(最新)人教版七年级数学上册《有理数的除法(二)》练习题
- 格式:doc
- 大小:107.00 KB
- 文档页数:2
新人教版七年级上册《1.4.2 有理数的除法》同步练习卷(2)一、选择题1. 如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数( )A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零2. 把(−34)÷(−23)转化为乘法是( ) A.(−34)×23 B.(−34)×32 C.(−34)×(−23) D.(−34)×(−32)3. 计算(−1)÷(−5)×(−15)的结果是( )A.−1B.−125C.−25D.14. 非零且互为相反数的两个数的商是( )A.0B.1C.−1D.不能确定5. 下列运算正确的是( )A.1÷(−5)×(−15)=1÷1=1B.−130÷(16÷15)=−130×6×5=−1C.8÷(14−4)=8÷14−8÷4=32−2=30D.2÷(−12)÷(−13)=2×(−2)×(−3)=126. 计算(−1)÷(−10)×110的结果是( )A.1B.−1C.1100D.−11007. 正整数x 、y 满足(2x −5)(2y −5)=25,则x +y 等于( )A.18或10B.18C.10D.268. 计算(−48)÷74÷(−12)×74的结果是( )A.1621B.4C.494D.39. 如果a +b <0,b a >0,那么下列结论成立的是( )A.a >0,b >0B.a <0,b <0C.a >0,b <0D.a <0,b >010. 若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,则m 2−c ×d +a+b m 的值为( )A.−3B.3C.−5D.3或−5二、填空题两个有理数之积是−1,已知一个数是−217,则另一个数是________.计算:(−42)÷14=________;−18÷0.6=________.17.48×(−37)−174.8×1.9−8.74×8.8=________.若a ⋅(−5)=85,则a =________.计算:(−15)×(−5)÷(−15)×(−5)=________.两个有理数,它们的商是−1,则这两个有理数的关系是________.三、解答题计算:(−6)×313+2×313−5×313(用简便方法计算).简便运算:(1)(56−37+13−914)÷(−142);(2)32×57−(−57)×52+(−12)÷75.计算:(1)−2.5÷58×(−14);(2)−27÷214×49÷(−24);(3)(−35)×(−312)÷(−114)÷3×(−312)÷(−114)÷3;(4)−4×12÷(−12)×2;(5)−5÷(−127)×45×(−214)÷7;(6)|−118|÷34×43×|−12|.阅读下面的解题过程:计算:5÷(13−212−2)×6.解:5÷(13−212−2)×6=5÷(−256)×6…① =5÷(−25)…②=−15⋯③回答:(1)上面的解题过程是从第________步开始出现错误的,错误的原因是________;(2)请你给出正确的解题过程.参考答案与试题解析新人教版七年级上册《1.4.2 有理数的除法》同步练习卷(2)一、选择题1.【答案】A【考点】有理数的除法有理数的乘法【解析】由两个有理数的和除以它们的积,所得的商为零,可得这两个有理数的和为0,且它们的积不等于0,继而可求得答案.【解答】∵ 两个有理数的和除以它们的积,所得的商为零,∴ 这两个有理数的和为0,且它们的积不等于0,∴ 这两个有理数:互为相反数但不等于零.2.【答案】D【考点】有理数的除法有理数的乘法【解析】根据除以一个不等于0的数,等于乘这个数的倒数可得.【解答】把(−34)÷(−23)转化为乘法是(−34)×(−32), 3.【答案】B【考点】有理数的混合运算【解析】除以一个数等于乘以这个数的倒数,再确定符号,约分即可.【解答】解:原式=−1×15×15 =−125.故选B .4.【答案】C相反数有理数的除法有理数的概念及分类【解析】根据相反数的定义以及有理数的除法法则解答即可.【解答】非零且互为相反数的两个数的商是−1.5.