2008年高考数学试卷(辽宁.文)含详解
- 格式:doc
- 大小:1.03 MB
- 文档页数:14
y2008高考湖南理科数学试题及全解全析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数31()i i-等于( )A.8B.-8C.8iD.-8i【答案】D【解析】由33412()()88ii i ii i--==-⋅=-,易知D 正确. 2.“12x -<成立”是“(3)0x x -<成立”的( )A .充分不必要条件B.必要不充分条件C .充分必要条件 D.既不充分也不必要条件 【答案】B【解析】由12x -<得13x -<<,由(3)0x x -<得03x <<,所以易知选B.3.已知变量x 、y 满足条件1,0,290,x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩则x y +的最大值是( )A.2B.5C.6D.8【答案】C【解析】如图得可行域为一个三角形,其三个顶点分别为(1,1),(1,4),(3,3),代入验证知在点(3,3)时,x y +最大值是33 6.+=故选C.4.设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c = ( )A.1B.2C.3D.4【答案】B 【解析】2(2,3)N ⇒12(1)1(1)(),3c P c P c ξξ+->+=-≤+=Φ 12(1)(),3c P c ξ--<-=Φ31()()1,33c c --∴Φ+Φ= 311()()1,33c c --⇒-Φ+Φ=解得c =2, 所以选B.5.设有直线m 、n 和平面α、β,下列四个命题中,正确的是( )A.若m ∥α,n ∥α,则m ∥nB.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥βD.若α⊥β,m ⊥β,m ⊄α,则m ∥α 【答案】D【解析】由立几知识,易知D 正确.6.函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A.1 C.32【答案】C【解析】由1cos 21()2sin(2)2226x f x x x π-=+=+-, 52,42366x x πππππ≤≤⇒≤-≤max 13()1.22f x ∴=+=故选C. 7.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC ( )A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直【答案】A【解析】由定比分点的向量式得:212,1233AC AB AD AC AB +==++12,33BE BC BA =+12,33CF CA CB =+以上三式相加得1,3AD BE CF BC ++=-所以选A.8.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( ) A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)1【答案】B【解析】233,22aex a e a a ac-=⨯->+23520,e e⇒-->2e∴>或13e<-(舍去),(2,],e∴∈+∞故选B.9.长方体ABCD-A1B1C1D1的8个顶点在同一球面上,且AB=2,AD,AA1=1, 则顶点A、B间的球面距离是()C.2D.4【答案】C【解析】112BD AC R===R∴=设11,BD AC O=则OAOB R===,2AOBπ⇒∠=,2l Rπθ∴==故选C.10.设[x]表示不超过x的最大整数(如[2]=2, [54]=1),对于给定的n∈N*, 定义[][](1)(1),(1)(1)xnn n n xCx x x x--+=--+x∈[)1,+∞,则当x∈3,32⎡⎫⎪⎢⎣⎭时,函数8x C的值域是( )A.16,283⎡⎤⎢⎥⎣⎦B.16,563⎡⎫⎪⎢⎣⎭C.284,3⎛⎫⋃⎪⎝⎭[)28,56 D.16284,,2833⎛⎤⎛⎤⋃⎥⎥⎝⎦⎝⎦【答案】D【解析】当x∈3,22⎡⎫⎪⎢⎣⎭时,328816,332C==当2x→时,[]1,x=所以8842xC==;当[)2,3时,288728,21C⨯==⨯当3x→时,[]2,x=88728,323xC⨯==⨯故函数xC8的值域是16284,,2833⎛⎤⎛⎤⋃⎥⎥⎝⎦⎝⎦.选D.二、填空题:本大题共5小题,每小题5分,共25分。
数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.¢ (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 (3)设|a n |是等左数列,若a 2=3,a 1=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.56 (4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为 A.3 B.0 C.-1 D.-2 (5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是A.12125 B.16125 C.48125 D.96125(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.223 B.23 C.24 D.13(7)函数y =cos x (x ∈R)的图象向左平移2个单位后,得到函数y=g(x )的图象,则g(x )的解析式为A.-sin xB.sin xC.-cos xD.cos x(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 3,则角B 的值为A.6πB.3πC.6π或56πD.3π或23π(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(10)若实数x、y满足10,0,2,x yxx-+≤⎧⎪⎨⎪≤⎩则yx的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) (11)如果函数y=f(x)的图象如右图,那么导函数y=f(x)的图象可能是(12)双曲线22221x ya b-=(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PE2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.(13)(x+1x)9展开式中x2的系数是.(用数字作答)(14)若直线3x+4y+m=0与圆x2+y2-2x+4y+4=0没有公共点,则实数m的取值范围是 . (153,则其外接球的表面积是.(16)设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b、ab、ab∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,有下列命题:①数域必含有0,1两个数;②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n = (Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. (18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响.(Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由. (19)(本小题满分12分)如图,在四棱锥P —ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD 2,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC=2,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的余弦值; (Ⅲ)求点A 到平面PCD 的距离. (20)(本小题满分12分)已知{a n }是正数组成的数列,a 1=11,n n a a +)(n ∈N *)在函数y =x 2+1的图象上. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a,求证:b n ·b n +2<b 2n +1. (21)(本小题满分12分)已知函数32()2f x x mx nx =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值. (22)(本小题满分14分)如图,椭圆2222:1x y C a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N , 直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.2008年普通高等学校招生全国统一考试(福建卷)数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.∅ 解:A ={x |0<x<1}∴A ∩B={x |0<x <1} (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解:若00x y x ay +=-=与互相垂直,则0x ay -=的斜率必定为1,1a =,反之显然 (3):设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为 A.128 B.80 C.64 D.56 解:因为{}n a 是等差数列,278313886422a a ++=⨯=⨯=∴S(4)函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为 A.3 B.0 C.-1 D.-2解:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=.(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125解:独立重复实验服从二项分布4(3,)5B ,21234148(2)55125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(6)如图,在长方体ABCD -A 1B 1C 1D 1中, AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为B.23D.13解:连11A C ,则11AC A ∠为AC 1与平面A 1B 1C 1D 1所成角.112AB BC AC AC ==⇒==11AA = 1111113sin 3AA AC AC A AC =⇒∠==∴ (7)函数cos ()y x x R =∈的图象向左平移2π个单位后,得到函数()y g x =的图象,则()g x 的解析式为A.sin x -B. sin xC.cos x -D.cos x 解:()cos()sin 2y g x x x π==+=-(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,若222a cb +-=,则角B 的值为 A.6π B.3π C.6π或56π D.3π或23π解:由222a +c -b得222(a +c -b )2ac即cos =2B ,6B π⇒=(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48解:6人中选4人的方案4615C =种,没有女生的方案只有一种,所以满足要求的方案总数有14种(10)若实数x 、y 满足10,0,2,x y x y -+≤⎧⎪>⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞)AA解:由题设1y x ≥+,所以11y x x ≥+,又01211x y <≤-≤-=,因此2y x≥ 又yx可看做可行域中的点与原点构成直线的斜率,画出可行域也可得出答案。
2008年普通高等学校招生全国统一考试文科综合能力测试(二)解析读图l.完成1~2题图11.①、②、③、④四地段中平均坡度最大的为A①B.②C③D.④2.海拔低于400米的区域面积约为A.0.05km2B0.5k m2C.5ki m2 D.50k m2[解析]等高线地形图中坡度考查,直接运用的知识是分析等高线的疏密程度,缩小范围B、D中选择,但此题中问到了平均坡度最大的地区,需要考虑起止点的高差,运用原理,水平距离相同,相对高度越大,坡度越大。
故1题选D选项。
在图中找到海拔低于400米的区域,结合比例尺,估算出边长为200米的正方形的面积即可,最接近A选项[点评]此组题考查了等值线类型中最典型的等高线地形图及其分析、判断、计算能力,在基础知识基础上,考查学生的能力又有所升华,起到了高考试题选拔人才的目的。
难度适中。
[参考答案]D A图2示意某雏形生态工业目区的产业链.箭头表示物、能量流动过程,其中虚线箭头表示副产品或废弃物的流动。
完成3~5题。
3.图中a、b、c分别代表A.电厂、化工厂、盐场B.盐场、电厂、化工厂C.电厂、盐场、化工厂D.盐场、化工厂、电厂4.该生态工业园区中A.发电厂的废水、废气与废渣得到有效利用B.制盐的副产品得到利用C.建材厂有效利用了盐场的废弃物D.化工厂的废弃物得到利用5.该生态工业园区可能位于A.晋南B.粤北C.冀东D.闽西[解析]第3题中的a与图中各个产业都有非常明显的关联性,肯定是电厂,再在A与C中衡量,考虑到太阳能的加入是晒盐的主要因素,答案即得。
结合第4题中的选项,去关注产业链中各个箭头的示意。
图示中反映该地临海、化工发达,盐业也很突出,这一点尤其重要,还要注意到闽西并不临海。
[点评]此组题考查了生态文明与循环经济、清洁生产等的相关知识点,更要注意的是,考生要在图示中找到相关知识之间的联系(必然与因果关系),试题较为简单。
[参考答案]C B C图3示意不同纬度四地白昼长度变化。
绝密★启用前2008年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注间事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.填空题和解答题用0.5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设(1,2),(3,4),(3,2),(2)a b c a b c =-=-=+=则A.(15,12)-B.0C.-3D.-112. 321(2)2x x-的展开式中常数项是 A.210 B.1052 C.14D.-1053.若集合{1,2,3,4},{05,},P Q x x x R ==<<∈则 A. “x R ∈”是“x Q ∈”的充分条件但不是必要条件 B. “x R ∈”是“x Q ∈”的必要条件但不是充分条件 C. “x R ∈”是“x Q ∈”的充要条件D. “x R ∈”既不是“x Q ∈”的充分条件也不是“x Q ∈”的必要条件 4.用与球必距离为1的平面去截面面积为π,则球的体积为 A.323πB.83πC.D. 35.在平面直角坐标系xOy 中,满足不等式组,1x y x ⎧≤⎪⎨⎪⎩的点(,)x y 的集合用阴影表示为下列图中的6.已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则 A.-2 B.2 C.-98 D.98 7.将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线,1x π=则θ的一个可能取值是A.512π B.512π- C.1112π D.1112π-8. 函数221()1(32)34f x n x x x x x=-++--+的定义域为A.(,4][2,)-∞-+∞B. (4,0)(0,1)-⋃C.[4,0)(0,1]-D.[4,0)(0,1]-⋃9.从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为A.100B.110C.120D.180 10.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭圆轨道I 和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道I 和Ⅱ的长轴的长,给出下列式子: ①1122;a c a c +=+②1122;a c a c -=-③1212;c a a c >④1212.c c a a <其中正确式子的序号是 A.