【数学】2010年高考真题辽宁卷(理)解析版
- 格式:doc
- 大小:870.50 KB
- 文档页数:14
2010年普通高等学校招生全国统一考试(辽宁卷)数学试卷(理科)参考答案一、选择题(1)D (2)A (3)B (4)D (5)C (6)B (7)B (8)C (9)D (10)D (11)C (12)A 二、填空题(13)-5 (14)(3,8) (15) (16)21217.解:(Ⅰ)由已知,根据正弦定理得22(2)(2)a b c b c b c =+++ 即 222a b c b c=++ 由余弦定理得 2222cos a b c bc A =+- 故 1c o s 2A =-,A=120° ……6分 (Ⅱ)由(Ⅰ)得:)60sin(sin sin sin 0B B C B -+=+1sin 2sin(60)B BB =+=︒+ 故当B=30°时,sinB+sinC 取得最大值1。
……12分 18.解:(Ⅰ)甲、乙两只家兔分在不同组的概率为991981002002100199C P C ==……4分 (Ⅱ)(i )图Ⅰ注射药物A 后皮肤疱疹面积的频率分布直方图 图Ⅱ注射药物B 后皮肤疱疹面积的频率分布直方图可以看出注射药物A 后的疱疹面积的中位数在65至70之间,而注射药物B 后的疱疹面积的中位数在70至75之间,所以注射药物A 后疱疹面积的中位数小于注射药物B 后疱疹面积的中位数。
……8分(ii )表3:22200(70653530)24.5610010010595K ⨯⨯-⨯=≈⨯⨯⨯由于K 2>10.828,所以有99.9%的把握认为“注射药物A 后的疱疹面积于注射药物B 后的疱疹面积有差异”。
19.证明:设PA=1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空间直角坐标系如图。
则P (0,0,1),C (0,1,0),B (2,0,0),M (1,0,12),N (12,0,0),S (1,12,0).……4分 (Ⅰ)111(1,1,),(,,0)222CM SN =-=--,因为110022CM SN ∙=-++=,所以CM ⊥SN ……6分(Ⅱ)1(,1,0)2NC =-,设a=(x ,y ,z )为平面CMN 的一个法向量,则10,2210.2x y z x x y ⎧-+=⎪⎪=⎨⎪-+=⎪⎩令,得a=(2,1,-2). ……9分因为1cos ,2a SN -== 所以SN 与片面CMN 所成角为45°。
2010年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 是符合题目要求的,(1)已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},B)(C U ∩A={9},则A=( ) (A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9} 【答案】D【命题立意】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn 图解决集合问题的能力。
【解析】因为A ∩B={3},所以3∈A ,又因为B)(C U ∩A={9},所以9∈A ,所以选D 。
本题也可以用Venn 图的方法帮助理解。
(2)设a,b 为实数,若复数11+2ii a bi=++,则( ) (A )31,22a b == (B) 3,1a b == (C) 13,22a b == (D) 1,3a b == 【答案】A【命题立意】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力。
【解析】由121i i a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A 。
(3)两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是( ) 否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A )12 (B)512 (C)14 (D)16【答案】B【命题立意】本题考查了相互独立事件同时发生的概率,考查了有关概率的计算问题【解析】记两个零件中恰好有一个一等品的事件为A ,则 P(A)=P(A 1)+ P(A 2)=211335+=43412⨯⨯(4)如果执行右面的程序框图,输入正整数n ,m , 满足n ≥m ,那么输出的P 等于( ) (A )1m n C - (B) 1m n A - (C) m n C (D) mn A【答案】D【命题立意】本题考查了循环结构的程序框图、排列公式,考查了学生的视图能力以及观察、推理的能力【解析】第一次循环:k =1,p =1,p =n -m +1;第二次循环:k =2,p =(n -m +1)(n -m +2);第三次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3) ……第m 次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n此时结束循环,输出p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n =mn A(5)设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是( ) (A )23 (B)43 (C)32(D)3【答案】C【命题立意】本题考查了三角函数图像的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度。
辽宁2010年高考数学(文)试题及参考答案(估分)总分:150分及格:90分考试时间:120分一、选择题:本卷共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)<A href="javascript:;"></A>(2)<A href="javascript:;"></A>(3)<Ahref="javascript:;"></A>(4)<Ahref="javascript:;"></A>(5)<Ahref="javascript:;"></A>(6)<Ahref="javascript:;"></A>(7)<Ahref="javascript:;"></A>(8)<Ahref="javascript:;"></A>(9)<Ahref="javascript:;"></A>(10)<A href="javascript:;"></A>(11)<Ahref="javascript:;"></A>(12)<Ahref="javascript:;"></ A>二、填空题:本大题共4小题,每小题5分,共20分。
把答案填在题中横线上。
(1)三张卡片上分别写上字母E,E,B,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为<U></U>。
理科综合能力测试(辽宁卷)一、选择题本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列有关细胞的叙述,正确的是(D)A.病毒是一类具有细胞结构的生物 B.海澡细胞具有细胞核且DNA分子呈环状C.人体所有细胞的细胞周期持续时间相同 D.内质网膜和高尔基体膜都具有流动性2.下列关于呼吸作用的叙述,正确的是(D)A.无氧呼吸的终产物是丙酮酸B.有氧呼吸产生的在线粒体基质中与氧结合生成水C.无氧呼吸不需要的参与,该过程最终有的积累D.质量相同时,脂肪比糖原有氧氧化释放的能量多3.若要在普通显微镜下观察到质壁分离、RNA和脂肪,下列四组材料中应选择的一组是(C)A.水稻胚乳和花生子叶 B.天竹葵叶和水稻胚乳C. 紫色洋葱和花生子叶D.天竺葵叶和紫色洋葱4.水中氧含量随水温的升高而下降,生活在寒温带湖泊中的某动物,其血液中的血红蛋白含量与其生活的水温有关。
右图中能正确表示一定温度范围内动物血液中血红蛋白含量随水温变化趋势的曲线是【A】A 甲 B。
乙 C.丙 D.丁5..将神经细胞置于相当于细胞外液的溶液(溶液S)中,可测到静息电位。
给予细胞一个适宜的刺激,膜两侧出现一个暂时性的电位变化,这种膜电位变化称为动作电位。
适当降低溶液S中NA+浓度,测量该细胞的静息电位和动作电位,可观测到【D】A.静息电位值减小B.静息电位值增大C.动作电位峰值升高D.动作电位峰值降低6.在白花豌豆品种栽培园中,偶然发现了一株开红花的豌豆植株,推测该红花表现型的出现是花色基因突变的结果。