【答案】D【考点】有理数的混合运算【解析】A 、从左往右依次计算即可求解;B 、先算小括号里面的除法,再算括号外面的除法;C 、先算小括号里面的减法,再算括号外面的除法;D 、从左往右依次计算即可求解.【解答】B 、−130÷(16÷15)=−130÷56=−125,故选项错误(1)C 、8÷(14−4)=8÷(−154)=−3215,故选项错误(2)D 、2÷(−12)÷(−13)=2×(−2)×(−3)=12,故选项正确. 故选:D .6.【答案】C【考点】有理数的除法【解析】乘除是同级运算,按照从左往右的顺序进行.【解答】(−1)÷(−10)×110 =(−1)×(−110)×110 =1100.7.【答案】A 【考点】有理数的乘法【解析】易得(2x −5)、(2y −5)均为整数,分类讨论即可求得x 、y 的值即可解题.∵x、y是正整数,且最小的正整数为1,∴2x−5是整数且最小整数为−3,2y−5是整数且最小的整数为−3∵25=1×25,或25=5×5,∴存在两种情况:①2x−5=1,2y−5=25,解得:x=3,y=15,;②2x−5=2y−5=5,解得:x=y=5;∴x+y=18或10,8.【答案】B【考点】有理数的除法有理数的乘法【解析】先把除法变成乘法,再根据有理数的乘法法则计算即可.【解答】(−48)÷74÷(−12)×74=48×47×112×74=4.9.【答案】B【考点】有理数的除法有理数的加法【解析】根据有理数的除法法则以及加法法则即可作出判断.【解答】∵ba>0,∴a和b同号.又∵a+b<0,∴a<0,且b<0.10.【答案】B【考点】有理数的混合运算【解析】直接利用互为相反数、互为倒数的定义结合绝对值的性质分别代入求出答案.【解答】∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1,m=±2,∴m2−cd+a+bm=4−1+0=3.二、填空题【答案】715【考点】有理数的乘法【解析】已知积和其中的一个因数,求另一个因数用除法.根据题意先列出除法算式,再计算出结果.【解答】−1÷(−21 7 )=−1÷(−157)=7 15【答案】−3,−30【考点】有理数的除法【解析】根据有理数的除法法则计算即可.【解答】(−42)÷14=−(42÷14)=−3;−18÷0.6=−(18÷0.6)=−30.【答案】−1055.792【考点】有理数的乘法【解析】根据有理数的乘法,即可解答.【解答】17.48×(−37)−174.8×1.9−8.74×8.8=17.48×(−37)−17.48×19−17.48×4.4=17.48×(−37−19−4.4)=−1055.792.【答案】−8 25【考点】有理数的除法【解析】根据题意,将乘法转化为除法,计算可得a的值.【解答】a⋅(−5)=85,则a=85÷(−5)=−825,【答案】25【考点】有理数的除法有理数的乘法【解析】根据乘除同级运算,从左到右的顺序根据法则依次计算即可.【解答】原式=1×(−5)×(−5)=25,【答案】互为相反数【考点】有理数的除法【解析】两个有理数,它们的商是1时,这两个有理数相等;商是−1时,这个有理数的关系是互为相反数.【解答】两个有理数,商是−1,则这个有理数的关系是互为相反数.故这两个有理数的关系是互为相反数.三、解答题【答案】(−6)×313+2×313−5×313=313×[(−6)+2−5]=103×(−9)=−30【考点】有理数的混合运算【解析】根据乘法分配律可以解答本题.【解答】(−6)×313+2×313−5×313=313×[(−6)+2−5]=103×(−9)=−30【答案】(56−37+13−914)÷(−142) =(56−37+13−914)×(−42)=(−35)+18+(−14)+27=−4;32×57−(−57)×52+(−12)÷75=32×57+57×52+(−12)×57=[32+52+(−12)]×57=72×57=52.【考点】有理数的混合运算【解析】(1)先把除法转化为乘法,然后根据乘法分配律可以解答本题;(2)根据乘法分配律可以解答本题.【解答】(56−37+13−914)÷(−142) =(56−37+13−914)×(−42)=(−35)+18+(−14)+27=−4;32×57−(−57)×52+(−12)÷75=32×57+57×52+(−12)×57=[32+52+(−12)]×57=72×57=52.