,细小分散的MG9CE 质点可作为结晶时的核心而细化晶粒,并在晶界上起着阻碍柱状晶长大的作用,从而柱状晶区域不大且结晶组织均匀。
镁合金中所含的氯化物,氧化物和氮化物等非金属夹杂,会使金属完整性受到局部破坏,降低合金的塑性,并在半成品锻件和模锻件中形成缺陷,另外,镁合金具有吸氢特性,在熔炼和浇注时,镁合金中有大量溶解的氢气随着铸锭缓慢冷却而析出,导致铸锭内形成气泡,大大降低合金的力学性能,特别是伸长率和断面收缩率,因此,为了保证镁合金铸锭的质量,除了用半连续浇注的方法外,还必须严格控制熔炼和浇注条件。
镁合金挤压坯料的各向异性较铝合金的严重,为了获得力学性能均匀的锻件,应尽可能减少挤压坯料力学性能各向异性,并在锻造过程中采用“十字”锻造法,使毛坯交替地进行镦粗和拔长,调整毛坯中的晶体取向,使各个方向力学性能均匀。
镁合金下料可在圆盘锯或车床上进行,而不宜采用剪床下料,以防在切口处形成裂纹,除了MB2 MB15外,一般不推荐在热态下剁切,铸锭在锻造前应进行表面机械加工,对坯料或棒料也应检查并消除表面缺陷,以防在锻造中开裂,MB15挤压棒中常有粗晶环,锻前应进行扒皮,由于镁屑易燃,下料速度应缓慢,切削时不用润滑剂和冷却液,以防镁屑燃烧和毛坯受到腐蚀,切屑要单独存放,工作场地要清洁,以防爆炸。
镁合金加工简介镁合金是一种轻质高强度金属材料,被广泛应用于汽车、航空、导弹、电子等行业。
由于其良好的机械性能和耐腐蚀性能,镁合金具有很大的应用潜力。
本文将介绍一些关于镁合金的加工方法。
一、铸造加工铸造是一种常见的镁合金加工方法。
主要有两种铸造方法:压力铸造和重力铸造。
压力铸造主要是指高压钢模压铸和低压钢模压铸,适用于大量生产的高精度铸件。
重力铸造主要是指砂型铸造、常压铸造、真空铸造,适用于各种形状和大小的铸造件加工。
二、挤压加工挤压加工是一种适用于生产轴类、管类和板类工件的方法。
这种方法可以控制加工后的尺寸精度和机械性能,并且可以根据需要进行深加工,提高工件的应用性能。
挤压加工主要包括直接挤压和间接挤压两种方法。
锻造加工是一种可以控制铸造铝合金晶粒大小和晶内组织的方法。
锻造可使铝合金变得更加均匀致密、强度和硬度更高,并且可以改善其耐疲劳性。
锻造加工分为两种,即热力成型和冷机臂成型。
四、拉深加工拉深加工是一种适用于生产高度为尺寸的工件的方法。
利用该方法,可以将板材或管材拉伸成具有各种形状和厚度的工件。
在拉深加工中,铝板或板材被放置在一条镂空的圆柱体中,并通过力的作用将其压缩成一种具有凹凸不平面形状的工件。
五、切削加工切削加工是最常见的加工方法之一。
在镁合金生产中,常见的切削加工包括车削、铣削、钻削、切割等。
切削加工可以按照预定的形状、尺寸和表面质量进行制造。
切削加工也可以使用先进的数控技术进行自动化生产。
六、电化学加工电化学加工是一种采用电化学反应来加工器件的方法。
通过电解将工具和珠宝合金表面作为阳极和阴极,电解液中的电解质会在当前通过工具和合金时释放出气体,并逐渐侵蚀工具和合金表面,从而实现加工的目的。
综上所述,对于镁合金的加工方法有很多种,每种加工方法都有其自身的优缺点。
生产人员在选择时应根据具体情况进行选择,以提高生产效率和生产质量。
镁合金零件机械加工工艺随着“镁合金应用开发与产业化”项目的深入实施,企业在实际生产中出现了不少问题,如工艺和安全方面的问题,这是因为国内大多数镁合金压铸企业第一次接触镁合金。
因此,本文将对镁合金压铸零件的机械加工工艺及安全操作规程进行了概括性的介绍,以供参考。
1镁合金的机械加工密度为的镁合金比铝合金轻36%、比锌合金轻73%、比钢轻77%,被公认为是质量最小的结构金属材料。
小批量镁合金零件的机械加工可在手动操作的小型机床上进行;大批量高效率加工镁合金零件时,采用专用的大型自动化机械加工中心或计算机数控机床将更加经济。
与那些机械加工性能较差的金属材料相比,切削性能良好的镁合金具有十分突出的优点。
