勒贝格控制收敛定理
- 格式:doc
- 大小:43.00 KB
- 文档页数:2
Fatou引理以及Lebesgue控制收敛定理推广及其应用Fatou引理和Lebesgue控制收敛定理是测度论中非常重要的定理,它们在分析学、概率论和实际问题中有着广泛的应用。
本文将首先介绍这两个定理的基本概念和推广形式,然后探讨它们在实际问题中的应用。
我们来介绍一下Fatou引理。
Fatou引理是测度论中的一个基本结果,它主要用于证明积分与极限的交换问题。
具体来说,设{f_n}是一列非负可测函数序列,且f_n逐点收敛于函数f,那么有∫lim inf f_n ≤ lim inf ∫f_n这个结果表明了积分与极限的关系,并且在很多实际问题中都有着广泛的应用。
接下来,我们介绍Lebesgue控制收敛定理。
Lebesgue控制收敛定理是一个非常强大的结果,它是莱布尓格测度与积分论的基本定理之一。
它的形式比Fatou引理更一般,而且在一定条件下,可以从更弱的条件推广到更强的条件。
Lebesgue控制收敛定理主要用于证明下面的结果:若{f_n}是一列可测函数序列,且存在一个可积函数g,使得|f_n|≤g对一切n成立,且f_n逐点收敛于函数f,那么有lim ∫|f_n - f| = 0这个结果表明了在满足一定条件下,函数序列f_n可以逐点收敛于函数f,并且收敛速度受到可积函数g的控制。
这两个定理还可以推广到更广泛的函数类中,比如在Lp空间中的序列收敛问题,以及在广义函数空间中的收敛问题。
我们来探讨它们在实际问题中的应用。
Fatou引理和Lebesgue控制收敛定理在数学分析、概率论和实际问题中有着广泛的应用。
在概率论中,它们可以用于证明随机变量序列的收敛性质,以及证明极限定理。
在实际问题中,它们可以用于证明一些极限关系,以及用于证明一些非负函数序列的收敛性质。
第8讲勒贝格控制收敛定理及应用一、勒贝格控制收敛定理问题 ()d ()d (lim l d im ).b b bk k a a a k k f x x f x x f x x →∞→∞==⎰⎰⎰ lim ()(),k k f x f x →∞=若能否推出极限运算与积分运算只有在很强的条件下(一致 收敛)才能交换二者次序——黎曼积分的局限性定理 (勒贝格控制收敛定理)1){(},n k k f x E ∞=⊆是上的可测函数列设若注 定理中控制函数的可积性是必不可少的.(2) ,, ()(),() a.e. ,()k k f x F x x E F x E ∈≤∈存在使得对任意的(),()(),k f x f x E ∈则且(1) lim ()(),a.e. .k k f x f x x E →∞=∈lim ()d ()d .k E E k f x x f x x →∞=⎰⎰[0,),E =+∞设考虑反例 函数序列[0,]1, [0,]()(),1,2,0, k k x k f x x k x kχ∈⎧===⎨>⎩{}()(),()1,a.e. ,k f x F x F x E ≥控制的函数必须{}()()1,k f x E f x ≡显然在上处处收敛于()F x E L 则在上不是可积的.()f x E L 在上也不可积的.k y x O推论1 (勒贝格有界收敛定理)注 推论1中的条件(3)不能缺少.0,(),a.e. ,(2) k M f x M x E >≤∈存在常数 控制函数的可积性 (3) ().m E <+∞ 1){(},n k k f x E ∞=⊆是上的可测函数列设若(1) lim ()(),a.e. .k k f x f x x E →∞=∈(),()(),k f x f x E ∈则且lim ()d ()d .k E E k f x x f x x →∞=⎰⎰推论2 (逐项积分)1()()(1,2,), ()d ,i i E i u x E i u x x ∞=∈=<+∞∑⎰ 且设有则1(1)();i i u x E ∞=∑ 在上几乎处 处收敛 (2)()(),f x E ∈其和函数且1()d .i i E u x x ∞==∑⎰1()()d d E E i i x u x f x x ∞=⎡⎤=⎢⎥⎣⎦⎰⎰∑例1 分析 [0,1],lim ()0,n n x f x →∞∈=则对有[]0,1,x ∈当时由于[]0,111sup |()0|sin12n n n x f x f n β∈⎛⎫=-≥= ⎪⎝⎭0,→二、应用举例1220lim()sin d .1n nx R nx x n x →∞+⎰求极限先积分后求极限实难进行, 故需交换次序.解 22()sin ,[0,1]1n nx f x nx x n x=∈+令 ()0,[0,1].n f x x →∈即[]{()}0,1.n f x ⇒在上不一致收敛00.10.20.30.40.50.60.70.80.91-0.2-0.100.10.20.30.40.5x (10 x/(1+100 x 2)) sin(10 x)22()sin ,[0,1]1n nx f x nx x n x =∈+1n =2n =3n =非一致收敛的几何直观验证勒贝格控制收敛定理221()(),[0,1].122n nx nx f x F x x n x nx ∆≤≤==∈+注意到 由R 积分和L 积分的关系, 以及勒贝格控制收敛定理有22[0,1]lim ()sin d 1n nx L nx x n x →∞=+⎰22[0,1]()sin d 1lim n nx L nx x n x →∞⎛⎫= ⎪+⎝⎭⎰[0,1]()0d 0.L x ==⎰1220lim()sin d 1n nx R nx x n x →∞+⎰求函数列积分的极限问题1) 若利用R 积分理论来求, 则需验证函数列在积分区间[a , b ]上的一致收敛性.则利用R 积分与L 积分的关系, 以及勒贝格控制收敛定理.[,]()([,]),()([,]),()()d ()()d .b a b a f x a b f x a b L f x x R f x x ∈∈=⎰⎰若则且 2) 若函数列在区间上不一致收敛, R 积分理论失效亦是如此,直接利用逐项积分性质毋庸置疑。
勒贝格逐项积分定理是数学分析领域的重要定理之一,它为我们理解积分与极限之间的关系提供了重要的理论基础。
在本文中,我将对勒贝格逐项积分定理进行深入探讨,并尝试给出其证明,同时还会结合勒贝格控制收敛定理进行分析。
我将从基本概念出发,逐步展开讨论,帮助读者充分理解这一重要定理。
1. 勒贝格积分的概念在开始探讨勒贝格逐项积分定理之前,我们首先需要了解勒贝格积分的基本概念。
勒贝格积分是对变量在某个区间上的函数进行积分的一种方法,与黎曼积分不同的是,勒贝格积分对函数的可积性有更加严格的要求。
这种积分方法在处理一些特殊的函数和收敛性问题时具有重要的应用价值。
2. 逐项积分的概念在研究级数的收敛性时,我们常常会接触到逐项积分的概念。
逐项积分是将级数中的每一项进行单独的积分,然后再考察这些积分的收敛性。
逐项积分在分析级数的收敛性和积分之间的关系时起着重要的作用,而勒贝格逐项积分定理正是对逐项积分的一个重要的推广和应用。
3. 勒贝格逐项积分定理的表述勒贝格逐项积分定理是关于逐项积分和函数极限交换次序的定理。
它指出,如果级数在某个区间上逐项积分后收敛,那么这个逐项积分所得的函数的极限与原级数在该区间上的逐项积分所得的函数的极限是相同的。
这个定理在分析级数的逐项积分和函数极限的关系时起着至关重要的作用。
4. 勒贝格逐项积分定理的证明为了证明勒贝格逐项积分定理,我们需要结合勒贝格控制收敛定理来进行分析。
勒贝格控制收敛定理是判别逐项积分收敛的重要定理,它为我们提供了一种有效的方法来判断逐项积分的收敛性。
通过对级数的逐项积分进行适当的控制,我们可以得到逐项积分的收敛性,从而进一步推导出勒贝格逐项积分定理。
5. 个人观点与理解在我看来,勒贝格逐项积分定理是数学分析领域中的一个重要定理,它揭示了级数逐项积分和函数极限之间的深刻关系。
通过对该定理的深入理解,我们不仅可以更加深刻地理解级数的收敛性和逐项积分的性质,还可以为解决一些实际问题提供重要的理论支持。
关于勒贝格有界收敛定理与法都引理的几
点浅见
勒贝格有界收敛定理和法都引理是数学领域的重要定理,它们是非常有价值的定理,对于解决复杂的数学问题具有重要的理论意义和实践意义。
勒贝格有界收敛定理是指,若一个有界函数序列在某点上收敛,则在这个点及其周围的各点上,这个序列的函数都具有有界性,即给定一定的ε >
0,存在正数M,使得当n > M时,|f(x) - f(x_0)| < ε。
勒贝格法都引理是指,对于给定的函数序列{f_n(x)},如果它们在某点x_0上收敛,则这个序列的函数在x_0处的导数也收敛。
具体来说,假设在x_0处的f_n(x)的导数为f'_n(x),如果f_n(x)在x_0处收敛,则f'_n(x)也在x_0处收敛。
勒贝格有界收敛定理和法都引理在解决数学问题中具有重要的作用。
首先,它们对于确定函数序列的收敛性具有重要的理论意义,可以用来判断函数序列是否收敛。