【答案】−2.5÷58×(−14)=52×85×14=1;−27÷214×49÷(−24)=27×49×49×124=29;(−35)×(−312)÷(−114)÷3×(−312)÷(−114)÷3=−35×72×45×13=−1425;−4×12÷(−12)×2=2×2×2=8; −5÷(−127)×45×(−214)÷7=−5×79×45×94×17=−1;(1)|−118|÷34×43×|−12|=98×43×43×12=1. 【考点】有理数的混合运算【解析】(1)先确定符号,再把小数化为分数、除法化为乘法,约分计算;(2)(3)(4)(5)先确定符号,再把除法化为乘法,约分计算;(6)先算绝对值,再做乘除.【解答】−2.5÷58×(−14)=52×85×14=1; −27÷214×49÷(−24)=27×49×49×124=29;(−35)×(−312)÷(−114)÷3×(−312)÷(−114)÷3=−35×72×45×13=−1425; −4×12÷(−12)×2=2×2×2=8;−5÷(−127)×45×(−214)÷7=−5×79×45×94×17=−1;(1)|−118|÷34×43×|−12|=98×43×43×12=1. 【答案】②,同级运算没有按从左到右的顺序依次进行计算5÷(13−212−2)×6 =5÷(−256)×6=5×(−625)×6 =−65×6 =−365.【考点】有理数的混合运算【解析】(1)根据题目中的解答过程,可知上面的解题过程是从第②步开始出现错误的,错误的原因是同级运算没有按从左到右的顺序依次进行计算;(2)根据有理数的减法和乘除法可以解答本题.【解答】上面的解题过程是从第②步开始出现错误的,错误的原因是同级运算没有按从左到右的顺序依次进行计算,故答案为:②,同级运算没有按从左到右的顺序依次进行计算;5÷(13−212−2)×6=5÷(−256)×6=5×(−625)×6=−65×6=−365.试卷第11页,总11页。
新⼈教版初中数学七年级上册第⼆单元《有理数的运算》综合测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2020七上·拉萨期中)2008年5月26日下午,奥运圣火扬州站的传递在一路“中国加油”中进行着,全程11800米,用科学记数法,结果为( )米A. 11.8 × 103B.1.2 × 104C.1.18 × 104D.1.2 × 1032.(3分)(2023七上·洪山期中)下列每组两个数中,互为相反数的是( ).A.-5与+(−5)B.−(−3)与|−3|C.−324与(−34)2D.−42与(−4)23.(3分)全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为( )A.142×103B.1.42×104C.1.42×105D.0.142×1064.(3分)(2023七上·东莞期中)A地的海拔高度是8844米,B地的海拔高度是−155米,则A地比B地高( )A.8689米B.−8689米C.8999米D.−8999米5.(3分)(2024九下·龙亭模拟)下列各数中,比−1大2的数是( )A.3B.1C.−2D.−36.(3分)(2023七上·青秀月考)某市某天的最高气温是5℃,最低气温是−2℃,则这天的温差是( )A.3℃B.−3℃C.7℃D.8℃7.(3分)(2024七上·广汉期末)如图,被墨迹污染的数可能是( )A.1.5B.0.5C.−1.5D.−0.58.(3分)(2023八上·武山期中)+A.1B.1C.5−D.59.(3分)(2024七上·播州期末)2023年9月23日至10月8日亚运会在我国浙江杭州举行,本次亚运会亚洲全部45个国家和地区的奥委会报名参加,其中运动员12417人,是史上报名人数最多的一次盛会,其中数字12417用科学记数法表示为( )A.124.17×102B.12.417×103C.1.2417×105D.1.2417×104 10.(3分)(2024九下·市中区模拟)体重指数BMI是体重(千克)与身高(米)的平方的比值,是反映人体胖瘦的重要指标(如表所示).小张的身高1.70米,体重70千克,则小张的体重状况是( )体重指数BMI的范围体重状况体重指数<18.5消瘦18.5≤体重指数≤23.9正常23.9<体重指数≤26.9超重体重指数>26.9肥胖A.消瘦B.正常C.超重D.肥胖⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2023七上·濉溪月考)把算式:(−7)−(−8)+(−9)−(+10)写成省略括号的形式,结果为 .12.(3分)(2024六下·哈尔滨月考)化简:−+−4.8= .13.(3分)(2024·福田一模)如图1,“幻方”源于我国古代夏禹时期的“洛书”。