对于镁合金,可以在高切削速度和大进给量下进行强力切削,这样机加工工时数就可以减少。
因此,在完成同样的工作任务时,若采用镁合金作原材料,可以减少加工设备的台数,节约基建投资,减少占地面积,降低劳动力成本和管理费用。
1.1镁合金的切削功率消耗对镁合金零件进行加工时,单位体积切削量的功率消耗比其他常见金属都要低。
在几种典型的切削加工速度下,各种金属相对于镁的功率消耗如表1所示。
由于镁合金导热性好、切削力小,故在加工过程中的散热速度很快,因而刀具寿命长,粘刀量少,从而可以降低刀具费用,缩短更换刀具所需的停机时间。
因为镁合金易切削,其断屑性能十分良好,一般清况下只需经过一次精加工便可达到所要求的最终表面粗糙度。
1.2镁合金材料对加工性能的影响1.2.1对切屑形成的影响在机械加工进程中所形成的切屑类型,与资料成分、零件形状、合金状态及进给速率等因素相干。
当采用单刃刀具举行镁合金的车、膛、刨、铣时,所产生的切屑可以分为3大类:a.在大进给量下形成粗大和断屑良好的切屑:b.在中等进给量下形成长度短和断屑良好的切屑;c.在小进给量下形成长而卷曲的切屑。
1.2.2对扭曲变形的影响由于镁的比热高、导热性良好,摩擦产生的热量会迅速地扩散到零件的各个部分,因此对镁合金进行切削加工时并不会产生较高的温度。
镁合金的生产工艺流程
《镁合金的生产工艺流程》
镁合金是一种重要的轻金属材料,具有优异的力学性能和耐腐蚀性能,被广泛应用于航空航天、汽车制造、电子设备等领域。
其生产工艺流程主要包括镁矿选矿、精炼、合金化和铸造等环节。
首先是镁矿选矿。
镁矿一般是以镁石和白镁矿为主要原料,通过挖掘、破碎、磨矿等步骤进行选矿,以获得含有较高镁含量的矿石。
接下来是精炼。
选矿后的镁矿需要进行精炼处理,主要包括熔炼、分离、提纯等步骤。
熔炼是将镁矿放入高温熔炼炉中,以将镁矿中的杂质分离出来,提高镁含量。
分离和提纯则是通过化学反应或其他方法,进一步提高镁的纯度。
在镁矿精炼后,需要进行合金化。
镁合金通常是通过在纯镁中添加其他金属元素形成的。
合金化一般通过熔炼、搅拌等方法进行,以获得具有特定性能的镁合金。
最后是铸造。
将合金化后的镁合金液态熔体浇铸成各种产品,包括板材、棒材、型材、铸件等。
铸造过程中需要严格控制温度、压力和铸模等参数,以确保所铸成的产品具有良好的力学性能和表面质量。
除了上述核心环节外,镁合金的生产工艺流程还包括原材料储
存、设备维护、环境保护等环节。
通过严格控制每一个环节,可以确保镁合金的生产工艺流程稳定、高效,满足各种工业领域对于镁合金产品的需求。
镁合金切削加工要点1.引言自20世纪90年代初开始,国际上主要金属材料的应用发展趋势发生了显著变化,钢铁、铜、铅、锌等传统材料的应用增长缓慢,而以镁合金为代表的轻金属材料异军突起,以每年20%的速度持续增长。
镁合金可分为铸造镁合金和变形镁合金。
镁合金按合金成分不同主要分为Mg-AI-Zn-Mn系、Mg-AI-Mn系和Mg-AI-Si-Mn系、Mg-AI-RE系、Mg-Zn-Zr系和Mg-Zn-RE系。
表1 镁的物理性能密度(20℃):1.738g/cm3;熔点:650℃;沸点:1107℃;熔化热:8.71kJ/mol;汽化热:134kJ/mol;比热熔(20℃):102.5J/kg.K;线胀系数:25.2×10-6/K;热导率:155.5W/m.K;电阻率:44.5nΩ.m;电导率:38.6%IACS2.镁合金的性能特点及应用现状镁合金具有以下几方面的特点:(1)重量轻:镁合金的比重约1.7,为锌的1/4,钢的1/5,甚至比铝合金(比重约2.7)的比重也轻1/3。
(2)镁合金具有的“高强度、重量轻”特性使其可在钢、铸铁、锌合金甚至铝合金的传统应用中取代上述材料。
(3)优良的导热性、相对于工程塑料极佳的吸震性,较佳的机械强度、抗冲击性及耐磨性。