①③ B.②③ C.①④ D.②④二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡相应位置上.11.一个公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是 . 12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知3,3,30,a b c ===︒则A = . 13.方程223xx -+=的实数解的个数为 .14.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 . 15.圆34cos ,()24sin x C y θθθ=+⎧⎨=-+⎩为参数的圆心坐标为 ,和圆C 关于直线0x y -=对称的圆C ′的普通方程是 .三、解答题:本大题共6分小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满12分) 已知函数2()sincos cos 2.222x x xf x =+- (Ⅰ)将函数()f x 化简成sin()(0,0,[0,2))A x B A ωϕϕϕπ++>>∈的形式,并指出()f x 的周期;(Ⅱ)求函数17()[,]12f x ππ在上的最大值和最小值 17.(本小题满分12分)已知函数322()1f x x mx m x =+-+(m 为常数,且m >0)有极大值9. (Ⅰ)求m 的值;(Ⅱ)若斜率为-5的直线是曲线()y f x =的切线,求此直线方程. 18.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥侧面11.A ABB (Ⅰ)求证: ;AB BC ⊥(Ⅱ)若1AA AC a ==,直线AC 与平面1A BC 所成的角为θ,二面角1,.2A BC A πϕθϕ--+=的大小为求证:19.(本不题满分12分)如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm 2,四周空白的宽度为10cm ,两栏之间的中缝空白的宽度为5cm ,怎样确定广告的高与宽的尺寸(单位:cm ),能使矩形广告面积最小?20(本小题满分13分)已知双同线2222:1(0,0)x y C a b a b-->>的两个焦点为:(2,0),:(2,0),(3,7)F F P -点的曲线C 上.(Ⅰ)求双曲线C 的方程;(Ⅱ)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF 的面积为22,求直线l 的方程 21.(本小题满分14分)已知数列12{}{},13n n x a b a an a λ=+=和满足:4,(1)(321)n n n n n b a n +-=--+,其中λ为实数,n 为正整数.(Ⅰ)证明:当18{}n b λ≠-时,数列是等比数列;(Ⅱ)设n S 为数列{}n b 的前n 项和,是否存在实数λ,使得对任意正整数n ,都有 12?n S >-若存在,求λ的取值范围;若不存在,说明理由.2008年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:本题考查基础知识和基本运算.第小题5分,满分50分. 1.C 2.B 3.A 4.D 5.C 6.A 7.A 8.D 9.B 10.B二、填空题:本题考查基础知识和基本运算,第小题5分,满分25分. 11.1012.30°(或6π) 13.2 14.0.9815.(3,-2),(x +2)2+(y -3)2=16(或x 2+y 2+4x -6y -3=0)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设(1,2),(3,4),(3,2),(2)a b c a b c =-=-=+=则A.(15,12)-B.0C.3-D.11- 解:2(1,2)2(3,4)(5,6)a b +=-+-=-,(2)(5,6)(3,2)3a b c +=-⋅=-,选C2. 31021(2)2x x -的展开式中常数项是 A.210 B.1052 C.14 D.-105解:31010320211010211(2)()2()22r r r r rr r r r T C x C x x ---++=-=-,令32020r r -+=得4r =所以常数项为4410451011052()22T C -=-=3.若集合{1,2,3,4},{05,},P Q x x x R ==<<∈则 A. “x R ∈”是“x Q ∈”的充分条件但不是必要条件 B. “x R ∈”是“x Q ∈”的必要条件但不是充分条件 C. “x R ∈”是“x Q ∈”的充要条件D. “x R ∈”既不是“x Q ∈”的充分条件也不是“x Q ∈”的必要条件 解:x P x Q ∈⇒∈反之不然故选A4.用与球心距离为1的平面去截面面积为π,则球的体积为A.323πB.83πC.D. 3解:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒,所以根据球的体积公式知348233R V ππ==,故D 为正确答案. 5.在平面直角坐标系xOy 中,满足不等式组,1x y x ⎧≤⎪⎨<⎪⎩的点(,)x y 的集合用阴影表示为下列图中的解:在坐标系里画出图象,C 为正确答案。
2008年普通高校招生统一考试江苏卷(数学)1. ()cos()6f x wx π=-的最小正周期为5π,其中0w >,则w = 。
【解析】本小题考查三角函数的周期公式。
2105T w w ππ==⇒=。
答案102.一个骰子连续投2次,点数和为4的概率为 。
【解析】本小题考查古典概型。
基本事件共66⨯个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故316612P ==⨯。
答案112 3.11i i-+表示为a bi +(,)a b R ∈,则a b += 。
【解析】本小题考查复数的除法运算, 1,0,11ii a b i-=∴==+ ,因此a b +=1。
答案14. {}2(1)37,A x x x =-<-则A Z 的元素个数为 。
【解析】本小题考查集合的运算和解一元二次不等式。
由2(1)37x x -<-得2580x x -+<因为0∆<,所以A φ=,因此A Z φ= ,元素的个数为0。
答案05.,a b 的夹角为0120,1,3a b == ,则5a b -= 。
【解析】本小题考查向量的线形运算。
因为1313()22a b ⋅=⨯⨯-=-,所以22225(5)2510a b a b a b a b -=-=+-⋅ =49。
因此5a b -=7。
答案76.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为 。
【解析】本小题考查古典概型。
如图:区域D 表示边长为4的正方形ABCD 的内部(含边界),区域E 表示单位圆及其内部,因此214416P ππ⨯==⨯。
答案16π7.某地区为了解70~80岁老人的日平均睡眠时间(单位:h ),随机选择了50位老人进行调在上述统计数据的分析中,一部分计算算法流程图,则输出的S 的值是 。
2008年普通高等学校招生全国统一考试(陕西卷)文科数学(必修+选修Ⅰ)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分). 1.sin330︒等于( B ) A.B .12-C .12D解:1sin 330sin 302︒=-=-2.已知全集{12345}U =,,,,,集合{1,3}A =,{3,4,5}B =,则集合()UA B =( D )A .{3}B .{4,5}C .{3,4,5}D .{1245},,,解:{1,3}A =,{3,4,5}B ={3}A B ⇒=所以()UA B ={1245},,,3.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C ) A .30 B .25 C .20 D .15 解:设样本中松树苗的数量为x ,则15020300004000xx =⇒=4.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( B ) A .64B .100C .110D .120解:设公差为d ,则由已知得112421328a d a d +=⎧⎨+=⎩1101109101210022a S d =⎧⨯⇒⇒=⨯+⨯=⎨=⎩ 50y m -+=与圆22220x y x +--=相切,则实数m 等于( C )A或 B.或C.-D.-解:圆的方程22(1)3x y -+=,圆心(1,0)到直线的距离等于半径m⇒==m ⇒=m ⇒=-6.“1a =”是“对任意的正数x ,21ax x+≥”的( A ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:1a=1221a x x x x ⇒+=+≥=>,显然2a =也能推出,所以“1a =”是“对任意的正数x ,21ax x+≥”的充分不必要条件。
绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学本试卷分第I 卷(填空题)和第II 卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑.参考公式: 样本数据1x ,2x ,,n x 的标准差锥体体积公式(n s x x =++-13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高 其中R 为球的半径一、填空题:本大题共14小题,每小题5分,共70分. 1.)6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω ▲ 2.一个骰子连续投2次,点数和为4的概率 ▲3.),(11R b a bi a ii∈+-+表示为的形式,则b a += ▲ 4.{}73)1(2-<-=x x x A ,则集合A Z 中有 ▲ 个元素5.b a ,的夹角为120,1,3a b ==,则5a b -= ▲6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲7.某地区为了解70~80岁老人的日平均睡眠时间(单位:h ),现随机地选择50位老人做调查,在上述统计数据的分析中,一部分计算见算法流程图,则输出的S 的值为 . 8.直线b x y +=21是曲线ln (0)y x x =>的一条切线,则实数b 的值为 ▲9.在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你求OF 的方程: ( ▲ )011=⎪⎪⎭⎫ ⎝⎛-+y a p x 10.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10。
绝密★启用前2008年普通高等学校招生全国统一考试(安徽卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号两位。
2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂具他答案标号。
3.答第Ⅱ卷时,必须使用0.5毫米的黑色笔迹签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色笔迹签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草....................稿纸上答题无效.......。
4.考试结束,务必将试题卷和答题卡一并上交。
参考公式:如果事件A、B互斥,那么球的表面积公式S=4πR2P(A+B)=P(A)+P(B)其中R表示球的半径如果事件A、B相互独立,那么球的体积公式V=43πR2P(A·B)=P(A)·P(B)球的体积公式V=43πR2其中R表示球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)若A为全体正实数的集合,B=(-2,-1,1,2),则下列结论中正确的是(A)A∩B={-2,-1} (B)(C R A)∪B=(-∞,0)(C)A∪B={0,+∞} (D)(C R A)∩B={-2,-1}(2)若AB=(2,4),AC=(1,3),则BC=(A)(1,1)(B)(-1,-1)(C)(3,7)(D)(-3,-7)(3)已知m,n是两条不同直线,α,β,Υ是三个不同平面.下列命题中正确的是(A)若α⊥Υ,β∥Υ,则α∥β(B)若m⊥α,n⊥α,则m∥n(C)若m∥α,n∥α,则m∥n (D)若m∥α,m∥β,则a∥β(4)a<0是方程ax2+1=0有一个负数根的(A)必要不充分条件(B)充分必要条件(C)充分不必要条件(D)既不充分也不必要条件(5)在三角形ABC中,AB=5,AC=3,BC=7,则∠BAC大小为(A)23π(B)56π(C)34π(D)3π(6) 函数f(x)=(-1)2+1(x≤0)的反函数为(A)f--1(x)=1-(x≥1) (B) f--2(x)=1+(x≥1)(C )f --1(x(x ≥2) (B) f --1(x)=1+(x ≥2)(7)设(1+x )8=a 0+a 1x +…+a 8x 8,则a 0,a 1, …a 8中奇数的个数为 (A)2 (B)3 (C)4 (D)5(8)函数y=sin (2x +3π)图象的对称轴方程可能是 (A )x =-6π (B )x =-12π (C )x =6π(D )x=12π(9)设函数数f (x )=2x +1x-1(x <0),则f (x )(A)有最大值 (B )有最小值 (C )是增函数(D )是减函数(10)若过A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围为(A )((B )[] (C )((D )[] (11)若A 为不等式组 0,0,2x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x+y =a 扫过A 中的那部分区域的面积为 (A )34 (B)1 (C)74(D)212.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数为(A )C 38A 66 (B )C 23A 23 (C )C 28A 26 (D )C 28A 25(在此卷上答题无效) 绝密★启用前2008年普通高等学校招生全国统一考试(安徽卷) 数 学(文科)第Ⅱ卷(非选择题 共90分) 考生注意事项:请用0.5毫米黑色笔迹签字在答题卡上作答,在试题卷上答题无效.................. 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)函数的定义域为 .(14)已知双曲线2212x y n n--=1的离心率为3,则n = (15)在数列{a n }中,a n =4n -52,a 1+ a 2+…+ a a =an 2+bn ,n ∈N *,其中a ,b 为常数,则ab = .(16)已知点A ,B ,C ,D 在同一球面上,AB ⊥平面BCD ,BC ⊥CD .若AB =6,AC =213,AD =8,则B ,C 两点间的球面距离是 .三、解答题本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分) 已知函数f (x )=cos(2x -3π)+2sin(x -4π)sin(x -4π). (Ⅰ)求函数f (x )的最小正周期; (Ⅱ)求函数f (x )在区间[-12π,2π]上的值域. (18)(本小题满分12分)在某次普通话测试中,为测试字发音水平,设置了10张卡片,每张卡片上印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g ”.(Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片中随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行,求这二位被测试者抽取的卡片上,拼音都带有后鼻音“g ”的概率;(Ⅱ)若某位被测试者从这10张卡片中一次随机抽取3张,求这3张卡片上,拼音带有后鼻音“g ”的卡片不少于2张的概率.