人教版七年级数学上册《第二章有理数的运算》单元测试卷及答案 知识点题型分布:考点1:有理数的加法与减法考点2:有理数的乘法与除法考点3:有理数的乘方一、选择题1.(2023·安徽·模拟预测)联合国宣布,世界人口在2022年11月15日达到80亿.其中80亿用科学记数法表示为( )A .88010⨯B .98010⨯C .8810⨯D .9810⨯2.(23-24七年级上·陕西渭南·阶段练习)用四舍五入法对0.06574取近似值,错误..的是( ) A .0.1(精确到0.1) B .0.06(精确到百分位)C .0.066(精确到千分位)D .0.0657(精确到0.0001)3.(23-24七年级上·安徽合肥·期末)某地连续四天的天气情况如图,其中温差最大的一天是( )A .17日B .18日C .19日D .20日4.(24-25七年级上·全国·课后作业)若数a ,b 在数轴上对应的位置如图所示,则a b +是( )A .正数B .0C .负数D .都有可能5.(23-24七年级上·云南临沧·期中)下列运算中,正确的是( )A .624--=-B .1313⎛⎫÷-=- ⎪⎝⎭C .22220a b ab -=D .()a b b a --=- 6.(2023·浙江杭州·模拟预测)设a 是有理数,用[]a 表示不超过a 的最大整数,则下列四个结论中,正确的是( )A .[][]0a a +-=B .[][]a a +-等于0或1-C .[][]0a a +-≠D .[][]a a +-等于0或17.(2022·山东泰安·一模)截至2022年3月31日,全国累计报告接种新冠病毒疫苗327087.4万剂次,接种总人数达127770.9万,已完成全程接种124228.1万人.用科学记数法表示124228.1万为( ) A .101.24228110⨯ B .91.24228110⨯ C .4124228110⨯ D .5124228110⨯8.(2022九年级·全国·专题练习)如图,小明在3×3的方格纸上写了九个式子(其中的n 是正整数),每行的三个式子的和自上而下分别记为A 1,A 2,A 3,每列的三个式子的和自左至右分别记为B 1,B 2,B 3,其中,值可以等于789的是( ) 21n +23n + 25n + 1A 27n +29n + 211n + 2A 213n + 215n + 217n +3A 1B 2B3B 11C .A 2 D .B 3二、填空题9.(2024·重庆·一模)2024年3月12日的《政府工作报告》中指出,在过去的一年我国经济总体回升向好,其中2023年城镇新增就业1244万人,请将数字12440000用科学记数法表示为 .10.(22-23七年级上·辽宁大连·期末)大连是一个美丽的海滨城市,海岸线长1787000米,用科学记数法表示数字1787000为 .11.(23-24七年级下·江苏无锡·期末)到今年年末,我省新冠疫苗接种目标为 56 000 000 人,用科学记数法表示这个数据: .12.(23-24七年级上·全国·单元测试)数轴上表示12-和 3.5-的两个点之间的距离是 . 13.(23-24八年级上·河南焦作·期末)华为公司今年发布了一款自家的5G 芯片,这款芯片集成了49亿个晶体管,那么10个这样的芯片上共有多少个晶体管,请将这个数用科学记数法表示 .14.(23-24七年级上·湖南永州·期末)计算()()1248-÷-⨯,结果是 . 15.(23-24七年级上·河南商丘·期中)如图是一个程序框图,若输入结果是3-,则输出的结果是16.(23-24七年级上·重庆沙坪坝·阶段练习)2023年2月10日,在经过475000000公里的漫长飞行之后,中国火星探测器“天问二号”顺利进入环火轨道,成为我国又一颗人造火星卫星.