为了确定推测是否正确,应检测和比较红花植株与百花植株中【B】A 白花基因的碱基组成B 花色基因的DNA序列C.细胞的DNA含量D.细胞的RNA含量7.下列各项表达中正确的是【C】A. Na2O2的电子式为NaNaB.106g的乙醇和丙醇混合液完全燃烧生成的CO2为112L(标准状态)C.在氮原子中,质子数为7而种子数不一定为7D.CL-的结构示意图为8.分子式为C3H6CL2 的同分异构体共有(不考虑例题异构)【B】A.3中B.4种C.5种D.6种9.下列各组的反应,属于统一反应类型的是【D】A.由溴丙烷睡解制丙醇:由丙烯和水反应制丙醇B.由甲苯硝化制对硝基甲苯:由甲苯氧化制苯甲酸C.由苯乙烷消去制环乙烯:由丙烯加溴制1,2-二溴丙烷D.由乙酸和乙醇制乙酸乙酯:由苯甲酸乙酯水解制苯甲酸和乙醇10.把500ml含有BaCl2和KCl的混合溶液分成5等分,取一份加入含a mol硫酸钠的溶液,恰好是钡离子完全沉淀:令取一份加入b mol硝酸银的溶液,恰好使卤离子完全沉淀,则该混合溶液中钾离子浓度为【D】A.0.1(b-2a)mol·L-1B.10(2a-b) mol·L-1C.10(b-a) mol·L-1D.10(b-2a) mol·L-111.已知:HCN(aq)与NaOH(aq)反应的△H等于【C】A.-67.7KJ·mol·L-1B.-43.5 KJ·mol·L-1C.+43.5 KJ·mol·L-1D.+67.7 KJ·mol·L-112.根据右图,可判断出下列离子方程式中错误的是(A)A.2Ag(s) + Cd2+(s) = 2Ag(s) + Cd(s)B. Co2+(aq)+ Cd(s) = Co(s)+ Cd2+(aq)C. 2Ag (aq) + Cd(s) = 2Ag(s) Cd2+(aq)D. 2Ag (aq) +Co(s)=2Ag(s)+Co2+(aq)13.下表中评价合理的是二.选择题:本体共8小题,每小题6分,在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分。
2010年普通高等学校招生全国统一考试(全国卷II )(数学理)【教师简评】按照“保持整体稳定,推动改革创新,立足基础考查,突出能力立意”命题指导思想,本套试卷的总体印象是:题目以常规题为主,难度较前两年困难,得高分需要扎扎实实的数学功底.1.纵观试题,小题起步较低,难度缓缓上升,除了选择题11、12、16题有一定的难度之外,其他题目难度都比较平和.2.解答题中三角函数题较去年容易,立体几何难度和去年持平,数列题的难度较去年有所提升,由去年常见的递推数列题型转变为今年的数列求极限、数列不等式的证明,不易拿满分,概率题由去年背景是“人员调配”问题,转变为今年的与物理相关的电路问题,更体现了学科之间的联系.两道压轴题以解析几何和导数知识命制,和去年比较更有利于分步得分.3.要求考生有比较强的计算能力,例如立体几何问题,题目不难,但需要一定的计算技巧和能力.不管题目难度如何变化,“夯实双基(基础知识、基本方法)”,对大多数考生来说,是以不变应万变的硬道理.(1)复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】A【命题意图】本试题主要考查复数的运算.【解析】231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. (2).函数1ln(1)(1)2x y x +-=>的反函数是(A ) 211(0)x y e x +=-> (B )211(0)x y e x +=+>(C )211(R )x y e x +=-∈ (D )211(R )x y ex +=+∈【答案】D【命题意图】本试题主要考察反函数的求法及指数函数与对数函数的互化。
【解析】由原函数解得,即,又;∴在反函数中,故选D.(3).若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为(A )1 (B )2 (C )3 (D )4 【答案】C【命题意图】本试题主要考查简单的线性规划问题.【解析】可行域是由A (1,1),B(1,4),C(1,1)---构成的三角形,可知目标函数过C 时最大,最大值为3,故选C.(4).如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )35 【答案】C【命题意图】本试题主要考查等差数列的基本公式和性质. 【解析】173454412747()312,4,7282a a a a a a a a a a a +++===∴+++===(5)不等式2601x x x --->的解集为(A ){}2,3x x x -<或> (B ){}213x x x -<,或<< (C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<<【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法.【解析】利用数轴穿根法解得-2<x <1或x >3,故选C(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位 (B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位【答案】B【命题意图】本试题主要考查三角函数图像的平移.【解析】s i n (2)6y x π=+=sin 2()12x π+,sin(2)3y x π=-=sin 2()6x π=-,所以将s i n (2)6y x π=+的图像向右平移4π个长度单位得到sin(2)3y x π=-的图像,故选B.(8)A B C V 中,点D 在A B 上,C D 平方A C B ∠.若CB a =u u r,C A b =uur ,1a =,2b =,则C D =uuu r(A )1233a b +(B )2133a b +(C )3455a b +(D )4355a b +【答案】B【命题意图】本试题主要考查向量的基本运算,考查角平分线定理. 【解析】因为C D 平分A C B ∠,由角平分线定理得A D C A 2=D BC B1=,所以D 为AB 的三等分点,且22A D A B (C B C A )33==- ,所以2121C D C A +A D C B C A a b 3333==+=+,故选B.(9)已知正四棱锥S A B C D -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B (C )2 (D )3【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积,设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C.(10)若曲线12y x -=在点12,a a -⎛⎫⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a = (A )64 (B )32 (C )16 (D )8 【答案】A【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.. 【解析】332211',22y xk a--=-∴=-,切线方程是13221()2y aax a ---=--,令0x =,1232y a-=,令0y =,3x a =,∴三角形的面积是121331822s a a -=⋅⋅=,解得64a =.故选A.(11)与正方体1111ABC D A B C D -的三条棱A B 、1C C 、11A D 所在直线的距离相等的点 (A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.(12)已知椭圆2222:1(0)x y C a b ab+=>>的离心率为2,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =(A )1 (B (C (D )2【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B.第Ⅱ卷注意事项:1.用0.5毫米的黑色字迹签字笔在答题卡上作答。