(19)(本小题满分12分)如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =4π,OA ⊥底面ABCD ,OA =2,M 为OA 的中点. (Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离.(20)(本小题满分12分) 已知函数f (x )=323(1)132a x x a x -+++,其中a 为实数. (Ⅰ)已知函数f (x )在x =1处取得极值,求a 的值;(Ⅱ)已知不等式2()1f x x x a '--+>对任意(0,)a ∈+∞都成立,求实数x 的取值范围.(21)(本小题满分12分)设数列{a n }满足a 1=a , a n+1=ca n +1-c , n ∈N*,其中a ,c 为实数,且c ≠0. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设11,,(1),22n n a e b n a n ===-∈N*,求数列{b n }的前n 项和S n ; (Ⅲ)若0<a n <1对任意n ∈N*成立,证明0<c ≤1.(22)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>,其相应于焦点F (2,0)的准线方程为x =4.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点F 1(-2,0)倾斜角为θ的直线交椭圆C 于A ,B 两点.求证:22cos AB =-θ; (Ⅲ)过点F 1(-2,0)作两条互相垂直的直线分别交椭圆C 于点A 、B 和D 、E ,求AB DE +的最小值.详解如下:一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1).若A 为位全体正实数的集合,{}2,1,1,2B =--则下列结论正确的是( )A .}{2,1AB =--B . ()(,0)RC A B =-∞C .(0,)AB =+∞D . }{()2,1R C A B =-- 解:R C A 是全体非正数的集合即负数和0,所以}{()2,1R C A B =--(2).若(2,4)AB =,(1,3)AC =, 则BC =( )A .(1,1)B .(-1,-1)C .(3,7)D .(-3,-7)解:向量基本运算 (1,3)(2,4)(1,1)BC AC AB =-=-=--(3).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,αγβγαβ⊥⊥若则‖B .,,m n m n αα⊥⊥若则‖C .,,m n m n αα若则‖‖‖D .,,m m αβαβ若则‖‖‖解:定理:垂直于一个平面的两条直线互相平行,故选B 。
2008年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kk n P k C p p k n -=-=,,,,一、选择题1.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .54.函数1()f x x x=-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( ) A .1 B .12C .12-D .1-8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3B .6C .9D .189.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .410.函数x x x f cos sin )(-=的最大值为( ) A .1B .2 C .3D .211.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2C .3D .22008年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答)15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13A =-,3cos 5B =. (Ⅰ)求sinC 的值;(Ⅱ)设5BC =,求ABC △的面积. 18.(本小题满分12分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .19.(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 20.(本小题满分12分)如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小. 21.(本小题满分12分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. 22.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点. (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.AB CD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅰ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C 二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.1.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角 【答案】C【解析】sin 0α<,α在三、四象限;tan 0α>,α在一、三象限,∴选C 2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M 【高考考点】集合的运算,整数集的符号识别 3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .5【答案】D【解析】52152=+-=d【高考考点】点到直线的距离公式4.函数1()f x x x=-的图像关于( ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称【答案】C 【解析】1()f x x x=-是奇函数,所以图象关于原点对称 【高考考点】函数奇偶性的性质5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a【答案】C 【解析】由0ln 111<<-⇒<<-x x e,令x t ln =且取21-=t 知b <a <c6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-【答案】D【解析】如图作出可行域,知可行域的顶点是A (-2,2)、B(32,32)及C(-2,-2) 于是8)(min -=A z7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1B .12C .12-D .1-【答案】A【解析】ax y 2'=,于是切线的斜率a y k x 2'1===,∴有122=⇒=a a8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3 B .6C .9D .18【答案】B【解析】高360sin 32=︒=h ,又因底面正方形的对角线等于32,∴底面积为 6332212=⨯⨯⨯=S ,∴体积63631=⨯⨯=V【备考提示】在底面积的计算时,要注意多思则少算 9.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .4【答案】A【解析】41666141404242404-=-+=-+C C C C C C 【易错提醒】容易漏掉1414C C 项或该项的负号10.函数x x x f cos sin )(-=的最大值为( ) A .1 B .2 C .3D .2【答案】B【解析】)4sin(2cos sin )(π-=-=x x x x f ,所以最大值是2【高考考点】三角函数中化为一个角的三角函数问题【备考提示】三角函数中化为一个角的三角函数问题是三角函数在高考中的热点问题 11.