将数据475000000用科学记数法表示为 .三、解答题17.(23-24七年级上·安徽合肥·期末)计算:21252532⎛⎫÷-⨯- ⎪⎝⎭;18.(22-23七年级上·全国·单元测试)计算:(1)()()8151211---+--;(2)1336442⎛⎫⎛⎫÷⨯-÷- ⎪ ⎪⎝⎭⎝⎭;(3)22022214323⎡⎤⎛⎫-+÷⨯-⎢⎥ ⎪⎝⎢⎣-⎭⎥⎦.18.(23-24七年级下·黑龙江绥化·期末)一只蜜蜂从蜂房出来采蜜,向东飞了2千米后,没有找到蜜源,又向东飞了1千米,结果仍没有找到蜜源,于是又向东飞了5-千米,终于找到了蜜源.此时蜜蜂在蜂房的哪个方向?它离蜂房多远?20.(23-24七年级上·北京通州·期末)为了确保能够按时完成农田小麦收割任务,某小麦收割机配件车间需要在一周内完成2000件配件的生产任务.该车间接到任务后,计划平均每天加工400件,由于各种原因,每天实际加工的件数与每天计划加工的件数相比有出入,把超额或不足的部分分别用正、负数来表示,下表是这周加工这种配件的记录情况: 星期一 二 三 四 五 与每天的计划量相比的 差值(单位:件) 55+ 20- 25- 60+ 50-这周共加工了 件小麦收割机配件.(2)这周内加工最多的一天比加工最少的一天多加工了 件.(3)已知该厂对这个车间实行计件工资制,每加工1件得10元,若超额完成任务,则超额部分每件再奖5元;若没有完成任务,则每少一件倒扣5元,求该车间这周的总收入.参考答案1.D【分析】本题考查科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】80亿用科学记数法表示为9810⨯故选D .2.B【分析】利用四舍五入法逐一进行判断即可.【详解】解:A 、0.1(精确到0.1),正确;B 、0.07(精确到百分位),选项错误;C 、0.066(精确到千分位),正确;D 、0.0657(精确到0.0001),正确;【点睛】本题考查近似数.熟练掌握四舍五入法,是解题的关键.3.B【分析】此题考查有理数减法的实际应用,分别计算每天的温差,即可得到答案,正确理解题意列得减法算式是解题的关键.【详解】解:17日温差为()583---=℃;18日温差为()145--=℃;19日温差为202-=℃;20日温差为523-=℃;5332>=>∴温差最大的一天是18日故选:B .4.C【分析】本题结合数轴考查了有理数的加法法则,体现了数形结合的思想,熟练掌握有理数的加法法则是解答本题的关键.先根据数轴发现,a b 异号,再进一步比较其绝对值的大小,然后根据有理数的加法运算法则确定结果的符号.异号两数相加,取绝对值较大的加数的符号.【详解】解:由图可知:0,0,||||a b a b <>>.则0a b故选:C .5.D【分析】根据有理数减法运算法则、有理数除法法则、合并同类项法则和去括号法则,逐项分析即可获得答案.【详解】A. 628--=-,故本选项运算错误,不符合题意; B. 1393⎛⎫÷-=- ⎪⎝⎭,故本选项运算错误,不符合题意; C. 22a b 与22ab 不是同类项,不能合并,故运算错误,不符合题意;D. ()a b b a --=-,运算正确,符合题意.故选:D .【点睛】本题主要考查了有理数运算及整式运算,熟练掌握相关运算法则是解题关键.6.B【分析】本题考查有理数比较大小,有理数的加法运算,分a 为整数和不是整数两种情况,进行讨论求解即可.【详解】解:当a 为整数时:[]a a = []a a -=-∴[][]0a a +-=当a 不是整数时,例如: 1.5a =则:[]1.51= []1.52-=-∴[][]1a a +-=-;综上:[][]a a +-等于0或1-;故选B .7.B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:124228.1万=1242281000=91.24228110⨯.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,正确确定a 的值以及n 的值是解决问题的关键.8.B【分析】把A 1,A 2,B 1,B 3的式子表示出来,再结合值等于789,可求相应的n 的值,即可判断.