其次,它们也可以用来解决有关函数的极限值的问题,即求解函数序列的极限值。
此外,勒贝格有界收敛定理和法都引理还可以用来解决某些不等式的问题,即通过极限的概念来确定不等式的解。
总之,勒贝格有界收敛定理和法都引理是数学领域重要的定理,它们对于解决复杂的数学问题具有重要的理论意义和实践意义。
勒贝格控制收敛定理及其他莱维单调收敛定理:.1.lim ,I }{lim)}){}{⎰⎰⎰∞→∞→=I n n I n I n n n n s f f s sb I s a s 且有极限函数上几乎处处收敛于一个在则存在,上是递增的,在区间使得是一个阶梯函数序列,理:设关于阶梯函数的莱维定 2. (关于勒贝格可积函数序列的莱维定理)设}{n f 是)(I L 中的一个函数序列,使得a)}{n f 在I 上几乎处处是递增的,b)⎰→I n n n f lim存在,则}{n f 在I 上几乎处处收敛于L(I)内的一个极限函数f,且有.lim ⎰⎰→=I n n n I f f3. (关于勒贝格可积函数级数的莱维定理)设}{n g 是)(I L 中的一个函数序列,使得a)每个}{n g 在I 上几乎处处是非负的,b)级数∑⎰∞=1n I n g收敛, 则级数∑⎰∞=1n In g 在I 上几乎处处收敛于L(I)内的一个极限函数,且有⎰∑⎰∑⎰∞=∞===I i I n i n I g g g11.4.设}{n g 是)(I L 中的一个函数序列,使得级}{n f 数∑⎰∞=1||n I n g是收敛的,则级数∑⎰∞=1n I n g 在I 上几乎处处收敛于L(I)内的一个极限函数,且有⎰∑⎰∑∞=∞==I i I n i n g g 11.5 . (勒贝格控制收敛定理) 设}{n f 是区间I 上的一个勒贝格可积函数序列. 设a) }{n f 在I 上几乎处处收敛于一个极限函数f ,b) 在)(I L 内有一个非负函数g 使得对于一切1≥n 都有I ..),(|)(|于e a x g x f n ≤则极限函数)(I L f ∈,序列⎭⎬⎫⎩⎨⎧⎰I n x f )(收敛,且.lim ⎰⎰→=I n n n I f fb)可表述为}{n f 在I 上几乎处处被g 控制6. 设I 是一个有界区间,假设}{n f 是)(I L 中的一个函数序列,它在I 上几乎处处有界收敛,即,存在一个极限函数f 和一个正常数M ,使得在I 上几乎处处有,|)(|),()(lim M x f x f x f n n n ≤=∞→则.lim),(⎰⎰=∈→I I n n n f f I L f7 . (勒贝格可积性) 设}{n f 是L(I)中的一个函数序列. 它I 上几乎处处收敛于一个极限函数f .若在)(I L 内有一个非负函数g 使得对于一切1≥n 都有I ..),(|)(|于e a x g x f ≤则极限函数)(I L f ∈.8.设f 在半无穷区间),[+∞=a I 上有定义,假定对每个a b ≥,f 在紧区间[a,b]上是勒贝格可积的,而且存在一个正常数M ,使得对于每个a b ≥都有⎰≤b a M f ,|| 则)(I L f ∈,极限⎰+∞→b a b f lim存在,且⎰⎰+∞→+∞=ba b a f f lim阶梯函数的极限函数类比勒贝格可积函数类要大,该类中的函数称为 可测函数由勒贝格积分定义的函数的连续性设X 和Y 是不是R 的两个子区间,f 是定义在Y X ⨯上的函数,它满足以下条件 a) 对Y 中的每个y ,在X 上由下式),()(y x f x f y =定义的函数)(x f y 在X 上是可测的.b) 在)(X L 内存在一个非负函数g,使得对任意的Y y ∈都有.X ..),(|),(|于e a x g y x f ≤c) 对Y 中固定的y 有.X ..),,(),(lim 于e a y x f t x f yt =→于是勒贝格积分⎰Xdx y x f ),(对Y 中的每个y 都存在,而且由等式⎰=X dx y x f y F ),()(定义的函数F 在Y 上连续.积分号下的微分法设X 和Y 是不是R 的两个子区间,f 是定义在Y X ⨯上的函数,它满足以下条件 a) 对Y 中的每个y ,由等式 ),()(y x f x f y =定义的函数)(x f y 在X 上是可测的,且对于Y 内的某个点a 有).(X L f a ∈.b) 对于Y X ⨯的每个内点(x,y),偏导数.),(2存在y x f Dc)在)(X L 内存在一个非负函数G ,使得对于Y X ⨯的全部内点都有),.(|),(|2x G y x D ≤那么勒贝格积分⎰Xdx y x f ),(对Y 中的每个y 都存在,其导数为⎰=X dx y x f D y F ),()('2即求导和求积分可交换次序.。
K回国日口囫函i—日t Z蕊UIU丽N U而.Z’’而晒。
a酬。
协勒贝格控制收敛定理的应用侯英(贵州财经学院数学与统计学院,贵州贵阳550004)文化与教育技柬摘要:勒贝格控制收敛定理是实变函数论的一个重要定理,可以用于计算积分的极限,证明积分等式、数列收敛、不等式、判断函数连续等许多问题。
关键词:勒贝格控制收敛定理;可测函数;可积函数勒贝格控制收敛定理是积分论中的一个重要定理,它解决了,积分与极限的交换问题,并在一定程度上代表了实变函数论方法的力量。
利用这一定理可以证明列维(L evi)定理等其他定理,而且它在证明和计算中有着广泛的应用。
首先,我们介绍一下勒贝格控制收敛定理。
勒贝格控制收敛定理:设(1){fn}是可测集E上的可测函数列;(2)I f o(x)J≤F(x)a.e.于E,n=l,2,…,且F(x)在E上可积分(称I R}为F(x)所控制,而F(x)叫控制函数);(3)“x)j f(x)。
则f(x)在E上可积分,且l挚JE五(x)dx2JE f(x)dx注:将条件(3)换为“x)川x)a.e。
于E,定理结论仍成立。
在应用勒贝格控制收敛定理时,关键是找出控制函数。
且要求控制函数是可积的。
下面我们从两个方面探讨勒贝格控制收敛定理的应用。
l利用定理证明勒贝格控制收敛定理可以证明积分等式、函数相等、积分的极限、积分的和、数列收敛、不等式、判断函数连续等等问题。
例l:设fl,f2。
…是E上的非负可积函数,且f L}在E上依测度收敛于f,r,m f,L(幽b= f z,证明:对E的任何町测子集A,均有叩.f正c‘)d(x触=.£,“)ax证:由于f与丘都是非负函数,因此(f-驴(x)≤“x)。
x∈E.故f是函数列f(f-∞+l的控制函数.冈为{fn}在E上依测度收敛于f,所以{(㈤+I在E上依测度收敛予0。
由勒贝格控制收敛定理。
得.1i r a J.(,一.f O+(x)dx=0由1挚J。
^(触2J。
Lebesgue积分与收敛定理Lebesgue积分是数学分析中一种重要的积分方式,它由法国数学家Henri Lebesgue于20世纪初提出,并成为现代测度论的基础。
Lebesgue 积分理论相比于传统的黎曼积分理论更加广泛适用于各种函数,且具有更强的收敛性质。
Lebesgue积分的定义和计算方法相对复杂,但其背后的思想却非常直观。
Lebesgue积分是通过测量函数在定义域上的取值与所谓的测度之间的关系来定义的。
具体而言,给定一个定义在实数轴上的函数f(x),我们可以将实数轴分割成许多维度无穷小的区间,并在每个区间上计算函数的取值与区间长度的乘积。
然后将所有这些乘积相加,即可得到Lebesgue积分。
与黎曼积分相比,Lebesgue积分的优势在于其更强的收敛定理。
在Lebesgue积分中,我们可以定义函数序列的极限,并通过极限的性质来研究函数的收敛行为。
其中最为重要的收敛定理包括单调收敛定理、Fatou引理、Lebesgue收敛定理和控制收敛定理等。
单调收敛定理是指如果一个递增(或递减)的函数序列在积分定义域上逐点收敛于某个函数,那么它的积分也收敛,并且其积分值等于极限函数的积分。
这一定理在研究一些特殊的函数序列,如三角函数序列和幂函数序列时特别有用。
Fatou引理和Lebesgue收敛定理则是用来研究函数序列的逐点收敛性质的定理。
Fatou引理是指对于任意一个非负的函数序列,其逐点极限的积分不能大于或小于其下极限(上极限)的积分。
Lebesgue收敛定理则是对一般函数序列加以推广的结果,它给出了函数序列逐点收敛的充要条件,并且得出了收敛函数的积分等于极限函数的积分。
控制收敛定理是通过额外的控制函数来研究函数序列的收敛性质。
具体而言,如果对于一个函数序列,存在一个可测函数g(x)和一个可积函数h(x),使得对于所有的x,序列中的每个函数的绝对值都小于g(x),并且序列中的每个函数与极限函数之间的差的绝对值都小于h(x),那么这个序列就称为控制收敛的。
单调收敛定理和勒贝格单调收敛定理好嘞,今天我们聊聊数学中的两个有意思的定理——单调收敛定理和勒贝格单调收敛定理。
你可能会觉得这俩名字挺“高大上”,一听就像是高级数学课上才会出现的东西,别着急,听我说,没那么复杂。