(4)抗EMI电磁波:镁合金为非磁性金属,电磁遮蔽性能优良。
(5)尺寸稳定性高:不易因环境温度变化及时间而改变。
(6)可回收:镁合金具有100%完全回收的特性,更符合当今环保要求。
(7)机械加工特性:如果设镁切削所需动力为1,则铝是1.8,黄铜是2.3,铸铁是3.5;且比重轻,切削惯性小,可高速切削。
镁合金的主要用途在于轻量化。
目前镁合金压铸品的应用产业以汽车零组件为主,约占80%以上,其次为3C产业,其它如自行车、器材工具、运动用品及航天国防也都在其应用范围之内(见表2)。
表2 镁合金的主要用途应用产业——应用产品汽车零件——车座支架、仪表板及托架、电动窗电机壳体、升降器及轮轴电枢、油门踏板、音响壳体、后视镜架自行车零件——避震器零件、车架、曲柄、花壳、三/五通零件、轮圈、刹车手把电子通讯——笔记本计算机外壳、MD外壳、移动电话外壳、投影机外壳航天国防——航空用通信器和雷达机壳、飞机起落架轮壳运动用品——网球拍、滑雪板固定器、球棒、射弓中段与把手器材工具——手提电动锯机壳、鱼钓自动收线匣、控制阀、相机机壳、摄像机壳日本镁合金产品分布统计见表3。
镁合金加工工艺流程1. 认识镁合金一.重量轻,强度佳。
镁合金的强度是塑胶的二倍,因此以超薄型(厚度在2。
54mm以下)笔记本电脑为例,要让外壳达到一定的强度,镁合金的厚只要1mm,但是塑胶壳则必须做成2mm厚。
因此以同样强度的机壳而言,镁合金的重量不但不比塑胶重,甚至可能更轻;二.散热佳,防电磁波。
镁合金的耐热性,散热性及电磁波遮蔽效果,三者俱佳,可减少资讯产品因过热而死机的频率。
不仅如此,它耐腐蚀的能力也居所有轻金属材料(铝,镁,钛)之首;三.可回收,符合环保趋势。
塑胶无法回收,但镁合金是可回收后再后的轻金属。
近年来许多先进国家已对资讯产品制定一定的回收率的法规,由此可见,未来将会有更多的3C产品采用镁合金材料。
当“轻薄短小”变成资讯及3C产品的发展趋势时,镁合金产业也成了当红原子弹,将来也极有可能取代塑胶原料,成为资讯产品的标准机壳原材料。
镁合金应用于3C产品起始于日本。
1998年,日本厂商开始在各种可携式产品(如PDA,NB,手机)采用镁合金材质。
2.产品特性一.镁合金材料简介:根据美国金属协会(ASM)定义轻金属材料为铝、镁、钛三种金属及其合金。
而根据这三种轻金属的材料特性来分析,可发现轻合金材料具有制震性强、机械加工性优,且具回收性、轻量化/省能化、防EMI、耐蚀性佳、工程作业性佳、设计弹性化(一体型零件/快速制造、组装、拆解回收;具多样性之制程及表面处理应用技术)、高质感/时尚感等,而广泛用于运输工具、航天、国防、石化、能源、包装、信息电子与营建业等;特别是镁合金方面,由于比重低(质轻,镁合金比重仅1.8,已经接近工程塑料1.2-1.7)且强度足(质硬),加上加工性优、质感佳与热传导快(散热佳优于铝、钛),不仅已经逐渐取代工程塑料,同时且替代原有铝合金产品,而广泛应用于笔记性计算机、PDA、手机等携带式装置(Hand-Held),据了解2000年已有1/3左右笔记型计算机改用镁合金背板与框架,显示该产品所具有的潜力。
虽然目前钛合金应用也逐渐普及,但是在成本、比重与热传导等材料的先天特性限制下,预估镁合金产品将仍具有不可替代性,特别是在电子产品方面。
二.镁合金生产制程简介:目前就镁合金的生产制程而言,由于压铸(Die-Casting)技术已经逐渐成熟,且无论就生产成本、设备投资与良率上,压铸仍具有相对竞争优势,因此目前是以压铸生产方式为主流,而半固态射出成型(Semi-Solid Forming , SSF)制程目前仍难以威胁压铸制程,且半固态射出成型制程仍有制程专利保护,必须支付相当比重的技术权利金使生产成本更高,但两种生产制程间仍各有优缺点,因此随适用产品的不同,尤其在大型零组件方面,半固态射出成型也仍具有相当的发展潜力。