【详解】由题意得:A 1=2n +1+2n +3+2n +5=789整理得:2n =260则n 不是整数,故A 1的值不可以等于789;A 2=2n +7+2n +9+2n +11=789整理得:2n =254则n 不是整数,故A 2的值不可以等于789;B 1=2n +1+2n +7+2n +13=789整理得:2n =256=28则n 是整数,故B 1的值可以等于789;B 3=2n +5+2n +11+2n +17=789整理得:2n =252则n 不是整数,故B 3的值不可以等于789;故选:B .【点睛】本题主要考查规律型:数字变化类,解答的关键是理解清楚题意,得出相应的式子.9.71.24410⨯【分析】本题主要考查了科学记数法,将数据表示成形式为10n a ⨯的形式,其中1||10a <<,n 为整数,正确确定a 、n 的值是解题的关键.将12440000写成10n a ⨯其中1||10a <<,n 为整数的形式即可.【详解】解:712440000 1.24410=⨯.故答案为71.24410⨯.10.61.78710⨯【分析】将1787000可分为1.7871000000⨯,进而可表示为61.78710⨯.【详解】解:61787000 1.7871000000 1.78710=⨯=⨯故答案为:61.78710⨯.【点睛】本题考查用科学记数法表示较大的数,能够数清数位是解决本题的关键.11.75.610⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:56000000=5.6×107故答案为:5.6×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.12.3【分析】本题考查了数轴上两点之间的距离,运用较大的数减去较小的数,进行作答. 【详解】解:依题意,()1 3.532---= ∴则点P 与点Q 之间的距离是3故答案为:3.13.104.910⨯【分析】此题考查科学记数法的表示方法.正确确定a 的值以及n 的值是解答的关键.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:49亿×10=490亿=49000000000=104.910⨯故答案为:104.910⨯.14.116【分析】根据有理数的乘除混合运算法则计算即可.【详解】解:原式=12×18=116 故答案为:116. 【点睛】本题主要考查了有理数的乘除混合运算,解题的关键是熟练掌握有理数的乘除混合运算法则. 15.71-【分析】本题主要考查有理数的混合运算和流程图,解题的关键是掌握有理数的混合运算法则:先算乘方,再算乘除,最后算加减,有括号的先算括号.将3x =-代入210x -,列出算式再根据有理数的混合运算顺序和运算法则计算可得答案.【详解】解:当3x =-时 ()22101031x -=--= 10>否当1x =时22101019x -=-=90>否当9x =时221010971x -=-=-输出结果71-故答案为:71-.16.4.75×108【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】475000000=4.75×108故答案为:4.75×108【点睛】本题考查科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.50【分析】本题考查有理数计算.根据题意先整理算式,再利用乘法分配律运算即可得到本题答案. 【详解】解:213131252525252550322222⎛⎫⎛⎫÷-⨯-=⨯+⨯=⨯+= ⎪ ⎪⎝⎭⎝⎭. 18.(1)16- (2)32(3)7-【分析】(1)先去括号,再计算有理数的加减法即可得;(2)根据有理数的乘除法法则计算即可得;(3)先计算乘方,再计算括号内的乘法与减法,然后计算除法,最后计算减法即可得.【详解】(1)解:原式8151211=-+--71211=--511=--16=-.(2)解:原式12943⎛⎫⎛⎫=⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ 9234⎛⎫=-⨯- ⎪⎝⎭ 32=. (3)解:原式491432-⎛⎫=-+÷⨯ ⎪⎝⎭ 41234-⎛⎫=-+÷ ⎪⎝⎭ 2314⎛⎫=-+÷- ⎪⎝⎭ 3214⎛⎫=-+⨯- ⎪⎝⎭16=--7=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 19.