咱们可以轻松搞定这俩定理,别看它们名字长,内容其实一点也不神秘。
让我们从简单的地方开始,慢慢捋一捋这些概念,保证让你听了就豁然开朗,甚至有点“小确幸”的感觉。
单调收敛定理,这个名字听起来是不是有点像是一个懒洋洋的数学家,每天都在慢慢地“收敛”?哈哈,别笑,这个定理可不是说某个人懒得做事哦,它其实是跟极限有关的。
简单来说,单调收敛定理是说,如果你有一列数,且这个数列是单调的(要么是越来越大,要么是越来越小),同时它的每一项都被某个数字“夹住”,那么这个数列一定是会收敛的,最终会趋向一个极限值。
咋样,听起来不难吧?换句话说,就是如果你有一堆数,它们一直朝一个方向走,最终就会停在某个地方。
这是不是有点像你每天都走在一个直路上,尽管前方可能有点起伏,但最终你会到达某个固定的地方一样。
举个简单的例子吧。
比如你开始跑步,第一天你跑了100米,第二天你跑了120米,第三天跑了150米……这个数列越来越大。
别担心,你的体力总有一天会停下来,跑到一个极限值,别跑得太快。
其实这个过程就是一个单调递增的数列,虽然它的速度在不断变快,但总有一个最大限度,最终你会到达一个“收敛”点。
单调收敛定理就告诉我们,像你这种数列最终不会“跑偏”,它会朝一个固定的目标走,最终停下来。
说完单调收敛定理,我们再聊聊另一个“酷炫”的东西——勒贝格单调收敛定理。
这个名字更有点吓人,是不是?看起来就像是一个老外发明的定理,数学界的“外国专家”。
但别担心,勒贝格单调收敛定理的精髓其实比它的名字还要简单,反正我说了算!说白了,这个定理就是在讲如果你有一堆函数,它们逐渐变得越来越大,而且每个函数都能被一个“可积”的函数所“包裹”,那么它们的积分也会收敛。
第四章 勒贝格积分本章介绍勒贝格积分理论.定义勒贝格积分有多种方法,本处采用从非负简单函数到非负可测函数,然后到一般可测函数的方法逐步建立勒贝格积分理论.§1 非负简单函数的勒贝格积分定义1 设n R E ⊂是可测集,)(x ϕ是E 上的非负简单函数,即E x x c x nk E k k∈=∑=,)()(1χϕ,其中 nk k E E 1==,k E 是互不相交的可测集,k c 是非负实数(1≤k ≤n ),记⎰∑==Enk kk mEc dx x 1)(ϕ称⎰Ex dx x )()(ϕϕ为在E 上的勒贝格积分.显然,当⎰==Edx x mE 0)(,0ϕ时.下面的定理1说明非负简单函数的勒贝格积分值与其表示无关.定理1 设)(),(x x ψϕ是可测集E 上的非负简单函数,如果E x x x ∈=),()(ψϕ,则⎰⎰=EEdx x dx x )()(ψϕ证明 设E x x a x nk E k k∈=∑=,)()(1χϕ,nk k k E E n k a 1),1(0==≤≤≥,E k 是互不相交的可测集,又E x x b x jF mj j ∈=∑=),()(1χψ,mj j j j F F E m j b 1,),1(0==≤≤≥是互不相交的可测集. 因为在E 上,)()(x x ψϕ=,所以对任何k 和),1,1(m j n k j ≤≤≤≤ 总有)()(j k j j k k F E m b F E m a ⋂=⋂,于是∑∑∑∑====⎪⎪⎭⎫ ⎝⎛⋂=⋂=nk m j j k k k nk k nk k k F E m a E E m a mE a 1111)()()()(1111j k m j nk j j kmj kn k F E m b F Em a ⋂=⋂∑∑∑∑=====∑=mj j j mF b 1即⎰⎰=EEdx x dx x )()(ψϕ .定理2 设)(),(x x ψϕ是E 上的非负简单函数,则 (1)对任何非负实数c,有⎰⎰=EEdx x c dx x c )()(ϕϕ ;(2) ()⎰⎰⎰+=+EEEdx x dx x dx x x )()()()(ψϕψϕ ; (3)若,),()(E x x x ∈≤ψϕ则⎰⎰≤EEdx x dx x )()(ψϕ ,特别地,mE x dx x E⋅≤⎰)(max )(ϕϕ ;(4)若A 、B 是E 的两个不相交的可测子集,则⎰⎰⎰+=⋃BABA dx x dx x dx x )()()(ϕϕϕ .证明 仅证(2)式,其余作为习题.设 E x x a x ni A i i ∈=∑=)()(1χϕ,,)()(1E x x b x mj B j j∈=∑=χψ其中}{},{),1,1(0,j i j i B A m j n i b a ≤≤≤≤≥均为互不相交的可测集列,且 n i mj j i B A E 11====.易知jiB A n i mj i i b a x x ⋂==∑∑+=+χψϕ11)()()(所以())()()()(11j i Eni mj j iB A m b adx x x ⋂+=+⎰∑∑==ψϕ=)()(1111j i ni m j i j i ni mj i B A m b B A m a ⋂+⋂∑∑∑∑=====∑∑∑∑====⎪⎭⎫⎝⎛⋂+⎪⎪⎭⎫ ⎝⎛⋂m j n i j i j j i m j ni i B A m b B A m a 1111)()(=⎰⎰∑∑+=+==EEmj j j i n i i dx x dx x mB b mA a )()(11ψϕ定理3 设})({)},({x x n n ψϕ是E 上单调增的非负简单函数列,如果E x x x n n n n ∈=∞→∞→)(lim )(lim ψϕ,那么 ⎰⎰∞→∞→=En n En n dx x dx x )(lim )(lim ψϕ .证明 不妨设)(lim x n n ϕ∞→在E 上几乎处处有限,因为)}({x n ψ在E 上单调增,所以对任何自然数m ≥1,有)(lim )(lim )(x x x n n n n m ϕψψ∞→∞→=≤ .令 )}(),(m in{)(x x x f n m n ϕψ=,则非负简单函数列)}({x f n 收敛,且,)()(lim E x x x f m n n ∈=∞→ψ当+∞<mE 时,由Egoroff 定理,0>∀ε,存在可测集)(),()(,\,∞→<→→n x x f E E mE E m n ψεεεε上在使,于是存在N ≥1,当n>N 时,对一切εE E x \∈,)()()(x x f x n n m ϕεεψ+≤+<从而dx x dx x n E E m E E ))(()(\\ϕεψεε+≤⎰⎰dx x mE E n ⎰+≤)(ϕε因此, dx x mE dx x En E E n m⎰⎰∞→+≤)(lim )(\ϕεψε另外, )(m ax )(m ax )(x mE x dx x m m E m ψεψψεε⋅<≤⎰故 dx x dx x dx x m E m E E E m)()()(\ψψψεε⎰⎰⎰+=dx x mE x n En m )(lim ))((max ϕψε⎰∞→++<令0→ε,),1()(lim )(≥∀≤⎰⎰∞→m dxx dx x En n Emϕψ当+∞=mE 时,存在可测集列)1(,,,},{121≥+∞<=⊂⊂⊂⊂∞=k mE E E E E E E k k k k k 使.由上述证明知,对每个k ≥1, ⎰⎰⎰∞→∞→≤≤En n E n n E m dx x dx x dx x kk)(lim )(lim )(ϕϕψ .记 Tj j j Tj F j m F F E E x x a x j 11}{,,,)()(===∈=∑其中χψ是互不相交的可测集,)1(,0T j a j ≤≤≥,则由积分定义,∑⎰==Tj k j j E m E F m a dx x k1)()( ψ ,因为 j k j k mF E F m =∞→)(lim ,所以⎰⎰∑===∞→Em E Tj j j m k dx x mF a dx x k)()(lim1ψψ,于是 ⎰⎰∞→≤En n Emdx x dx x )(lim )(ϕψ,因此⎰⎰∞→∞→≤EEn n m n dx x dx x )(lim )(lim ϕψ .同理可证相反的不等式,故⎰⎰∞→∞→=EEn n m n dx x dx x )(lim )(lim ϕψ .§2 非负可测函数的勒贝格积分定义1 设)(x f 是E 上的非负可测函数,)}({x n ϕ是E 上单调增收敛于)(x f 的非负简单函数列,记⎰⎰∞→=En En dx x dx x f )(lim )(ϕ,称 )()(x f dx x f E为⎰在E 上的勒贝格积分,或L 积分,如果⎰+∞<Edx x f )(,则称)(x f 在E 上是勒贝格可积的,或L可积,简记为)(E L f ∈.由§1定理3知,非负可测函数的勒贝格积分值与非负简单函数列)}({x n ϕ选取无关.显然,若⎰=∈=Edx x f E x x f 0)(,,0)(则;若mE =0,则对于E 上的任何非负可测函数)(x f , ⎰=Edx x f 0)( .