(1).压铸与半固态制程比较:就压铸(Die-Casting)与半固态(SSF)比较来说,主要差异在于成型时材料的状态,压铸制程材料需加热至液态,而半固态射出则类似固态熔溶状态;由于材料加热至液态后冷却成型,材料在成型中就因为物理状态改变(材料体积会因为物理状态改变而变化),因此成型时内部材料有收缩形成空孔问题,所以半固态射出在这部分成型质量较佳;但相对于半固态制程,由于材料以液态状态射出压铸成型速度快,特别当材料接触模具时,材料温度急冷快速变化,若镁合金成型产品厚度过薄(<1.2mm以下),则内部材料在未达应成型位置前,就会因外部急速冷却而凝结成固态成型,导致产品成型不平均或困难,所以较不适合半固态射出成型制程;尤其当成型产品肉薄轻巧时,一方面由于需较快成型时间,所以较适合压铸方式成型,另一方面则由于内部厚度较小,因此即使收缩也不会产生很多或较大缩孔,对于质量影响也不大,因此以压铸成型制程较为有利。
(2).压铸制程-热室与冷室制程比较: 而就压铸制程而言,又可区分为冷室(Cold Chamber)压铸与热室(Hot Chamber)压铸两大类,而这两大类压铸制程间最主要的差异,在于压铸制程中加压机械设备是直接或间接施压使材料射出于模具上;由于热室法采件间接施压、压铸设备置于镁合金溶液内(所以叫热室),且镁合金导流管中材料不直接接触空气,所以气卷效果较小,但相对因为间接施压可施压压力也小,因此适合生产肉薄轻巧产品;相对于冷室法,由于直接施压将材料推挤至模具端,因此容许较大型机台,生产较大型产品;因此就目前压铸制程水平,热室压铸法无论在成型难易度(铸造压力与射出速度较低)与生产速率(热室法约30秒、冷室法需40秒较长),都较冷室压铸法更具有经济性与效率性,特别适合用于生产强度厚度在1mm之下的产品,但是由于冷室压铸法可以容许较大的压铸压力(特别是大于800吨以上压铸压力),因此也较适合于大型如汽车用零组件的生产,各种制程优缺点与设备投资、生产成本等项目比较,详见如下的各种镁合金制程比较表(3).生产制程总结: 就制造方式与适用产品而言,目前无论在设备周转率、原物料成本与制造费用上,仍以压铸法较具经济性与效率性,尤其在生产轻薄短小的产品零组件上,更以热室压铸法法具有成本优势;但是若生产产品面积较大(大于A4以上),则因为零组件强度的需求较高,需要使零组件设计较厚的材料厚度(厚度>1.2mm),则以冷室压铸法与触变铸造的半固态射出成型两种方法较佳。
镁合金切削加工要点1.引言自20世纪90年代初开始,国际上主要金属材料的应用发展趋势发生了显著变化,钢铁、铜、铅、锌等传统材料的应用增长缓慢,而以镁合金为代表的轻金属材料异军突起,以每年20%的速度持续增长。
镁合金可分为铸造镁合金和变形镁合金。
镁合金按合金成分不同主要分为Mg-AI-Zn-Mn系、Mg-AI-Mn系和Mg-AI-Si-Mn系、Mg-AI-RE系、Mg-Zn-Zr系和Mg-Zn-RE系。
表1 镁的物理性能密度(20℃):1.738g/cm3;熔点:650℃;沸点:1107℃;熔化热:8.71kJ/mol;汽化热:134kJ/mol;比热熔(20℃):102.5J/kg.K;线胀系数:25.2×10-6/K;热导率:155.5W/m.K;电阻率:44.5nΩ.m;电导率:38.6%IACS2.镁合金的性能特点及应用现状镁合金具有以下几方面的特点:(1)重量轻:镁合金的比重约1.7,为锌的1/4,钢的1/5,甚至比铝合金(比重约2.7)的比重也轻1/3。
(2)镁合金具有的“高强度、重量轻”特性使其可在钢、铸铁、锌合金甚至铝合金的传统应用中取代上述材料。
(3)优良的导热性、相对于工程塑料极佳的吸震性,较佳的机械强度、抗冲击性及耐磨性。
(4)抗EMI电磁波:镁合金为非磁性金属,电磁遮蔽性能优良。
(5)尺寸稳定性高:不易因环境温度变化及时间而改变。
(6)可回收:镁合金具有100%完全回收的特性,更符合当今环保要求。