此时蜜蜂在蜂房的西边,离蜂房2千米.【分析】此题考查了有理数加法的实际应用,根据题意列出算式求解即可.【详解】根据题意得()2152++-=-∴此时蜜蜂在蜂房的西边,离蜂房2千米.20.(1)2020(2)110件(3)20300元【分析】本题考查了有理数混合运算的应用(1)用本周的计划加工的总数量加上多加工的数量即可求解;(2)用最多的一天比计划多的数量减去最少的一天比计划少的数量即可求解;(3)用加工的数量乘以单价,再加上多加工的额外收入即可求解;准确理解题意是解题的关键.【详解】(1)400555202560502020⨯+--+-=(件) 故答案为:2020;(2)6050110++-=(件)故答案为:110;(3)()20201020204005520300⨯+-⨯⨯=(元) ∴该车间这周的总收入为20300元.。
有理数的除法(二)一、选择题1.下列说法正确的是()A.14和-0.25互为倒数 B. 14和-4互为倒数 C. 0.1与10互为倒数 D. 0与0互为倒数2.计算题(-1)÷( -6) ×(-16)的结果是()A. -1B. 1C. -136D. - 363.一个非零数与它的相反数的和除以它的绝对值的商是()A. 1 B.-1 C.±1 D. 04.下列说法正确的是()A.任何一个数都有倒数 B.一个数的倒数小于这个数C. 0除以任何一个数商都为0 D.两个数相除商为0,则只有被除数为05.两个不等于0的数的和为0,那么它们的商是()A. 0B. 1 C.-1 D. ±16.如果甲数除以乙数的商为正数,那么一定是()A.甲、乙两数一定都为正数 B.甲、乙两数一定都为负数C.甲、乙两数同号 D.甲、乙两数异号※10.若a 、b 为非零有理数,则a b a b +的值为( ) A. 2 B. - 2 C. 0 D. 2,-2,0 二、填空题 11.一个数的45是-625,则这个数是__________12.若a<b<0,(a+b)(a-b )的符号为__________13.用“<”或“>”号填空:①如果a >O, b >0,那么ab____0; ②如果a >O, b <0,那么ab_____0; ③如果a <O,b <0,那么a b _____0; ④如果a <O,b >0, 那么a b _____0.14.若a b >0,b c <0,则ac_____0.15.a 、b 互为倒数,则5ab +(-25ab )的结果为_________.16.(-2) ÷(-2)÷(-2) ÷(-2)=_______17. 24 ÷(-5)+4÷5=________.18.若2630x y ++-=,则x y =________※19.若ab <0,则a b ab a b ab ++=________ ※20.若a 、b 互为倒数,c 、d 互为相反数,m 是最大的负整数,则34m c d ab m+++=________ 三、解答题21.计算(1)(-54)×2 34 ÷(-512)×(-29)(2)3.59÷(-74)+2.41÷(-74)+8÷(-74)(3)317×2122×(317-713)÷(-227)(4)(-13+16-59+712)÷(-136)(5)(-376)×(-23)×(-32)(6)(-5) ÷(-127)×45×(-214)22.已知a的倒数是47,b的相反数是-78,c= 712且c<0,求代数式(a-b+c)÷(-a)的值。
2024-2025学年人教版七年级数学上册《2.2有理数的乘法与除法》自主学习计算能力达标测评(附答案)(共20小题,每小题6分,满分120分)1.计算:(1)(−12)×−(2)83×(−0.25).2.计算:(1)−72÷6;(2)0÷−3(3)−−(4)÷−2.25.3.计算:−50×3−−2.5÷0.1.4.计算−35÷+7−−3×−5.乘除计算:1.25÷(−0.5)÷(−212)×16.计算:−12÷710×−47.计算−×0.125××(−8)8.计算:(1)7354;37+13−÷−9.简便计算−47.65×2611+−37.15×−+10.5×10.用简便方法计算:114×−−1314÷16+3×116.11.