定理1 设)(x f ,)(x g 是E 上的非负可测函数, 则 (1) 若 E x x g x f ∈≤),()(,则⎰⎰≤EEdx x g dx x f )()( ;(2) 若A 、B 是E 的可测子集,且B A ⊂,则⎰⎰≤ABdx x f dx x f )()( ;(3)若A 、B 是E 的可测子集,且φ=B A ,则⎰⎰⎰+=BA ABdx x f dx x f dx x f )()()( ;(4)若E e a x g x f 于..)()(=,则⎰⎰=EEdx x g dx x f )()( ;(5)对任何非负实数c ,⎰⎰=EEdx x f c dx x cf )()( ;(6)()⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()()()( .证明 证明由定义即得.定理2 (Levi 单调收敛定理)设)}({x f n 是E 上的非负可测函数列,满足 (1) 1,..)()(1≥≤+n E e a x f x f n n 于;(2),..)()(lim E e a x f x f n n 于=∞→则⎰⎰=∞→EEn n dx x f dx x f )()(lim .证明 因为)(x f n 是E 上非负可测函数(n ≥1),所以E x x x f n kk n ∈=∞→),(lim )()(ϕ,其中)}({)(x n k ϕ是单调增的非负简单函数列,于是⎰⎰∞→=En k k En dx x dx x f )(lim )()(ϕ ,令)}(,),(),(max {)()()2()1(x x x x k k k k k ϕϕϕψ = ,则对每个)(,1x k k ψ≥是E 上的非负简单函数,且E x x x x k ∈≤≤≤≤,)()()(21 ψψψ ,E x k n x x k n k ∈≤≤≤),1(),()()(ψϕ ,又 E x x f x f x f x f x k k k ∈=≤),()}(,),(),(max {)(21 ψ ,所以 E x k n x f x x k k n k ∈≤≤≤≤,1),()()()(ψϕ, (1) 从而dx x f dx x dx x Ek EEk n k ⎰⎰⎰≤≤)()()()(ψϕ .(2)固定n ,令∞→k ,由(1)和(2)式,有E x x f x f x x f k k k k n ∈=≤≤∞→∞→),()(lim )(lim )(ψ ,和dx x f dx x dx x f k Ek Ek k n E)(lim )(lim )(⎰⎰⎰∞→∞→≤≤ψ ,进一步,令∞→n ,则)(lim )(lim )(x x f x f k k n n ψ∞→∞→== ,及dx x dx x f k Ek En n )(lim )(lim ψ⎰⎰∞→∞→= .(3)于是,由非负可测函数勒贝格积分定义和(3)式,有⎰⎰∞→=En n Edx x f dx x f )(lim )( .定理3 (逐项积分定理)设)}({x f n 是E 上的非负可测函数列,则⎰∑⎰∑∞=∞==⎪⎭⎫⎝⎛En n E n n dx x f dx x f )()(11 .证明 由定理1,对每个n ≥1⎰∑⎰∑===⎪⎭⎫⎝⎛Ek nn E n k k dx x f dx x f )()(11令 )}({,)()(1x S x f x S n nk k n 则∑==是非负可测函数列,且 E x x S x S n n ∈≤+),()(1 ,E x x f x S n n n n ∈=∑∞=∞→1)()(lim ,由Levi 单调收敛定理知,dx x S dx x f n E n E n n )(lim )(1⎰⎰∑∞→∞==⎪⎭⎫⎝⎛ =⎰∑⎰⎪⎭⎫ ⎝⎛==∞→∞→En k k n n En dx x f dx x S 1)(lim )(lim=()⎰∑⎰∑∞==∞→=Enn k Enk n dx x f dx x f 11)(lim .推论 设{E n }是可测集列,互不相交,∞==1n n E E 如果)(x f 是E 上的非负可测函数,则⎰∑⎰∞==En E ndx x f dx x f 1)()( .证明 令)1(,),()()(≥∈=n E x x x f x f n E n χ,则 )(x f n 是E 上的非负可测函数,且 ∑∞==1)()(n n x f x f ,⎰⎰=EnEn dx x f dx x f )()( .由逐项积分定理知∑⎰⎰∑⎰∞=∞===11)()()(n EnEn n Edx x f dx x f dx x f .定理4 设)(x f 是E 上几乎处处有限的非负可测函数,),0[}{,+∞⊂+∞<n y mE ,满足)(,01∞→+∞→<<<<=n y y y y n n o其中 δ<-+n n y y 1,令,1,0],)(|[1=<≤=+n y x f y x E E n n n则)(x f 在E 上是勒贝格可积的充分必要条件是∑∞=∞<0n nn mEy ,此时⎰∑=∞=→En n n dx x f mE y )(lim 0δ .证明 不妨假设)(x f 在E 上处处有限,因为在E n 上,)0(,)(1≥<≤+n y x f y n n ,所以由定理1,对每个n ≥0,n n Enn n mE y dx x f mE y 1)(+≤≤⎰,由定理3的推论知,∑⎰⎰∞==0)()(n E Endx x f dx x f ,所以⎰∑∑∞=+∞=≤≤En n n n nn mE y dx x f mEy 010)(=∑∑∞=∞=++-01)(n n n n n n n mE y mE y y∑∞=+<0n n n mE y mE δ,因此结论成立.定理5(Fatou 定理) 设{})(x f n 是E 上的非负可测函数列,则⎰⎰∞→∞→≤En n nE n dx x f dx x f)(lim )(lim .证明 令1,),(inf )(≥∈=≥n E x x f x g k nk n ,则 g n (x)是E 上的非负可测函数,且E x x g x g n n ∈≤+),()(1,于是,由Levi 单调收敛定理知,⎰⎰⎰∞→∞→∞→==En n n E n n n Edx x g dx x g dx x f )(lim )(lim )(lim .因为 E x x f x g n n ∈≤),()(所以 dx x f dx x gEn En⎰⎰≤)()( ,从而⎰⎰∞→∞→≤En n n En dx x f dx x g )(lim )(lim ,因此,⎰⎰∞→∞→≤En n n n Edx x f dx x f )(lim )(lim .Fotou 定理中的严格不等式有可能成立,例如设⎪⎩⎪⎨⎧-∈∈=]1,0[]1,0[0]1,0[)(n x n x n x f n ,易知 )1(,1)(],1,0[,0)(lim ]1,0[≥=∈=⎰∞→n dx x f x x f n n n ,所以1)(lim 0)(lim ]1,0[]1,0[=<=⎰⎰∞→∞→x f dx x f n n n n .§3 一般可测函数的勒贝格积分定义1 设)(x f 是E 上的可测函数,如果积分⎰⎰-+EEdx x f dx x f )(,)(中至少有一个是有限值,记⎰⎰⎰-+-=EEEdx x f dx x f dx x f )()()(,则称)()(x f dx x f E为⎰在E 上的勒贝格积分.如果上式右端两个积分值均是有限的,则称)(x f 在E 上是勒贝格可积的,或称)(x f 是E 上的勒贝格可积函数.通常把区间[a ,b ]上的勒贝格积分记成dx x f a b L )()(⎰,或 dx x f ab)(⎰.定理1 设)(x f 是E 上的可测函数,则 (1))(x f 在E 上勒贝格可积的充分必要条件是)(x f 在E 上勒贝格可积,此时⎰⎰≤EEdx x f dx x f |)(||)(|;(2)若)(x f 在E 上勒贝格可积,则)(x f 在E 上几乎处处有限;(3)若)()(x g x f = ..e a 于E ,且)(x f 在E 上勒贝格可积,则)(x g 在E 上勒贝格可积,且⎰⎰=EEdx x g dx x f )()(.证明 (1))(x f 与)(x f 在E 上勒贝格可积的等价性由定义1和)()()(x f x f x f -++=即得,另外,由§2 定理1, ⎰⎰⎰⎰-+-++=+=EEEEdx x f dx x f dx x f x fdx x f )()())()((|)(|⎰⎰⎰=-≥-+EEEdx x f dx x f dx x f |)(||)()(| .(2)若)(x f 在E 上勒贝格可积,则⎰⎰+∞<+∞<-+EEdx x f dx x f )(,)( ,对任何n ≥1,记])(|[n x f x E E n ≥=,则⎰⎰⎰⋅≥=≥++EE E n nnmE n dx x f dx x f dx x f )()()( ,所以 0lim =∞→n n mE ,而n n n E E x f x E ⊂=+∞=∞= 1])(|[ ,于是 0])(|[=+∞=x f x mE ,同理可证 0])(|[=-∞=x f x mE ,因此0]|)(||[=+∞=x f x mE ,即)(x f 在E 上是几乎处处有限的.