(7)机械加工特性:如果设镁切削所需动力为1,则铝是1.8,黄铜是2.3,铸铁是3.5;且比重轻,切削惯性小,可高速切削。
镁合金的主要用途在于轻量化。
目前镁合金压铸品的应用产业以汽车零组件为主,约占80%以上,其次为3C产业,其它如自行车、器材工具、运动用品及航天国防也都在其应用范围之内(见表2)。
表2 镁合金的主要用途应用产业——应用产品汽车零件——车座支架、仪表板及托架、电动窗电机壳体、升降器及轮轴电枢、油门踏板、音响壳体、后视镜架自行车零件——避震器零件、车架、曲柄、花壳、三/五通零件、轮圈、刹车手把电子通讯——笔记本计算机外壳、MD外壳、移动电话外壳、投影机外壳航天国防——航空用通信器和雷达机壳、飞机起落架轮壳运动用品——网球拍、滑雪板固定器、球棒、射弓中段与把手器材工具——手提电动锯机壳、鱼钓自动收线匣、控制阀、相机机壳、摄像机壳日本镁合金产品分布统计见表3。
表3 日本镁合金产品应用统计表信息、通讯产品77%:其中:笔记本计算机39%,数字摄影机19%,移动电话14%,数码相机5%,投影仪6%,其它电子产品17%。
汽、机车零件18%:其中:汽车零件88%,机车零件12%。
农林机械5%:其中:农林业机械41%,电动工具27%,运动用品8%,其它24%。
美国政府与三大汽车公司(Ford)、通用(GM)、克莱斯勒(Chrysler)于1993年提出PNGV(Partnership for a New Generation of Vehicles)计划,希望在2004年开发6人座省油车,以每100公里耗油3公升为目标,主要在于车体结构与动力系统的轻量化设计开发。
未来可能镁合金化的汽车零件如表4所示。
表4 可以镁合金化的汽车零件悬吊系统总成——零件名称:车轮,备用轮胎,控制臂(2个,后方),控制臂(2个,前方),引擎架,后方支架内装总成——零件名称:仪表板、横梁,仪表板支架,椅背椅座,气囊零件方向盘总成——方向盘零件车身总成——零件名称:保险杆补强横梁,铸造车门内衬,铸造A/B柱,挡风片开关补强材,行李架,侧镜刹车系统总成——零件名称:ABS零件,离合器/刹车踏板托架,踏板零件电气机械零件——交流电箱,音响/EEC零件,雨刷电机,交流电/AC托架动力系统总成——传动(阀体、箱、侧盖、启动器),传动箱(总重量12kg的15%),发动机组,支撑托架,罩套(油/水泵,机车马达),汽缸盖,吸气歧管,引擎支架,油盖,前盖3.镁合金加工的问题基于以上优异的特性,使镁合金在未来发展中具有很强的优势,更符合当代对环境保护、可持续发展的要求,是取代钢铝材的最佳选择。
由于镁金属化学活性大,给镁合金零部件的加工带来一系列的问题,妨碍了镁合金的推广使用,主要体现在:(1)极易产生电化腐蚀。
在冶炼、制造上需特别注意,在防蚀处理上也较其它金属困难。
因此,为了使镁合金的应用更加广泛,对于镁合金的腐蚀机制、防蚀机制、表面处理技术及工件防蚀设计,需要有更多的处理程序。
(2)燃点低。
在切削过程中必须考虑温度的影响,以防止切屑燃烧,并在加工中要采取相应的措施和条件才能真正杜绝事故的发生。
(3)工件变形的问题。
镁合金的线膨胀系数比钢和铸铁大,切削热、温差等因素都会直接影响镁合金零件的精度,需要在选择加工余量、刀具几何参数、切削用量以及工装夹具的设计、检测方法的选择等方面有很好的措施。
4.切削加工技术要点4.1 加工过程中防锈措施零件应整齐排放在指定的库位,不允许接触地面;存放零件的地方应采取防潮措施;用布蘸汽油擦拭涂有防锈油的零件表面,吹干后才能进行加工;全部化学处理工序,即启封、氧化和涂漆工序应记录在过程卡上;零件启封后到投人加工不得超过15昼夜;零件经过划线后,氧化膜会被破坏,因此划线应在最后氧化前进行;采用干式切削加工,不得用润滑油和冷却液冷却,加工螺纹时允许用机油润滑冷却;全部机械加工工序应在最后氧化之前进行,特殊情况下,允许最后氧化后进行个别机械加工。