高考试题——数学文辽宁卷解析版2010年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)解析第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}1,3,5,7,9U =,{}1,5,7A =,则UC A =(A ){}1,3 (B ){}3,7,9 (C ){}3,5,9(D ){}3,9解析:选D. 在集合U 中,去掉1,5,7,剩下的元素构成.UC A(2)设,a b 为实数,若复数121ii a bi+=++,则 (A )31,22a b == (B )3,1a b == (C )13,22a b ==(D )1,3a b ==解析:选A. 1231122i a bi i i ++==++,因此31,22a b ==. (3)设nS 为等比数列{}n a 的前n 项和,已知3432Sa =-,2332S a =-,则公比q =(A )3 (B )4 (C )5 (D )6解析:选 B. 两式相减得, 3433aa a =-,44334,4a a a q a =∴==.(4)已知0a >,函数2()f x axbx c=++,若0x满足关于x 的方程20ax b +=,则下列选项的命题中为假命题的是 (A )0,()()x R f x f x ∃∈≤ (B )0,()()x R f x f x ∃∈≥(C ) 0,()()x R f x f x ∀∈≤ (D )0,()()x R f x f x ∀∈≥解析:选 C.函数()f x 的最小值是0()()2bf f x a-= 等价于0,()()x R f x f x ∀∈≥,所以命题C 错误.(5)如果执行右面的程序框图,输入6,4n m ==,那么输出的p 等于(A )720 (B ) 360 (C ) 240 (D ) 120解析:选B.13456360.p =⨯⨯⨯⨯=(6)设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是(A )23 (B ) 43 (C ) 32(D ) 3解析:选C.由已知,周期243,.32T ππωω==∴= (7)设抛物线28yx=的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF 斜率为3PF =(A )3(B ) 8 (C ) 3(D )16解析:选 B.利用抛物线定义,易证PAF ∆为正三角形,则4||8sin30PF ︒==(8)平面上,,O A B 三点不共线,设,OA a OB b ==,则OAB ∆的面积等于(A 222()a b a b -⋅ (B 222()a b a b +⋅ (C 2221()2a b a b -⋅ (D 2221()2a b a b +⋅解析:选C.222111(||||sin ,||||1cos ,||||1222||||OABa S ab a b a b a b a b a b ∆⋅=<>=-<>=-2221()2a b a b =-⋅(9)设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A )2 (B )3 (C )312 (D )512解析:选 D.不妨设双曲线的焦点在x 轴上,设其方程为:22221(0,0)x ya b a b-=>>, 则一个焦点为(,0),(0,)F c B b一条渐近线斜率为:b a ,直线FB 的斜率为:bc-,()1b ba c∴⋅-=-,2bac∴=220c a ac --=,解得512c e a==.(10)设25ab m ==,且112a b+=,则m = (A )10(B )10 (C )20(D )100解析:选 A.211log 2log 5log 102,10,m m m m a b+=+==∴=又0,10.m m >∴(11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC⊥,1SA AB ==,2BC =O 的表面积等于(A )4π (B )3π (C )2π (D )π解析:选A.由已知,球O 的直径为22R SC ==,∴表面积为244.Rππ=(12)已知点P 在曲线41xy e =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是(A)[0,4π) (B)[,)42ππ (C ) 3(,]24ππ(D) 3[,)4ππ解析:选D.2441212x x x x x e y e e e e'=-=-++++,12,10x xe y e '+≥∴-≤<,即1tan 0α-≤<,3[,)4παπ∴∈第Ⅱ卷本试卷包括必考题和选考题两部分。
2010年普通高等学校招生全国统一考试(辽宁卷)数学试卷(文科)参考答案一、选择题 (1)D(2)A (3)B (4)C (5)B (6)C (7)B (8)C(9)D(10)A(11)A(12)D二、填空题(13)31 (14)15 (15)(3,8)(16)32(17)解:(I )由已知,根据正弦定理得c b c b c b a )2()2(22+++=即bc c b a ++=222由余弦定理得 A bc c b a cos 2222-+= 故 ︒=-=120,21cos A A (II )由(I )得C B C B A sin sin sin sin sin 222++= 又21sin sin ,1sin sin ===+C B C B 得 因为0°<B <90°,0°<C <90°,故B=C 所以△ABC 是等腰的钝角三角形。
(18)(I )可以看出注射药物A 后的疱疹面积的中位数在65至70之间,而注射药物B 后的疱疹面积的中位数在70至75之间,所以注射药物A 后疱疹面积的中位数小于注射药物B 后疱疹面积的中位数。
(II )表356.249510510010030)35-65(70200K 22≈⨯⨯⨯⨯⨯⨯=由于10.828,K 2>所以有99.9%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”。
(19)解:(I )因为侧面BCC 1B 1是菱形,所以B 1C ⊥BC 1 又已知B 1C ⊥A 1B,且A 1B ∩BC 1=B 所以B 1C ⊥平面A 1BC 1,又 B 1C ⊂平面AB 1C 所以平面AB 1C ⊥平面A 1BC 1(II )设BC 1交B 1C 于点E,连接DE,则DE 是平面A 1BC 1与平面B 1CD 的交线。
因为A 1B ∥平面B 1CD ,所以A 1B ∥DE 又E 是BC 1的中点,所以D 为A 1C 1的中点即A 1D:DC 1=1(20)解:(I )设焦距为2c ,由已知可得F 1到直线l 2.c ==故所以椭圆C 的焦距为4.……4分(Ⅱ)设)y ,B(x ),y ,A(x 2211,由题意知0,021<<y y ,直线l 的方程为2).y x =-联立⎪⎩⎪⎨⎧=+-=1)2(32222b yax x y 得03234)3(4222=--++b y y b y b a解得22122222(22)(22),.33a a y y a b a b+-==++因为22122,2.AF F B y y =-=所以即222222(22)(22)2.33a a a b a b +-=∙++……18分得223.4,a a b b =-==而所以故椭圆C 的方程为:221.95x y += ……12分(21)解:(Ⅰ)f (x )的定义域为(0,+∞),2121()2a ax a f x ax x x+++'=+=. 当a ≥0时,()f x '>0,故f (x )在(0,+∞)单调增加; 当a ≤-1时,()f x '<0, 故f (x )在(0,+∞)单调减少;当-1<a <0时,令()fx '=0,解得x当x ∈(0, )时, ()f x'>0; x ∈+∞)时,()f x '<0, 故f (x )在(0,单调增加,在+∞)单调减少.(Ⅱ)不妨假设x 1≥x 2.由于a ≤-2,故f (x )在(0,+∞)单调减少. 所以1212()()4f x f x x x -≥-等价于21()()f x f x -≥4x 1-4x 2,即f (x 2)+ 4x 2≥f (x 1)+ 4x 1. 令g (x )=f (x )+4x ,则1()2a g x ax x+'=++4=2241ax x a x+++.8分于是()g x '≤2441x x x -+-=2(21)x x--≤0. 从而g (x )在(0,+∞)单调减少,故 g (x 1) ≤g (x 2),即 f (x 1)+ 4x 1≤f (x 2)+ 4x 2,故对任意x 1,x 2∈(0,+∞),1212()()4f x f x x x -≥-. 12分 (22)证明:(Ⅰ)由已知条件,可得∠BAE =∠CAD .因为∠AEB 与∠ACB 是同弧上的圆周角,所以∠AEB =∠ACD . 故△ABE ∽△ADC .(Ⅱ)因为△ABE ∽△ADC ,所以AB ADAE AC=,即AB ·AC =AD ·AE . 又S =12AB ·AC sin ∠BAC ,且S =12AD ·AE ,故AB ·AC sin ∠BAC =AD ·AE .则sin ∠BAC =1,又∠BAC 为三角形内角,所以∠BAC =90°. (23)解: (Ⅰ)由已知,M 点的极角为π3,且M 点的极径等于π3,故点M 的极坐标为(π3,π3)……5分(Ⅱ)M点的直角坐标为(π,66),A (l,0),故直线AM 的参数方程为π1(1).6.6x t y t ⎧=+-⎪⎪⎨⎪=⎪⎩(t 为参数). ……10分(24)证明: (证法一)因为a ,b ,c 均为正数,由平均值不等式得a 2+b 2+c 2≥32)(3abc①111a b c++≥)(331-abc 所以2111a b c ⎛⎫++ ⎪⎝⎭≥32)(9-abc② ……6分故a 2+b 2+c 2+2111a b c ⎛⎫++ ⎪⎝⎭≥32)(3abc +32)(9-abc又32)(3abc +32)(9-abc ≥=③ ……8分所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立.当且仅当32)(3abc =32)(9-abc 时, ③式等号成立. 即当且仅当a =b =c =143时,原式等号成立. ……10分(证法二)因为a ,b ,c 均为正数,由基本不等式 a 2+b 2≥2ab , b 2+c 2≥2ab , c 2+a 2≥2ac .所以a 2+b 2+c 2≥ab+bc+ac①同理222111a b c ++≥111ab bc ac++② ……6分故a 2+b 2+c 2+(111a b c ++)2≥ab+bc+ac+31ab +31bc +31ac≥ ③ ……8分所以原不等式成立当且仅当a =b =c 时,①式和②式等号成立,当且仅当a =b =c ,(ab )2=(b c )2=(ac )2=3时,③式等号成立. 即当且仅当a =b =c =143时,原式等号成立.……10分。