(3)因为..)()(e a x g x f =于E ,所以..)()(),()(e a x g x f x g x f --++==于E ,再由勒贝格积分定义和§2定理1知结论成立.由定理1知,对于可测函数而言,其勒贝格可积性和积分值大小与零测集无关,因而我们总可以假定可积函数是处处有限的. 定理2 设)(),(x g x f 是E 上的勒贝格可积函数,则 (1) )(,1x cf R c ∈∀在E 上勒贝格可积,且⎰⎰=EEdx x f c dx x cf )()( ;(2) )()(x g x f +在E 上勒贝格可积,且()⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()()()( .证明 (1)当0≥c 时,),())((),())((x cf x cf x cf x cf --++==于是 ⎰⎰⎰-+-=EEEdx x cf dx x cf dx x cf ))(())(()(⎰⎰-+-=EEdx x cf dx x cf )()(=()⎰⎰⎰=--+EEEdx x f c dx x f dx x f c )()()( ;当0<c 时, ()())()(),()(x cf x cf x cf x cf +--+-=-=, 所以()()⎰⎰⎰-+-=EEEdx x cf dx x cf dx x cf )()()(=()()⎰⎰+----EEdx x cf dx x cf )()(=[]⎰⎰⎰=--+-EEEdx x f c dx x f dx x f c )()()( .(2)因为|)(||)(||)()(|x g x f x g x f +≤+,所以当)(),(x g x f 在E 上勒贝格可积时,)(,)(x g x f 在E 上勒贝格可积,从而)()(x g x f +在E 上勒贝格可积,故)()(x g x f +可积.另外,由于-++-+=+))()(())()(()()(x g x f x g x f x g x f , 又 ))()(())()(()()(x g x g x f x f x g x f -+-+-+-=+ ,所以 ,))()(())()(()()()()(-+-+-++-+=-+-x g x f x g x f x g x g x f x f 从而)()())()(())()(()()(x g x f x g x f x g x f x g x f --+-+++++=+++ .于是由§2定理1(6),⎰⎰⎰-+++++EEEdx x g x f dx x g dx x f ))()(()()(=⎰⎰⎰--++++EEEdx x g dx x f dx x g x f )()())()((因此⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()())()((定理3 设函数)(x f 在E 上勒贝格可积, ∞==1n n E E ,E n 是可测集(n ≥1),且互不相交,则)(x f 在每个E n 上勒贝格可积,且dx x f dx x f Enn E⎰∑⎰∞==)()(1.证明 对每个n ≥1,)(x f 在E n 上勒贝格可积,(留作习题).因为)(x f 在E 上勒贝格可积,所以由非负可测函数积分的可数可加性,+∞<=⎰⎰∑++∞=dx x f dx x f EE n n)()(1 ,+∞<=⎰⎰∑--∞=dx x f dx x f EE n n)()(1 ,于是⎰⎰∑⎰∑-+∞=∞=-=nnnE E n E n dx x f dx x f dx x f ))()(()(11=⎰∑⎰∑-∞=+∞=-nnE n E n dx x f dx x f )()(11=⎰⎰-+-EEdx x f dx x f )()(=dx x f E)(⎰ .定理4 (勒贝格控制收敛定理) 设)(x f 、)1)((≥n x f n 是E 上的可测函数,如果(1))()(x f x f n →a . e.于E ,(2)存在E 上的勒贝格可积函数g (x ),使),()(x g x f n ≤ a. e.于E ,则)1)((),(≥n x f x f n 在E 上勒贝格可积,且⎰⎰=∞→EEn n dx x f dx x f )()(lim .证明 由(2),f (x ), f n (x )(n ≥1)在E 上勒贝格可积,且g (x )+f n (x )≥0 (n ≥1), a .e.于E . 由Fatou 定理,⎰⎰+≤+∞→∞→E n n E nn dx x f x g dx x fx g ))()((lim ))()((lim ,于是 ⎰⎰⎰⎰∞→∞→+≤+E n En En n Edx x f dx x g dx x f dx x g )(lim )()(lim )( , 从而⎰⎰⎰∞→∞→≤=E n En n n Edx x f dx x f dx x f )(lim )(lim )( .同理,由g (x )-f n (x )≥0,(n ≥1),a.e.于E 知,()⎰⎰-≤-∞→Enn Edx x fdx x f )(lim ))(( ,即⎰⎰∞→-≤-En n Edx x f dx x f )(lim )(,所以, ⎰⎰∞→≥En n Edx x f dx x f )(lim )( ,因此⎰⎰∞→=En n Edx x f dx x f )(lim )( .推论 设)(,x f mE n +∞< )1(≥n 是E 上的可测函数,如果 (1)..),()(e a x f x f n →.于E ,(2)M x f n ≤)(, a.e.于E ,(n ≥1) ,则 可积,且上在L E x f )(⎰⎰∞→=En n Edx x f dx x f )(lim )(.定理5 (积分的绝对连续性)设f (x )在E 上勒贝格可积,则对任何ε>0,存在δ>0,对E 的任何可测子集A ,当mA<δ时,ε<⎰Adx x f )(证明 不失一般性,设f (x )在E 上非负可积. 令⎩⎨⎧>≤=nx f nn x f x f x f n )()()()(,则 )1,(),()(0≥∈≤≤n E x x f x f n ,且)()(lim x f x f n n =∞→,)()(1x f x f n n +≤.因为f (x )勒贝格可积,所以对每个n ,f n (x )是勒贝格可积的,于是由Levi 单调收敛定理,有⎰⎰∞→=EEn n dx x f dx x f )(lim )( ,因此,对任意正数ε>0, 存在N ≥1,使⎰<-≤EN dx x f x f 2))()((0ε.令 N2εδ=,则对E 的任何可测子集A ,当mA<δ时,()⎰⎰⎰+-=AAN AN dx x f dx x f x f dx x f )()()()(<εεεε=+<⋅+222mA N . 定理6 设f (x )是1R E ⊂上的L 可积函数,mE<+∞,则对任何ε>0,存在R 1上的连续函数g (x ),使⎰<-Edx x g x f ε)()(.证明 令[]n x f x E E n >=)(|,则1+⊃n n E E ,且[] ∞=+∞==1)(|n n x f x E E . 因为f (x )在E 上勒贝格可积,所以f (x )在E 上几乎处处有限. 又mE <+∞,故由可测集性质,[]0)(|lim =+∞==∞→x f x mE mE n n ,因此,由积分的绝对连续性,对任何ε>0,存在N ≥1,使⎰<≤NE N dx x f NmE 4)(ε.对于E\E N ,由第三章§3定理3,存在R 1上连续函数)(x g 和闭集N N E E F \⊂,使(1)[]NF E E m N N 4\)\(ε<,(2)f (x )=g (x ), ,N F x ∈ 且,)(sup 1N x g R x ≤∈ 于是⎰⎰⎰-+-=-EE E E NNdx x g x f dx x g x f dx x g x f \)()()()()()(⎰⎰⎰---++≤NNN NE F E E E dx x g x f dx x g dx x f )(|)()(||)(|)([]N N N F E E Nm NmE \)\(24++<εεεεε=++<244.例1 证明dy y f y x a b dy y f y x abdx d )()cos()()sin(+=+⎰⎰ , 其中f (x )是[a ,b ]上的勒贝格可积函数. 证明 对任何1R x ∈,|)(|)()sin(y f y f y x ≤+所以函数 sin(x+y )f (y )在[a ,b ]上勒贝格可积,对任何0→n ε,令[])()sin()()sin(1)(y f y x y f y x y f n nn +-++=εε ,则|)(||)(|y f y f n ≤,且 )()cos()(lim y f y x y f n n +=∞→,由控制收敛定理,dy y f y x a b dy y f y x ab dx d )()cos()()sin(+=+⎰⎰. 