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+【答案】B【解析】由题意BC c =2,所以c c AC 3260sin 220=⨯⨯=,由双曲线的定义,有c a c c BC AC a )13(2322-=⇒-=-=,∴231131+=-==a c e 【高考考点】双曲线的有关性质,双曲线第一定义的应用12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2C .3D .2【答案】C【解析】设两圆的圆心分别为1O 、2O ,球心为O ,公共弦为AB ,其中点为E ,则21EO OO 为矩形,于是对角线OE O O =21,而3122222=-=-=AE OA OE ,∴321=O O 【高考考点】球的有关概念,两平面垂直的性质13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 【答案】 2【解析】λ+a b =)32,2(++λλ则向量λ+a b 与向量(47)=--,c 共线274322=⇒--=++⇔λλλ14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答) 【答案】 420【解析】4202701501621026110=+=+C C C C15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .【答案】 2 【解析】设过M的直线方程为)2(2-=-x k y ,由0)1(444)2(22222=-+-⇒⎩⎨⎧=-=-k kx x k xy x k y ∴k x x 421=+,2221)1(4kk x x -=,由题意144=⇒=k k ,于是直线方程为x y = 421=+x x ,021=x x ,∴24=AB ,焦点F (1,0)到直线x y =的距离21=d∴ABF △的面积是216.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)【答案】两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.三、解答题17.解:(Ⅰ)由5cos 13A =-,得12sin 13A =, 由3cos 5B =,得4sin 5B =. ··········································································· 2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ····································· 5分(Ⅱ)由正弦定理得45sin 13512sin 313BC B AC A ⨯⨯===. ··········································· 8分 所以ABC △的面积1sin 2S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯83=. ····················· 10分18.解:设数列{}n a 的公差为d ,则3410a a d d =-=-, 642102a a d d =+=+,1046106a a d d =+=+. ················································································ 3分 由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =.······················································································· 7分 当0d =时,20420200S a ==. ······································································ 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202S a d ⨯=+207190330=⨯+=. ············································· 12分 19.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++,··································································· 2分 112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ····························································· 6分(Ⅱ)12B C C =+, ······················································································ 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=,332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ··························· 12分 20.解法一:依题设,2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD AC ⊥. ········································································· 3分 在平面1ACA 内,连结EF 交1AC 于点G ,由于1AA ACFC CE== 故1Rt Rt A AC FCE △∽△,1AAC CFE ∠=∠, CFE ∠与1FCA ∠互余.于是1AC EF ⊥. 1AC 与平面BED 内两条相交直线BD EF ,都垂直, 所以1AC ⊥平面BED . ·················································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角.························································ 8分EF =CE CF CG EF ⨯==EG ==. AB CDEA 1B 1C 1D 1 FH G13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==113AG AC CG =-=.11tan A GA HG HG∠== 所以二面角1A DE B --的大小为 ················································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==,,,,,,11(224)(204)AC DA =--=,,,,,. ······························ 3分 (Ⅰ)因为10AC DB =,10AC DE =, 故1AC BD ⊥,1AC DE ⊥. 又DBDE D =,所以1AC ⊥平面DBE . ·················································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ····················································· 9分1AC <>,n 等于二面角1A DE B --的平面角, 11114cos 42AC AC AC <>==,n n n 所以二面角1A DE B --的大小为arccos42. ················································· 12分21.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. ········································· 4分 (Ⅱ)由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥.故得65a ≤. ································································································ 9分 反之,当65a ≤时,对任意[02]x ∈,, 26()(3)3(2)5g x x x x x +-+≤23(210)5xx x =+- 3(25)(2)5xx x =+- 0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g . 综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ··································································· 12分22.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ····································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <,且12x x ,满足方程22(14)4k x +=, 故21x x =-=.①由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==; 由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+, 化简得2242560k k -+=,解得23k =或38k =. ······················································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB的距离分别为1h ==2h ==······················································· 9分又AB ==AEBF 的面积为121()2S AB h h =+ 1525(14k =+==≤当21k =,即当12k =时,上式取等号.所以S 的最大值为 ························ 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+ ···································································································· 9分===当222x y =时,上式取等号.所以S 的最大值为 ······································· 12分。
绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分。
第Ⅰ卷考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上作答。
若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
参考公式如果事件,A B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件,A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)kk n k n n P k C p p -=-一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.“x y =”是“x y =”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2.定义集合运算:{},,A B z z xy x A y B *==∈∈.设{}1,2A =,{}0,2B =,则集合A B * 的所有元素之和为A .0B .2C .3D .6 3.若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是 A .[0,1] B .[0,1) C . [0,1)(1,4] D .(0,1)4.若01x y <<<,则A .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y<5.在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 6.函数sin ()sin 2sin2x f x xx =+是A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数7.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .1(0,]2 C. D. 8.10101(1)(1)x x++展开式中的常数项为A .1B .1210()C C .120C D .1020C 9.设直线m 与平面α相交但不.垂直,则下列说法中正确的是 A .在平面α内有且只有一条直线与直线m 垂直 B .过直线m 有且只有一个平面与平面α垂直 C .与直线m 垂直的直线不.可能与平面α平行 D .与直线m 平行的平面不.可能与平面α垂直 10.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是11.电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为A .1180B .1288C .1360D .148012.已知函数2()2(4)4f x x m x m =+-+-,()g x mx =,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是A . [4,4]-B .(4,4)-C . (,4)-∞D .(,4)-∞-ABCD-绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)文科数学第Ⅱ卷注意事项:第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答,若在试题上作答,答案无效。
2008年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用) 第Ⅰ卷(选择题 共60分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P(A ·B)=P(A) ·P(B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V=43πR3n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 P n (k )=C k n P k (1-p )n-k (k =0,1,2,…,n )一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合M ={x |-3<x <1|,N={x |x ≤-3},则M =⋃N (A)∅ (B) {x|x ≥-3} (C){x|x ≥1}(D){x |x <1|(2)若函数y=(x +1)(x-a )为偶函数,则a = (A)-2 (B) -2 (C)1 (D)2(3)圆x 2+y 2=1与直线y=kx +2没有公共点的充要条件是 (A)2,2(-∈k )(B) 3,3(-∈k )(C)k ),2()2,(+∞⋃--∞∈(D) k ),3()3,(+∞⋃--∞∈(4)已知0<a <1,x =log a 2log a 3,y =,5log 21a z =loga 3,则 (A)x >y >z(B)z >y >x(C)y >x >z(D)z >x >y(5)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且AD BC 2=,则顶点D 的坐标为 (A)(2,27) (B)(2,-21) (C)(3,2) (D)(1,3)(6)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎥⎦⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为 (A)⎥⎦⎤⎢⎣⎡--21,1(B)[-1,0] (C)[0,1](D)⎥⎦⎤⎢⎣⎡1,21(7)4张卡片上分别写有数字1,2,3,4从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为 (A)31 (B)21 (C)32 (D)43 (8)将函数y=2x +1的图象按向量a 平移得到函数y =2x +1的图象,则 (A)a =(-1,-1) (B)a =(1,-1) (C)a =(1,1) (D)a=(-1,1)(9)已知变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+,01,013,01x y x y x y 则z =2x+y 的最大值为第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)函数23()x y ex +=-∞+∞的反函数是 .