高考数学试卷第I 卷一.选择题 (1)复数3223ii+=- (A)i (B)i - (C)12-13i (D) 12+13i1.A 【命题意图】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.【解析】32(32)(23)694623(23)(23)13i i i i i i i i i +++++-===--+. (2)记cos(80)k -︒=,那么tan100︒=B. C.D.2.B 【命题意图】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用.【解析】222sin801cos 801cos (80)1k =-=--=-,所以tan100tan80︒=-sin 80cos80k=-=-(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解析】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.x +20y -=(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a = (A) 52 (B) 7 (C) 6 (D) 424.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===,37897988()a a a a a a a ===10,所以132850a a =, 所以13336456465528()()(50)52a a a a a a a a a ===== (5)353(12)(1)x x +-的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 45.B 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】35533(12)(1)(16128)(1)x x x x x x x +-=+++-故353(12)(1)x x +-的展开式中含x 的项为3303551()1210122C x xC x x x ⨯-+=-+=-,所以x 的系数为-2.(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种6.A 【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.【解析】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种.AB C DA 1B 1C 1D 1 O(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A23 B 33 C 23D 637.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD ∆∆⋅=⋅.设DD 1=a, 则12211133sin 60(2)2222ACD S AC AD a a ∆==⨯⨯=,21122ACD S AD CD a ∆==. 所以1312333ACD ACD S DD a DO a S a∆∆===,记DD 1与平面AC 1D 所成角为θ,则13sin 3DO DD θ==,所以6cos 3θ=. (8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a8.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-=15,而2252log 4log 3>=>,所以c<a,综上c<a<b. (9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P到x 轴的距离为(A)32 (B)62(C) 3 (D) 69.B 【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]12a PF e x a ex x c =--=+=+,22000||[)]21a PF e x ex a x c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-,即cos 0602220000(12)(21)(22)2(12)(21)x x x x ++--=+-,解得2052x =,所以2200312y x =-=,故P 到x 轴的距离为06||2y =(10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是 (A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞10.A 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 222a a=+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a+ 又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞). (11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB •的最小值为(A) 42-+ (B)32-+ (C) 422-+ (D)322-+11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,21x +,2sin 1xα=+PA BO||||cos 2PA PB PA PB α•=⋅=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y •=,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得322y ≤--或322y ≥-+.故min ()322PA PB •=-+.此时21x =-.(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)233 (B)433 (C) 23 (D) 83312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,22max 22123h =-=,故max 433V =.绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修II)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2010年全国统一高考数学试卷(理科)(大纲版Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i2.(5分)函数的反函数是()A.y=e2x﹣1﹣1(x>0)B.y=e2x﹣1+1(x>0)C.y=e2x﹣1﹣1(x∈R)D.y=e2x﹣1+1(x∈R)3.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为()A.1B.2C.3D.44.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14B.21C.28D.355.(5分)不等式>0的解集为()A.{x|x<﹣2,或x>3}B.{x|x<﹣2,或1<x<3}C.{x|﹣2<x<1,或x>3}D.{x|﹣2<x<1,或1<x<3} 6.(5分)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种B.18种C.36种D.54种7.