例2证明 0101lim 2223=+⎰∞→dx x n xn n .证明 易知]1,0[,01lim2223∈=+∞→x x n xn n ,令xx g xn xn x f n 2)(,1)(2223=+=,则)1()12(2)()(222323x n x xn nx x f x g n +-+=-, 当 0)12(2,1412323>-+≤<x n nx x n时;当 时nx 410≤≤,()04122122232323232323>⎪⎭⎫⎝⎛-≥-≥-+n n x n x n nx ,所以 1],1,0[),()(0≥∈≤≤n x x g x f n ,由习题6, g (x )在[0,1]上勒贝格可积,所以由控制收敛定理,0001101lim 2223==+⎰⎰∞→dx dx x n xn n .§4 黎曼积分与勒贝格积分本节介绍黎曼积分与勒贝格积分的关系,并给出黎曼可积函数的特征性质. 定理1 设f (x )是闭区间[a ,b ]上的有界函数,如果f (x )在[a ,b ]上黎曼可积,则f (x )在[a ,b ]上勒贝格可积,且⎰⎰=bab adx x f L dx x f R )()()()( .证明 设|,)(|sup ],[x f M b a x ∈= 则0≤M<+∞.作[a ,b ]的分划D n 如下:D n : b x x a x n k n n n=<<<=)()(1)(0 , 使1+n D 比n D 更细密,并且())(0max )(1)(1∞→→-=-≤≤n x x D n j n j k j n n.记 )(sup )(inf ],[)(],[)(11x f M x f m j j j j x x x n j x x x n j --∈∈==,作简单函数[](]⎪⎩⎪⎨⎧∈∈=-)()(1)()(1)(0)(1,,)(n jn j n j n n n n x x x m x x x m x L ,n k j ≤≤2,[](]⎪⎩⎪⎨⎧∈∈=-)()(1)()(1)(0)(1,,)(n jn j n jn n n n x x x M x x x M x U ,n k j ≤≤2,易知简单函数列{L n (x )}和{U n (x )}满足 )()(1x L x L n n +≤ , )()(1x U x U n n +≥ ,],[),()()(b a x x U x f x L n n ∈≤≤ .令 )(lim )(),(lim )(x U x U x L x L n n n n ∞→∞→==,则],[),()()(b a x x U x f x L ∈≤≤ .因为对每个n ,],[,|)(|,|)(|b a x M x U M x L n n ∈≤≤,所以由有界控制收敛定理, ⎰⎰∞→=],[],[)(lim )(b a b a n n dx x L dx x L ,⎰⎰∞→=],[],[)(lim )(b a b a n n dx x U dx x U .另外,由简单函数勒贝格积分定义知,()⎰∑=-=-=],[1)(1)()(),()(b a k j n n j n j n j n nf D s x x m dx x L ,()⎰∑=-=-=],[1)(1)()(),()(b a k j n n j n j n j n nf D S x x M dx x U ,其中s (D n , f )与S(D n , f )分别是f (x )关于分别D n f (x )在[a ,b ]上黎曼可积,所以),(lim ),(lim )()(f D S f D s dx x f R n n n n ba∞→∞→==⎰ ,从而 ⎰⎰⎰==],[],[)()()()(b a b a badx x U dx x L dx x f R ,注意到 ()⎰=-≥-],[,0)()(0)()(b a dx x L x U x L x U 及于是 U (x )-L (x )=0 a .e .于[a ,b ], 因此 f (x )=U (x )=L (x ) a .e .于[a ,b ].故f (x )在[a ,b ]上L 可积,并且⎰⎰⎰==],[],[)()()()(b a b a ba dx x U dx x L dx x f L ,于是 ⎰⎰=b a dx x f L dx x f abR )()()()(.以下我们给出黎曼可积函数的充分必要条件,先给出如下引理.引理 函数f (x )在],[0b a x ∈处连续的充分必要条件是对任意ε>0,存在包含x 0的开区间I ,使f (x )在I 上的振幅.ε<-=∈∈)(inf)(sup )(],[],[x f x f I w Ib a x Ib a x f证明 由连续函数的定义即得.定理2 设f (x )为[a ,b ]上的有界函数,则f (x )在[a ,b ]上黎曼可积的充分必要条件是它的不连续点的全体是零测集,即f (x )在[a ,b ]上几乎处处连续.证明 必要性 因为f (x )黎曼可积,所以同于定理1的证明,做[a ,b ]的分划列{D n }和简单函数列{L n (x )}与{U n (x )},得知.],[),()()(b a x x U x f x L ∈≤≤, 进而],[..),()()(b a e a x f x L x U 于==,其中 )(lim )(),(lim )(x L x L x U x U n n n n ∞→∞→== .记D 是分划{D n }的所有分点所成之集,令 )}()()()(],,[|{x U x f x L x f b a x x E <>∈=或 ,E DF = ,则mF =0,下证f (x )在[a ,b ]-F 上连续.事实上,设E x D x F b a x ∉∉-∈000,,],[且则. 若f (x )在x 0处不连续,则由引理知,存在00>ε,对任何包含x 0的开区间I ,有0)(ε≥I w f . 因为D x ∉0,所以对每个n ,存在)1(00n k k k ≤≤,使())()(1000,n k n k x x x -∈,于是()0)()(100),()()(00ε≥=--n k n k f n n x x w x L x U , 而 )(lim )(),(lim )(0000x L x L x U x U n n n n ∞→∞→==,所以0)()(000>≥-εx L x U ,这与E x ∉0矛盾,故f (x )在x 0处连续. 充分性设f (x )在[a ,b ]上几乎处处连续,且|f (x )|≤M ,],[b a x ∈. 作[a ,b ]上的一列越来越细密的分划{D n },D n :b x x x a n k n n n=<<<=)()(1)(0 , 满足:())(0max )(1)(1∞→→-=-≤≤n x x D n j n j k j n n同于定理1的证明,做简单函数列{U n (x )}和{L n (x )},使1],,[,)(,)(≥∈≤≤n b a x M x L M x U n n , 并且].,[),(lim )()(lim b a x x U x f x L n n n n ∈≤≤∞→∞→下证对于f (x )的任何连续点x ,有).()(lim )(lim x f x U x L n n n n ==∞→∞→事实上,设f (x )在x 处连续,则由引理,任给0>ε,存在开区间I =(α,β),使ε<∈)(,I w I x f 且. 因为0→n D ,所以存在N ≥1,当n ≥N 时,},min{x x D n --<βα,另外,存在k 0(1≤k 0≤k n ),使[]I x x x n k n k ⊂∈-)()(100,,因此[]()ε<≤=--)(,)()()()(100I w x x w x L x U f n k n k f n n , 由ε的任意性知,).()(lim )(lim x f x L x U n n n n ==∞→∞→因为f (x )在[a ,b ]上几乎处处连续,所以].,[..)()(lim )(lim b a e a x f x L x U n n n n 于==∞→∞→又 ⎰=],[),()(b a n n f D S dx x U ,⎰=],[),()(b a n n f D s dx x L ,于是由勒贝格有界控制收敛定理, ⎰⎰==∞→∞→bab a n n n n dx x f L dx x U f D S )()()(lim ),(lim ],[,⎰⎰==∞→∞→bab a n n n n dx x f L dx x L f D s )()()(lim),(lim ],[,因此 ()0),(),(lim =-∞→f D s f D S n n n ,故f (x )在[a ,b ]上黎曼可积.