(14)在体积为的球的表面上有A 、B 、C 三点,AB =1,BCA 、C 两点的球面距离为3π,则球心到平面ABC 的距离为 . (15)3621(1)()x x x++展开式中的常数项为 . (16)设(0,)2x π∈,则函数22sin 1sin 2x y x +=的最小值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)在△ABC 中,内角A ,B ,C ,对边的边长分别是a ,b ,c .已知2,3c C π==. (Ⅰ)若△ABC,求a ,b ;(Ⅱ)若sin 2sin B A =,求△ABC 的面积. (18)(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:频数205030(Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求 (i )4周中该种商品至少有一周的销售量为4吨的概率; (ii )该种商品4周的销售量总和至少为15吨的概率. (19)(本小题满分12分)如图,在棱长为1的正方体ABCD -A ′B ′C ′D ′中,AP =BQ =b (0<b <1),截面PQEF ∥A ′D ,截面PQGH ∥AD ′.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直;(Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值; (Ⅲ)若12b =,求D ′E 与平面PQEF 所成角的正弦值. (20)(本小题满分12分)已知数列{a n },{b n }是各项均为正数的等比数列,设(N*)nn nb c n a =∈. (Ⅰ)数列{c n }是否为等比数列?证明你的结论;(Ⅱ)设数列{tna n },{lnb n }的前n 项和分别为S n ,T n .若12,,21n n S n a T n ==+求数列{c n }的前n 项和.(21)(本小题满分12分)在平面直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4.设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线y =kx +1与C 交于A 、B 两点.k 为何值时?⊥此时||的值是多少?(22)(本小题满分14分)设函数f (x )=ax 3+bx 2-3a 2x +1(a 、b ∈R )在x =x 1,x =x2处取得极值,且|x 1-x 2|=2. (Ⅰ)若a =1,求b 的值,并求f (x )的单调区间; (Ⅱ)若a >0,求b 的取值范围.2008年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)k kn k n n P k C P p k n -=-=,,,,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}31M x x =-<<,{}3N x x =-≤,则M N =( D )A .∅B .{}3x x -≥C .{}1x x ≥D .{}1x x <答案:D解析:本小题主要考查集合的相关运算知识。
依题意{}31,M x x =-<<{}3N x x =-,∴{|1}M N x x ⋃=<.2.若函数(1)()y x x a =+-为偶函数,则a =( C ) A .2- B .1-C .1D .2答案:C解析:本小题主要考查函数的奇偶性。
(1)2(1),f a =-(1)0(1),f f -== 1.a ∴= 3.圆221x y +=与直线2y kx =+没有..公共点的充要条件是( B )A .(k ∈B . (k ∈C .((2)k ∈-+∞,,∞D .((3)k ∈--+∞,,∞答案:B解析:本小题主要考查直线和圆的位置关系。
依题圆221x y +=与直线2y kx =+没有公共点1d ⇔=>⇔(k ∈4.已知01a <<,log log a a x =1log 52a y =,log log a a z =,则( C ) A .x y z >>B .z y x >>C .y x z >>D .z x y >>答案:C解析:本小题主要考查对数的运算。
log a x=log a y=log a z =由01a <<知其为减函数, y x z ∴>>5.已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =, 则顶点D 的坐标为( A )A .722⎛⎫ ⎪⎝⎭, B .122⎛⎫- ⎪⎝⎭,C .(32),D .(13),答案:A解析:本小题主要考查平面向量的基本知识。
(4,3),BC =(,2),AD x y =-且2BC AD =,22472432x x y y =⎧=⎧⎪∴⇒⎨⎨-==⎩⎪⎩6.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线 倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( A )A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,答案:A解析:本小题主要考查利用导数的几何意义求切线斜率问题。
依题设切点P 的横坐标为0x , 且0'22tan y x α=+=(α为点P 处切线的倾斜角),又∵[0,]4πα∈,∴00221x ≤+≤,∴01[1,].2x ∈--7.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张, 则取出的2张卡片上的数字之和为奇数的概率为( C )A .13B .12C .23D .34答案:C解析:本小题主要考查等可能事件概率求解问题。
依题要使取出的2张卡片上的数字之和为奇数,则取出的2张卡片上的数字必须一奇一偶,∴取出的2张卡片上的数字之和为奇数的概率11222342.63C C P C ⋅===8.将函数21x y =+的图象按向量a 平移得到函数12x y +=的图象,则( A )A .(11)=--,aB .(11)=-,aC .(11)=,aD .(11)=-,a答案:A解析:本小题主要考查函数图像的平移与向量的关系问题。
依题由函数21xy =+的图象得到函数12x y +=的图象,需将函数21xy =+的图象向左平移1个单位,向下平移1个单位;故(11).=--,a 9.已知变量x y ,满足约束条件1031010y x y x y x +-⎧⎪--⎨⎪-+⎩≤,≤,≥,则2z x y =+的最大值为( B )A .4B .2C .1D .4- 答案:B解析:本小题主要考查线性规划问题。
作图(略)易知可行域为一个三角形,其三个顶点为 (01),,(10),,(12),--,验证知在点(10),时取得最大值2.10.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序 只能从甲、丙两工人中安排1人,则不同的安排方案共有( B ) A .24种 B .36种 C .48种 D .72种 答案:B解析:本小题主要考查排列组合知识。