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin(2x+)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位8.(5分)△ABC中,点D在边AB上,CD平分∠ACB,若=,=,||=1,||=2,则=()A.+B.+C.+D.+9.(5分)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.310.(5分)若曲线y=在点(a,)处的切线与两个坐标围成的三角形的面积为18,则a=()A.64B.32C.16D.811.(5分)与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个12.(5分)已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1B.C.D.2二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a是第二象限的角,tan(π+2α)=﹣,则tanα=.14.(5分)若(x﹣)9的展开式中x3的系数是﹣84,则a=.15.(5分)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=.16.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M 与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=.三、解答题(共6小题,满分70分)17.(10分)△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD.18.(12分)已知数列{a n}的前n项和S n=(n2+n)•3n.(Ⅰ)求;(Ⅱ)证明:++…+>3n.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1﹣AC1﹣B1的大小.20.(12分)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是P,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.(Ⅰ)求P;(Ⅱ)求电流能在M与N之间通过的概率.21.(12分)已知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3).(Ⅰ)求C的离心率;(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.22.(12分)设函数f(x)=1﹣e﹣x.(Ⅰ)证明:当x>﹣1时,f(x)≥;(Ⅱ)设当x≥0时,f(x)≤,求a的取值范围.2010年全国统一高考数学试卷(理科)(大纲版Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【考点】A5:复数的运算.【专题】11:计算题.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,把复数整理成整式形式,再进行复数的乘方运算,合并同类项,得到结果.【解答】解:()2=[]2=(1﹣2i)2=﹣3﹣4i.故选:A.【点评】本题主要考查复数的除法和乘方运算,是一个基础题,解题时没有规律和技巧可寻,只要认真完成,则一定会得分.2.(5分)函数的反函数是()A.y=e2x﹣1﹣1(x>0)B.y=e2x﹣1+1(x>0)C.y=e2x﹣1﹣1(x∈R)D.y=e2x﹣1+1(x∈R)【考点】4H:对数的运算性质;4R:反函数.【专题】11:计算题;16:压轴题.【分析】从条件中中反解出x,再将x,y互换即得.解答本题首先熟悉反函数的概念,然后根据反函数求解三步骤:1、换:x、y换位,2、解:解出y,3、标:标出定义域,据此即可求得反函数.【解答】解:由原函数解得x=e 2y﹣1+1,∴f﹣1(x)=e 2x﹣1+1,又x>1,∴x﹣1>0;∴ln(x﹣1)∈R∴在反函数中x∈R,故选:D.【点评】求反函数,一般应分以下步骤:(1)由已知解析式y=f(x)反求出x=Ф(y);(2)交换x=Ф(y)中x、y的位置;(3)求出反函数的定义域(一般可通过求原函数的值域的方法求反函数的定义域).3.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为()A.1B.2C.3D.4【考点】7C:简单线性规划.【专题】31:数形结合.【分析】先根据约束条件画出可行域,设z=2x+y,再利用z的几何意义求最值,只需求出直线z=2x+y过可行域内的点B时,从而得到m值即可.【解答】解:作出可行域,作出目标函数线,可得直线与y=x与3x+2y=5的交点为最优解点,∴即为B(1,1),当x=1,y=1时z max=3.故选:C.【点评】本题考查了线性规划的知识,以及利用几何意义求最值,属于基础题.4.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14B.21C.28D.35【考点】83:等差数列的性质;85:等差数列的前n项和.【分析】由等差数列的性质求解.【解答】解:a3+a4+a5=3a4=12,a4=4,∴a1+a2+…+a7==7a4=28故选:C.【点评】本题主要考查等差数列的性质.5.(5分)不等式>0的解集为()A.{x|x<﹣2,或x>3}B.{x|x<﹣2,或1<x<3}C.{x|﹣2<x<1,或x>3}D.{x|﹣2<x<1,或1<x<3}【考点】73:一元二次不等式及其应用.【专题】11:计算题.【分析】解,可转化成f(x)•g(x)>0,再利用根轴法进行求解.【解答】解:⇔⇔(x﹣3)(x+2)(x﹣1)>0利用数轴穿根法解得﹣2<x<1或x>3,故选:C.【点评】本试题主要考查分式不等式与高次不等式的解法,属于不等式的基础题.6.(5分)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种B.18种C.36种D.54种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】本题是一个分步计数问题,首先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有C42,余下放入最后一个信封,根据分步计数原理得到结果.【解答】解:由题意知,本题是一个分步计数问题,∵先从3个信封中选一个放1,2,有=3种不同的选法;根据分组公式,其他四封信放入两个信封,每个信封两个有=6种放法,∴共有3×6×1=18.故选:B.【点评】本题考查分步计数原理,考查平均分组问题,是一个易错题,解题的关键是注意到第二步从剩下的4个数中选两个放到一个信封中,这里包含两个步骤,先平均分组,再排列.7.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin(2x+)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】1:常规题型.【分析】先将2提出来,再由左加右减的原则进行平移即可.【解答】解:y=sin(2x+)=sin2(x+),y=sin(2x﹣)=sin2(x﹣),所以将y=sin(2x+)的图象向右平移个长度单位得到y=sin(2x﹣)的图象,故选:B.【点评】本试题主要考查三角函数图象的平移.平移都是对单个的x来说的.8.(5分)△ABC中,点D在边AB上,CD平分∠ACB,若=,=,||=1,||=2,则=()A.+B.+C.+D.+【考点】9B:向量加减混合运算.【分析】由△ABC中,点D在边AB上,CD平分∠ACB,根据三角形内角平分线定理,我们易得到,我们将后,将各向量用,表示,即可得到答案.【解答】解:∵CD为角平分线,∴,∵,∴,∴故选:B.【点评】本题考查了平面向量的基础知识,解答的核心是三角形内角平分线定理,即若AD为三角形ABC的内角A的角平分线,则AB:AC=BD:CD9.(5分)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.3【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;16:压轴题.【分析】设出底面边长,求出正四棱锥的高,写出体积表达式,利用求导求得最大值时,高的值.【解答】解:设底面边长为a,则高h==,所以体积V=a2h=,设y=12a4﹣a6,则y′=48a3﹣3a5,当y取最值时,y′=48a3﹣3a5=0,解得a=0或a=4时,当a=4时,体积最大,此时h==2,故选:C.【点评】本试题主要考查椎体的体积,考查高次函数的最值问题的求法.是中档题.10.(5分)若曲线y=在点(a,)处的切线与两个坐标围成的三角形的面积为18,则a=()A.64B.32C.16D.8【考点】6H:利用导数研究曲线上某点切线方程.