例1 设⎩⎨⎧=,]1,0[1,]1,0[0)(中有理数为中无理数为x x x D 则D (x )在[0,1]上黎曼不可积.证明 因为D (x )在[0,1]上处处不连续,所以由定理2,D (x )在[0,1]上黎曼不可积. 例2 黎曼函数⎪⎩⎪⎨⎧=,]1,0[0,1)(上其它数为为任约真分数x q px qx ξ则ξ(x )在[0,1]上黎曼可积.证明 因为ξ(x )不连续点的全体为(0,1)中的有理数集,而该集合为零测集,所以由定理2,ξ(x )在[0,1]上黎曼可积.§5 重积分与累次积分在黎曼积分中,重积分可化为累次积分. 例如设D =[a ,b ]×[c ,d ], f (x ,y )是D 上的连续函数,则⎰⎰⎰⎰⎰⎰==Ddx y x f abdy c d dy y x f c d dx a b dxdy y x f ),(),(),(本节我们在勒贝格积分中建立相应的定理——即富比尼(Fubini )定理,由此看到,在勒贝格积分中重积分化为累次积分,以及积分次序的交换等问题中,勒贝格积分要求的条件比在黎曼积分时要求的条件弱得多,这再次显示了勒贝格积分的优越性. 一、富比尼定理设p 、q 是正整数,n =p +q ,此时R n 可以看成R p 和R q 的直积,即R n =R p ×R q . R n上的函数f 可以用f (x ,y )表示,其中,,q p R y R x ∈∈相应的积分可写成⎰⨯qp R R dxdy y x f ),(,称为重积分. 另一方面,固定),(,y x f R x p ∈看成q R y ∈的函数,令⎰=q Rdy y x f x F ),()(,则称[]⎰⎰⎰⎰⎰∆=p q ppqRRR R R dy y x f dx dx dy y x f dx x F ),(),()(为累次积分. 富比尼定理给出了等式⎰⎰⎰⨯=p q qp RRR R dy y x f dx dxdy y x f ),(),(成立的条件. 定理1 (Tonelli )设f (x ,y )是R p ×R q 上的非负可测函数,则 (1)对几乎所有的q p R y y x f R x ∈∈作为),(,的函数是非负可测的; (2)⎰∈=q RP R x dy y x f x F 作为),()(的函数是非负可测的;(3).),(),(⎰⎰⎰⨯=qp p q R R RRdy y x f dx dxdy y x f证明 由于非负可测函数是非负单调增简单函数列的极限,我们只需证)(x f 是R p ×R q 中可测集E 的特征函数的情形即可.以下分五种情形加以证明.情形1 E=I 1×I 2,其中I 1和I 2分别是R p 和R q 中的区间; 当1I x ∉时,f (x ,y )=0;当,1时I x ∈⎩⎨⎧∉∈=,,1),(22I y I y y x f所以对一切q p R y y x f R x ∈∈作为),(,的函数是非负可测的,并且⎰⎩⎨⎧∉∈==q R I x I x I dy y x f x F ,0,||),()(112于是 ⎰⎰⨯==p RI I I dx I dx x F 1||||||)(212 . 而⎰⨯⨯==qp R R I I mE dxdy y x f ||||),(21 ,所以⎰⎰⎰⨯=qp p q R R RRdy y x f dx dxdy y x f ),(),( .情形2 E 是开集;由开集结构知, ∞==1)(k k I E ,其中I (k) (k ≥1)是R p ×R q 中互不相交的半开半闭区间,记)(2)(1)(k k k I I I ⨯=,其中)(2)(1k k I I 和分别是R p 和R q 中的区间,令⎩⎨⎧⨯∉⨯∈=,),(0,),(1),()(2)(1)(2)(1k k k k k I I y x I I y x y x f 则 ∑∞==1),(),(k k y x f y x f .由情形1,每个f k (x ,y )满足(1)~(3),于是对一切qp R y y x f R x ∈∈作为),(,的函数是非负可测的,从而由逐项积分定理,∑∑⎰⎰⎰∞=∞====11),(),(),()(k k Rk kRRq q qdy y x f dy y x fdy y x f x F在R p 上非负可测,仍由逐项积分定理,∑⎰⎰∞=⨯⨯=1),(),(k kR R R R dxdy y x fdxdy y x f qp qp=[]∑∑⎰⎰⎰∞=∞=⨯=11),(),(k k R R k k R R pqqp dx dy y x f dxdy y x f=⎰⎰⎰∑∑⎰⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∞=∞=p p q q R RR k k k R k dx dy y x f dx dy y x f 11),(),( =[]⎰⎰⎰⎰=pp q qR RRR dy y x f dx dx dy y x f ),(),( .情形3 E 是有界闭集; 令 },1)),,((0),{(1<<⨯∈=E y x d R R y x G q p},1)),,((),{(2<⨯∈=E y x d R R y x G qp则G 1和G 2是R p ×R q 中的有界开集,且E =G 2\G 1,21G G ⊂,及,0),(),(),(12≥-=y x f y x f y x f其中f 1, f 2分别是G 1与G 2的特征函数,由情形2,f 1, f 2均满足(1)~(3),并且对一切),(,y x f R x p ∈关于p R y ∈是非负可积的,从而dy y x f dy y x f dy y x f x F q q q RRR),(),(),()(12⎰⎰⎰-==在R p 上非负可积,并且[]dy y x f dx dy y x f y x f dx dx x F q p p q pRRRRR ),(),(),()(12⎰⎰⎰⎰⎰=-= .另外,由f i (x ,y )在R p ×R q 上非负可积及情形2知(i=1,2),⎰⎰⎰⨯⨯⨯-=qp qp qp R R R R R R dxdy y x f dxdy y x f dxdy y x f ),(),(),(12=⎰⎰⎰⎰-p q p q RRRRdy y x f dx dy y x f dx ),(),(12=[]⎰⎰⎰⎰=-pq qRRRR dy y x f dx dy y x f y x f dx ),(),(),(112.情形4 E 是零测集;因为E 是零测集,所以存在递减开集列{G k },使)1(≥⊂k G E k 且)(0∞→→k mG k ,令k k G H ∞==1,则.0,=⊂mH H E 且令⎩⎨⎧∉∈=kkk G y x G y x y x f ),(0),(1),(, 则由控制收敛定理和情形2, 0=⎰⎰⨯⨯∞→=qP qp R R RR k k H dxdy y x f dxdy y x ),(lim ),(χ =[]⎰⎰⎰⎰∞→∞→=p q p qRRR R k k k k dx dy y x f dy y x f dx ),(lim ),(lim=[]⎰⎰⎰⎰=∞→pp q q R RRH R k k dy y x dx dx dy y x f ),(),(lim χ .因此,对几乎所有的p R x ∈,有⎰=q RH dy y x 0),(χ,从而对几乎所有p R x ∈,q H R y y x ∈关于),(χ几乎处处为零,但),(),(),(0y x y x y x f H E χχ≤=≤,因而对几乎所有的p R x ∈,几乎处处为零关于q R y y x f ∈),(,因此对几乎所有的p R x ∈,⎰==0),()(dy y x f x F q R ,于是⎰⎰⎰==⨯0),(),(dy y x f dx dxdy y x f q p qp R R R R .情形5 E 是一般可测集.由可测集结构知,存在有界单增的闭集列Z F k 和零测集}{,使φ=⎪⎪⎭⎫ ⎝⎛=∞= Z F Z F E k k k ,1(k ≧1),记()则的特征函数和分别为和,1≥k F Z f f k k o),(),(lim ),(),(y x f y x f y x y x f o k k E +==∞→χ.由情形3和4,)1(,≥k f f o k 满足定理(1)~(3),故由单调收敛定理和可积函数性质知),(y x f 也满足(1)~(3).至此我们证明了q p R R ⨯中任何可测集E 上的特征函数)3(~)1()(满足定理x f ,从而易知任何非负简单函数和非负可测函数都满足定理(1)~(3). 定理2 (Fubini ),设),(y x f 在q p R R ⨯上可积,则(1)对几乎所有的q R x ∈,),(y x f 作为q R y ∈ 的函数在q R 上可积; (2)⎰=q Rdy y x f x F 在),()(q R x ∈上可积;(3)⎰⎰⎰⨯=qp qpR R R R dy y x f dx dxdy y x f ),(),(.