【专题】31:数形结合.【分析】欲求参数a值,必须求出在点(a,)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=a处的导函数值,再结合导数的几何意义即可求出切线的斜率得到切线的方程,最后求出与坐标轴的交点坐标结合三角形的面积公式.从而问题解决.【解答】解:y′=﹣,∴k=﹣,切线方程是y﹣=﹣(x﹣a),令x=0,y=,令y=0,x=3a,∴三角形的面积是s=•3a•=18,解得a=64.故选:A.【点评】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.11.(5分)与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个【考点】LO:空间中直线与直线之间的位置关系.【专题】16:压轴题.【分析】由于点D、B1显然满足要求,猜想B1D上任一点都满足要求,然后想办法证明结论.【解答】解:在正方体ABCD﹣A1B1C1D1上建立如图所示空间直角坐标系,并设该正方体的棱长为1,连接B1D,并在B1D上任取一点P,因为=(1,1,1),所以设P(a,a,a),其中0≤a≤1.作PE⊥平面A1D,垂足为E,再作EF⊥A1D1,垂足为F,则PF是点P到直线A1D1的距离.所以PF=;同理点P到直线AB、CC1的距离也是.所以B1D上任一点与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离都相等,所以与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点有无数个.故选:D.【点评】本题主要考查合情推理的能力及空间中点到线的距离的求法.12.(5分)已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1B.C.D.2【考点】KH:直线与圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设A(x1,y1),B(x2,y2),根据求得y1和y2关系根据离心率设,b=t,代入椭圆方程与直线方程联立,消去x,根据韦达定理表示出y1+y2和y1y2,进而根据y1和y2关系求得k.【解答】解:A(x1,y1),B(x2,y2),∵,∴y1=﹣3y2,∵,设,b=t,∴x2+4y2﹣4t2=0①,设直线AB方程为,代入①中消去x,可得,∴,,解得,故选:B.【点评】本题主要考查了直线与圆锥曲线的综合问题.此类题问题综合性强,要求考生有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a是第二象限的角,tan(π+2α)=﹣,则tanα=.【考点】GO:运用诱导公式化简求值;GS:二倍角的三角函数.【专题】11:计算题.【分析】根据诱导公式tan(π+α)=tanα得到tan2α,然后利用公式tan(α+β)=求出tanα,因为α为第二象限的角,判断取值即可.【解答】解:由tan(π+2a)=﹣得tan2a=﹣,又tan2a==﹣,解得tana=﹣或tana=2,又a是第二象限的角,所以tana=﹣.故答案为:.【点评】本试题主要考查三角函数的诱导公式、正切的二倍角公式和解方程,考查考生的计算能力.14.(5分)若(x﹣)9的展开式中x3的系数是﹣84,则a=1.【考点】DA:二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3得展开式中x3的系数,列出方程解得.【解答】解:展开式的通项为=(﹣a)r C9r x9﹣2r令9﹣2r=3得r=3∴展开式中x3的系数是C93(﹣a)3=﹣84a3=﹣84,∴a=1.故答案为1【点评】本试题主要考查二项展开式的通项公式和求指定项系数的方法.15.(5分)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=2.【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】设直线AB的方程与抛物线方程联立消去y得3x2+(﹣6﹣2p)x+3=0,进而根据,可知M为A、B的中点,可得p的关系式,解方程即可求得p.【解答】解:设直线AB:,代入y2=2px得3x2+(﹣6﹣2p)x+3=0,又∵,即M为A、B的中点,∴x B+(﹣)=2,即x B=2+,得p2+4P﹣12=0,解得p=2,p=﹣6(舍去)故答案为:2【点评】本题考查了抛物线的几何性质.属基础题.16.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M 与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=3.【考点】JE:直线和圆的方程的应用;ND:球的性质.【专题】11:计算题;16:压轴题.【分析】根据题意画出图形,欲求两圆圆心的距离,将它放在与球心组成的三角形MNO中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得.【解答】解法一:∵ON=3,球半径为4,∴小圆N的半径为,∵小圆N中弦长AB=4,作NE垂直于AB,∴NE=,同理可得,在直角三角形ONE中,∵NE=,ON=3,∴,∴,∴MN=3.故填:3.解法二:如下图:设AB的中点为C,则OC与MN必相交于MN中点为E,因为OM=ON=3,故小圆半径NB为C为AB中点,故CB=2;所以NC=,∵△ONC为直角三角形,NE为△ONC斜边上的高,OC=∴MN=2EN=2•CN•=2××=3故填:3.【点评】本题主要考查了点、线、面间的距离计算,还考查球、直线与圆的基础知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.三、解答题(共6小题,满分70分)17.(10分)△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【分析】先由cos∠ADC=确定角ADC的范围,因为∠BAD=∠ADC﹣B所以可求其正弦值,最后由正弦定理可得答案.【解答】解:由cos∠ADC=>0,则∠ADC<,又由知B<∠ADC可得B<,由sinB=,可得cosB=,又由cos∠ADC=,可得sin∠ADC=.从而sin∠BAD=sin(∠ADC﹣B)=sin∠ADCcosB﹣cos∠ADCsinB==.由正弦定理得,所以AD==.【点评】三角函数与解三角形的综合性问题,是近几年高考的热点,在高考试题中频繁出现.这类题型难度比较低,一般出现在17或18题,属于送分题,估计以后这类题型仍会保留,不会有太大改变.解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化.18.(12分)已知数列{a n}的前n项和S n=(n2+n)•3n.(Ⅰ)求;(Ⅱ)证明:++…+>3n.【考点】6F:极限及其运算;R6:不等式的证明.【专题】11:计算题;14:证明题.【分析】(1)由题意知,由此可知答案.(2)由题意知,==,由此可知,当n≥1时,.【解答】解:(1),所以=;(2)当n=1时,;当n>1时,===所以,n≥1时,.【点评】本题考查数列的极限问题,解题时要注意公式的灵活运用.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1﹣AC1﹣B1的大小.【考点】LM:异面直线及其所成的角;LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)欲证DE为异面直线AB1与CD的公垂线,即证DE与异面直线AB1与CD垂直相交即可;(2)将AB1平移到DG,故∠CDG为异面直线AB1与CD的夹角,作HK⊥AC1,K 为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH为二面角A1﹣AC1﹣B1的平面角,在三角形B1KH中求出此角即可.【解答】解:(1)连接A1B,记A1B与AB1的交点为F.因为面AA1BB1为正方形,故A1B⊥AB1,且AF=FB1,又AE=3EB1,所以FE=EB1,又D为BB1的中点,故DE∥BF,DE⊥AB1.作CG⊥AB,G为垂足,由AC=BC知,G为AB中点.又由底面ABC⊥面AA1B1B.连接DG,则DG∥AB1,故DE⊥DG,由三垂线定理,得DE⊥CD.所以DE为异面直线AB1与CD的公垂线.(2)因为DG∥AB1,故∠CDG为异面直线AB1与CD的夹角,∠CDG=45°设AB=2,则AB1=,DG=,CG=,AC=.作B1H⊥A1C1,H为垂足,因为底面A1B1C1⊥面AA1CC1,故B1H⊥面AA1C1C.又作HK⊥AC1,K为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH 为二面角A1﹣AC1﹣B1的平面角.B1H=,C1H=,AC1=,HK=tan∠B1KH=,∴二面角A1﹣AC1﹣B1的大小为arctan.【点评】本试题主要考查空间的线面关系与空间角的求解,考查考生的空间想象与推理计算的能力.三垂线定理是立体几何的最重要定理之一,是高考的热点,它是处理线线垂直问题的有效方法,同时它也是确定二面角的平面角的主要手段.通过引入空间向量,用向量代数形式来处理立体几何问题,淡化了传统几何中的“形”到“形”的推理方法,从而降低了思维难度,使解题变得程序化,这是用向量解立体几何问题的独到之处.20.(12分)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是P,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.(Ⅰ)求P;(Ⅱ)求电流能在M与N之间通过的概率.【考点】C5:互斥事件的概率加法公式;C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题.【分析】(1)设出基本事件,将要求事件用基本事件的来表示,将T1,T2,T3至少有一个能通过电流用基本事件表示并求出概率即可求得p.(Ⅱ)根据题意,B表示事件:电流能在M与N之间通过,根据电路图,可得B=A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3,由互斥事件的概率公式,代入数据计算可得答案.【解答】解:(Ⅰ)根据题意,记电流能通过T i为事件A i,i=1、2、3、4,A表示事件:T1,T2,T3,中至少有一个能通过电流,易得A1,A2,A3相互独立,且,P()=(1﹣p)3=1﹣0.999=0.001,计算可得,p=0.9;(Ⅱ)根据题意,B表示事件:电流能在M与N之间通过,有B=A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3,则P(B)=P(A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3)=0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9=0.9891.【点评】本题考查了概率中的互斥事件、对立事件及独立事件的概率,注意先明确事件之间的关系,进而选择对应的公式来计算.21.(12分)已知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3).(Ⅰ)求C的离心率;(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.【考点】J9:直线与圆的位置关系;KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题;14:证明题;16:压轴题.【分析】(Ⅰ)由直线过点(1,3)及斜率可得直线方程,直线与双曲线交于BD 两点的中点为(1,3),可利用直线与双曲线消元后根据中点坐标公式找出a,b的关系式即求得离心率.(Ⅱ)利用离心率将条件|FA||FB|=17,用含a的代数式表示,即可求得a,则A点坐标可得(1,0),由于A在x轴上所以,只要证明2AM=BD即证得.【解答】解:(Ⅰ)由题设知,l的方程为:y=x+2,代入C的方程,并化简,得(b2﹣a2)x2﹣4a2x﹣a2b2﹣4a2=0,设B(x1,y1),D(x2,y2),则,,①由M(1,3)为BD的中点知.故,即b2=3a2,②故,∴C的离心率.(Ⅱ)由①②知,C的方程为:3x2﹣y2=3a2,A(a,0),F(2a,0),.故不妨设x1≤﹣a,x2≥a,,,|BF|•|FD|=(a﹣2x1)(2x2﹣a)=﹣4x1x2+2a(x1+x2)﹣a2=5a2+4a+8.又|BF|•|FD|=17,故5a2+4a+8=17.解得a=1,或(舍去),故=6,连接MA,则由A(1,0),M(1,3)知|MA|=3,从而MA=MB=MD,且MA⊥x轴,因此以M为圆心,MA为半径的圆经过A、B、D三点,且在点A处与x轴相切,所以过A、B、D三点的圆与x轴相切.【点评】本题考查了圆锥曲线、直线与圆的知识,考查学生运用所学知识解决问题的能力.22.(12分)设函数f(x)=1﹣e﹣x.(Ⅰ)证明:当x>﹣1时,f(x)≥;(Ⅱ)设当x≥0时,f(x)≤,求a的取值范围.【考点】6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题.【分析】(1)将函数f(x)的解析式代入f(x)≥整理成e x≥1+x,组成新函数g(x)=e x﹣x﹣1,然后根据其导函数判断单调性进而可求出函数g(x)的最小值g(0),进而g(x)≥g(0)可得证.(2)先确定函数f(x)的取值范围,然后对a分a<0和a≥0两种情况进行讨论.当a<0时根据x的范围可直接得到f(x)≤不成立;当a≥0时,令h(x)=axf(x)+f(x)﹣x,然后对函数h(x)进行求导,根据导函数判断单调性并求出最值,求a的范围.【解答】解:(1)当x>﹣1时,f(x)≥当且仅当e x≥1+x令g(x)=e x﹣x﹣1,则g'(x)=e x﹣1当x≥0时g'(x)≥0,g(x)在[0,+∞)是增函数当x≤0时g'(x)≤0,g(x)在(﹣∞,0]是减函数于是g(x)在x=0处达到最小值,因而当x∈R时,g(x)≥g(0)时,即e x≥1+x所以当x>﹣1时,f(x)≥(2)由题意x≥0,此时f(x)≥0当a<0时,若x>﹣,则<0,f(x)≤不成立;当a≥0时,令h(x)=axf(x)+f(x)﹣x,则f(x)≤当且仅当h(x)≤0因为f(x)=1﹣e﹣x,所以h'(x)=af(x)+axf'(x)+f'(x)﹣1=af(x)﹣axf (x)+ax﹣f(x)(i)当0≤a≤时,由(1)知x≤(x+1)f(x)h'(x)≤af(x)﹣axf(x)+a(x+1)f(x)﹣f(x)=(2a﹣1)f(x)≤0,h(x)在[0,+∞)是减函数,h(x)≤h(0)=0,即f(x)≤;(ii)当a>时,由y=x﹣f(x)=x﹣1+e﹣x,y′=1﹣e﹣x,x>0时,函数y递增;x<0,函数y递减.可得x=0处函数y取得最小值0,即有x≥f(x).h'(x)=af(x)﹣axf(x)+ax﹣f(x)≥af(x)﹣axf(x)+af(x)﹣f(x)=(2a ﹣1﹣ax)f(x)当0<x<时,h'(x)>0,所以h'(x)>0,所以h(x)>h(0)=0,即f(x)>综上,a的取值范围是[0,]【点评】本题主要考查导数的应用和利用导数证明不等式,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力;导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱.作为压轴题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.。
2010年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 是符合题目要求的,(1) 已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},u ðB ∩A={9},则A=(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}【答案】D【命题立意】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn 图解决集合问题的能力。
【解析】因为A ∩B={3},所以3∈A ,又因为u ðB ∩A={9},所以9∈A ,所以选D 。
本题也可以用V enn图的方法帮助理解。
(2)设a,b 为实数,若复数11+2i i a bi =++,则 (A )31,22a b == (B) 3,1a b == (C) 13,22a b == (D) 1,3a b == 【答案】A【命题立意】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力。
【解析】由121i i a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A 。