证明 因为),(),(),(y x f y x f y x f -+-=,而q P R R f f ⨯-+都是,上的非负可积函数,所以由定理1即得结论.推论 设),(y x f 在q p R R ⨯上非负可测(L 可积),则dx y x f dy dxdy y x f dy y x f dx pqqp qpR R R R R R ),(),(),(⎰⎰⎰⎰⎰==⨯ .证明 在定理1和定理2的证明中交换y x 与的位置即得结论. 二、富比尼定理的应用以下我们介绍富比尼定理在函数的卷积和分布函数方面的应用.为此先给出如下引理:引理 设上的可测函数是则上的可测函数是n n n n R R R y x f R x f 2)(,)(=⨯-. 证明 因为函数上可测在n R x f )(,所以对任何})({,1αα>∈=∈x f R x A R n 是n R y x y x g -=),(,则})(),{(a y x f R R y x n n >-⨯∈)(}),{(1A g A y x R R y x n n -=∈-⨯∈=. 为证引理,只需证明 中可测集是n R A g 21)(-. 分三种情形证明:(1)若A 为中n R Borel 集,因为n n R R g →2:是连续映射,则)(1A g -为n R 2中Borel 集,从而)(1A g -是可测集. (2)若A 是中n R 零测集,即mA=0,则存在δG 型集G ),(,0,1G g B mA mG A -===⊃令且则B 的特征函数B χn R 2是上的非负可测函数,由推论及有,0}){(==+mG y G m.0}){(),(),(),(}{2=+=====⎰⎰⎰⎰⎰⎰⎰⎰+dy y G m dxdy dx y x dy dyy x dx dxdy y x mB nnnn nnn R y G R B R R B R R B R χχχ另外,由A G ⊃知,从而所以,0))((,)()(111==⊂---A g m B G g A g )(1A g -是n R 2中可测集.(3)若A 是n R 中任一可测集,则存在,0)\(,=⊂F A m A F F 使型集σ因为知所以由集型集是)1(,Borel F σ,)2(,)(1知又由是可测集F g -)\(1F A g -是可测集,从而)\()()(111F A g F g A g ---= 是可测集.定义 设n R x g x f 是)(),(上的可测函数,如果对几乎所有的n R x ∈,积分dy y g y x f nR )()(-⎰存在,则称dy y g y x f x g f nR )()())(*(-=⎰为)()(y g x f 与的卷积.定理3 设)(x f ,)(x g 在n R 上可积,则对几乎所有的n R x ∈,))(*(x g f 存在,并且))()()(()(*dx x g dx x f dx x g f nnnR R R ⎰⎰⎰≤.证明 先设0)(≥x f ,0)(≥y g ,由引理,)()(y g y x f -在n n R R ⨯上是非负可测的,由推论,).)()()(())()((])()([))()(())(*(dy y g dx x f dydx y x f y g dydx y g y x f dxdy y g y x f dx x g f nnnnnn nnnR R R R R R R R R ⎰⎰⎰⎰⎰⎰⎰⎰⎰=-=-=-=一般情形由下式即得:dx x g Rdx x f Rdx x g f Rdx x g f Rnnnn)()())(*())(*(⎰⎰⎰⎰=≤.定理4 设n R E ⊂是可测集,)(x f 是E 上几乎处处有限的可测函数,对每个0>λ,令 }))(({)(λλ>∈=x f E x m F ,称的分布函数为)()(x f F λ,则当∞<≤p 1时,λλλd F p dx x f E p p)(0)(1-⎰⎰∞=.证明 令⎩⎨⎧≤>=,)(0,)(1),(λλλx f x f x g固定的函数是可测集合作为时x x g ),(,0λλ>})({λ>∈x f E x 的特征函数,所以由定理1,⎰⎰⎰-=λλd p x f dx dx x f p E pE10)()(().)(.),(101010λλλλλλλλλd F p dx x g d p d x g p dx p E p p E -∞-∞-∞⎰⎰⎰⎰⎰===习 题1、证明§1定理2中(1)、(3)、(4).2、证明§2定理1中(2)、(4)、(6).3、设则上可测在,)(E x f 对任何0>η,有,)(])([dx x f x f x mE E ⎰≤≥ηη4、设上在E x f )(非负可测,且⎰=0)(dx x f E,则E e a x f 于,,0)(=5、设令上可测在,0)(E x f ≥,)(,)(0)()]([n x f n x f x f x f n >≤⎩⎨⎧= 若则于,..)(E e a x f +∞<[]⎰⎰=∞→dx x f dx x f E n En )()(lim .6、设(]⎪⎩⎪⎨⎧=∈=⎪⎩⎪⎨⎧=,00,1,02)(,]1,0[,]1,0[1)(4x x xx g x x x xx f 中有理数为中无理数为证明并求可积上在,]1,0[)(),(L x g x f ⎰⎰dx x g dx x f )()(]1,0[]1,0[和.7、 设中任一点至少属于如果的可测子集是]01[,]1,0[,,,21n E E E 这n 个集合中的q个,证明必有一个集合,它的测度大于或等于nq. 8、设是上可积的充分必要条件在证明上非负可测在E x f E x f mE )(,)(,+∞<级数])([1n x f x mE n ≥∑∞=)收敛, +∞=mE 时,结论是否成立?9、设()x f 在可测集E 上L 可积,1E 是E 的可测子集,则()x f 在1E 上L 可积. 10、设+∞<mE ,()x f 在E 上有界可测,则()x f 在E 上L 可积,从而[ a ,b ]上的连续函数是L 可积的.11、设()x f ,()x g 是E 上的可积函数,则)()(22x g x f +,也在E 上可积.12、设]1,0[0为P 中康托集,⎪⎩⎪⎨⎧∈∈=阶邻接区间n x P x n x f 0100)( ,证明 3)(]1,0[=⎰dx x f .13、设()x f 在E 上L 可积,mE mE mE n E E n n n =+∞<≥⊂→∞lim ,),1(且,证明dx x f dx x f E E n n )()(lim ⎰⎰=→∞.14、设.0lim ],)([,)(,=≥=+∞<∞→n n n nmE n x f x E E L E x f mE 证明记可积上在15、设mE ≠0,()x f 在E 上L 可积,如果对于任何有界可测函数)(x ϕ,都有0)()(=⎰dx x x f Eϕ,则()x f =0,a.e.于E16、设+∞<mE ,0,,)}({⇒n n f E E x f 上证明在函数列上几乎处处有限的可测为的充要条件为 0)(1)(lim =+⎰∞→dx x f x f n n En .17、设{})(x f n 为E 上非负可测函数列,且)1()()(1≥≥+n x f x f n n ,若)()(lim x f x f n n =∞→,且存在0k ,使⎰+∞<Ek dx x f )(0,则dx x f dx x f En En )()(lim ⎰⎰=∞→ .18、设()x f 在[a ,b ]上L 可积,则对任意ε>0,存在[a ,b ]上的连续函数()x g ,使ε<-⎰dx x g x f b a )()(],[.19、若()x f 是),(+∞-∞上的L 可积函数,则0)()(lim ],[0=-+⎰→dx x f h x f b a h .。
勒贝格控制收敛定理
勒贝格控制收敛定理是积分论中的一个重要定理,它解决了积分与极限的交换问题,并在一定程度上代表了实变函数论方法的力量。
利用这一定理可以证明列维(Levi )定理等其他定理,而且它在证明和计算中有着广泛的应用。
首先,我们介绍一下勒贝格控制收敛定理。
勒贝格控制收敛定理:设
(1){n f }是可测集E 上的可测函数列;
(2)()n f x (x)a.e.F ≤于E ,n=1,2,,且(x)F 在E 上可积分(称{n f }为(x)F 所控制,而(x)F 叫控制函数);
(3)()()n f x f x ⇒,则()f x 在E 上可积分,且()()n n lim E E
f x dx f x dx =⎰⎰(注:将条件(3)换为()()n f x f x a.e.→于E ,定理结论仍成立。
应用勒贝格控制收敛定理时,关键是找出控制函数,且要求控制函数是可积的。
下面我们从两个方面探讨勒贝格控制收敛定理在分析学中的应用。
1 利用定理的证明
勒贝格控制收敛定理可以证明积分等式、函数相等、积分的极限、积分的和、数列收敛、不等式判断函数连续等等问题。
例1:设12f f ,,。