(3)两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是 否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A )12 (B)512(C)14 (D)16 【答案】B【命题立意】本题考查了相互独立事件同时发生的概率,考查了有关概率的计算问题【解析】记两个零件中恰好有一个一等品的事件为A ,则P(A)=P(A 1)+ P(A 2)=211335+=43412⨯⨯(4)如果执行右面的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于(A )1m n C -(B) 1m n A -(C) m n C(D) m n A【答案】D【命题立意】本题考查了循环结构的程序框图、排列公式,考查了学生的视图能力以及观察、推理的能力【解析】第一次循环:k =1,p =1,p =n -m +1;第二次循环:k =2,p =(n -m +1)(n -m +2);第三次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3)……第m 次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n此时结束循环,输出p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n =m n A(5)设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是(A )23 (B)43 (C)32(D)3 【答案】C【命题立意】本题考查了三角函数图像的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度。
【解析】将y=sin(ωx+3π)+2的图像向右平移34π个单位后为4sin[()]233y x ππω=-++4sin()233x πωπω=+-+,所以有43ωπ=2k π,即32k ω=,又因为0ω>,所以k ≥1,故32k ω=≥32,所以选C (6)设{a n }是有正数组成的等比数列,n S 为其前n 项和。
已知a 2a 4=1, 37S =,则5S =(A )152 (B)314 (C)334(D)172 【答案】B【命题立意】本题考查了等比数列的通项公式与前n 项和公式,考查了同学们解决问题的能力。
【解析】由a 2a 4=1可得2411a q =,因此121a q=,又因为231(1)7S a q q =++=,联力两式有11(3)(2)0q q +-=,所以q=12,所以5514(1)3121412S --==-,故选B 。
(7)设抛物线y 2=8x 的焦点为F ,准线为l,P 为抛物线上一点,PA ⊥l,A 为垂足.如果直线AF的斜率为,那么|PF|=(A) (B)8(C) (D) 16【答案】B【命题立意】本题考查了抛物线的定义、抛物线的焦点与准线、直线与抛物线的位置关系,考查了等价转化的思想。
【解析】抛物线的焦点F (2,0),直线AF的方程为2)y x =-,所以点(A -、P ,从而|PF|=6+2=8(8)平面上O,A,B 三点不共线,设,OA =a OB b =,则△OAB 的面积等于(B)(C)(D) 【答案】C【命题立意】本题考查了三角形面积的向量表示,考查了向量的内积以及同角三角函数的基本关系。
【解析】三角形的面积S=12|a||b|sin<a,b>,而=11||||||||sin ,22a b a b a b =<> (9)设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A)(D) 【答案】D【命题立意】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想。
【解析】设双曲线方程为22221(0,0)x y a b a b-=>>,则F (c,0),B(0,b)直线FB :bx+cy-bc=0与渐近线y=b x a 垂直,所以1b b c a-=- ,即b 2=ac所以c 2-a 2=ac ,即e 2-e -1=0,所以e =或e =(舍去) (1O)已知点P 在曲线y=41x e +上,a 为曲线在点P 处的切线的倾斜角,则a 的取值 范围是 (A)[0,4π) (B)[,)42ππ 3(,]24ππ (D) 3[,)4ππ 【答案】D【命题立意】本题考查了导数的几何意义,求导运算以及三角函数的知识。
【解析】因为'2441(1)2x x x x e y e e e --==≥-+++,即tan a ≥-1,所以34παπ≤≤。
(11)已知a>0,则x 0满足关于x 的方程ax=6的充要条件是 (A)220011,22x R ax bx ax bx ∃∈-≥- (B) 220011,22x R ax bx ax bx ∃∈-≤- (C) 220011,22x R ax bx ax bx ∀∈-≥- (D) 220011,22x R ax bx ax bx ∀∈-≤- 【答案】C【命题立意】本题考查了二次函数的性质、全称量词与充要条件知识,考查了学生构造二次函数解决问题的能力。
【解析】由于a >0,令函数22211()222b b y ax bx a x a a=-=--,此时函数对应的开口向上,当x=b a 时,取得最小值22b a-,而x 0满足关于x 的方程ax=b,那么x 0==b a ,y min =2200122b ax bx a-=-,那么对于任意的x ∈R,都有212y a x b x =-≥22b a -=20012ax bx - (12) (12)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是(A)( (B)(1,(D) (0,【答案】A【命题立意】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力。
【解析】根据条件,四根长为2的直铁条与两根长为a 的直铁条要组成三棱镜形的铁架,有以下两种情况:(1)地面是边长为2的正三角形,三条侧棱长为2,a ,a ,如图,此时a 可以取最大值,可知AD=,SD=,则有<2+,即228a <+=,即有(2)构成三棱锥的两条对角线长为a ,其他各边长为2,如图所示,此时a>0;综上分析可知a ∈(二、填空题:本大题共4小题,每小题5分。
(13)261(1)()x x x x ++-的展开式中的常数项为_________.【答案】-5【命题立意】本题考查了二项展开式的通项,考查了二项式常数项的求解方法 【解析】21()x x -的展开式的通项为6216(1)r r r r T C x -+=-,当r=3时,34620T C =-=-,当r=4时,45615T C =-=,因此常数项为-20+15=-5 (14)已知14x y -<+<且23x y <-<,则23z x y =-的取值范围是_______(答案用区间表示)【答案】(3,8)【命题立意】本题考查了线性规划的最值问题,考查了同学们数形结合解决问题的能力。
【解析】画出不等式组1423x y x y -<+<⎧⎨<-<⎩表示的可行域,在可行域内平移直线z=2x-3y ,当直线经过x-y=2与x+y=4的交点A (3,1)时,目标函数有最小值z=2×3-3×1=3;当直线经过x+y=-1与x-y=3的焦点A (1,-2)时,目标函数有最大值z=2×1+3×2=8.(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.【答案】【命题立意】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力。
【解析】由三视图可知,此多面体是一个底面边长为2的正方形且有一条长为2的侧棱垂直=(16)已知数列{}n a 满足1133,2,n n a a a n +=-=则n a n 的最小值为__________. 【答案】212【命题立意】本题考查了递推数列的通项公式的求解以及构造函数利用导数判断函数单调性,考查了同学们综合运用知识解决问题的能力。
【解析】a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2[1+2+…(n -1)]+33=33+n 2-n 所以331n a n n n=+-设()f n =331n n +-,令()f n =23310n -+>,则()f n 在)+∞上是单调递增,在上是递减的,因为n ∈N +,所以当n=5或6时()f n 有最小值。
又因为55355a =,66321662a ==,所以,n a n 的最小值为62162a = 三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且2sin (2)sin (2)sin .a A a c B c b C =+++(Ⅰ)求A 的大小;(Ⅱ)求sin sin B C +的最大值.(17)解:(Ⅰ)由已知,根据正弦定理得22(2)(2)a b c b c b c =+++即 222a b c b c=++ 由余弦定理得 2222cos a b c bc A =+- 故 1c o s 2A =-,A=120° ……6分 (Ⅱ)由(Ⅰ)得:s i n s i n s i n s i n (60B C B B +=+︒-1sin 2sin(60)B B B =+=︒+ 故当B=30°时,sinB+sinC 取得最大值1。