下面是涵涵同学的一道题的解题过程:2÷−13×−3=2÷−3+2÷×−3,①=2×−3×−3+2×4×−3,②=18-24,③=6,④(1)涵涵同学开始出现错误的步骤是______;原因是______.(2)请给出正确的解题过程.12.用简便方法计算:(1)5×−9−7×+−12÷−(2)292324×−2413.计算:(1)(−47)÷(−314)÷(−23);(2)(−0.65)÷(−57)÷(−213)÷(+310).14.提升计算:(1)−0.75×−÷−4(2)−16+32−×−48.15.简便计算(1)5.8×25%+0.25×4.2(2)18×25%+14×40+42×0.25(3)40×1−10%×1+10%16.计算:(1)−3÷×0.75÷−7×−6;(2)−×−0.1125×−10;(3)−72×−×−÷−17.巧算.(1)2020÷2020202014+15+×15+16−14+15+16+×1518.计算:(1)−3+40+−32+−8÷−+2−−2.75;(2)−48×0.125+48×1−484−25+−35(3)−×16×−÷−1÷−5×÷23×−36−−1×13÷−13.19.下面是两位同学计算(−112)÷(13−34)的解法.小华的解法:(−112)÷(13−34)=(−112)÷13−(−112)÷34=−14+19=−536.小明的解法:原式的倒数为(13−34)÷(−112)=(13−34)×(−12)=−4+9=5,所以(−112)÷(13−34)=15.(1)请你判断:_______同学的解答正确.(2)请你运用上述两位同学中的正确解法计算:(−78)÷(134−78+712).20.12,16,112,120,130,…是一组有规律的数,我们如何求这些连续数的和呢?【阅读理解】1111111114×5+15×6=1−2+23++4−5+=1−12+12−13+13−14+14−15+15−16=1−16=56根据上面得到的启发完成下面的计算:(1)根据规律,1156是第______个数;(2)请直接写出计算的结果:11×2+12×3+13×4+⋅⋅⋅+12023×2024=______;(3)探究并计算:12×4+14×6+16×8+⋅⋅⋅+12022×2024参考答案1.解:(1)−12×−320(2)83×(−0.25)=83×−=−=−232.解:(1)(−72)÷6=−(72÷6)=−12;(2)0÷−3(3)−−=+×49;(4)÷(−2.25)=−÷=−×−=32.3.解:−50×3−−2.5÷0.1=−150+2.5×10=−150+25=−1254.解:−35÷+7−−3×−=−5−2=−75.解:1.25÷−0.5÷×1=54×−2×−×1=16.解:原式=−75×107×−=9.7.解:−70.125××(−8)=−7××0.125×−8=1×−1=−18.解:(1)75××37÷54=75×−×37×45=−2;(237+13−÷−=−35+18−14+27=−4.9.解:−47.65×2611+−37.15×−+10.5×−7=−47.65+37.15×2811×−=−10.5×2811=−10.5×11=−10.5×11011=−105.10.解:原式=114×−−1314×116+3×116=116×−114−1314+3=116×2=1811.(1)解:涵涵同学开始出现错误的步骤是①,错误的原因是除法没有分配律;故答案为①,除法没有分配律;(2)解:2÷−1+4×−3=2÷41212×−3=2÷×−3=2×12×3=72.12.解:(1)原式=5×−+7×−−12×−=−×5+7−12=0;(2)原式=30×−2424=−720+1=−719.13.解:(1)(−47)÷(−314)÷(−23) =−47×143×32=−4;(2)(−0.65)÷(−57)÷(−213)÷(+310) =−65100×75×37×103=−1.3.14.(1)解:−0.75×−÷−=−×−×−=−12.(2)解:−16+32×−48=−16×−48+32×−48−512×−48 =8−72+20=−44.15.(1)解:5.8×25%+0.25×4.2 =5.8×0.25+0.25×4.2=5.8+4.2×0.25=10×0.25=2.5;(2)解:18×25%+14×40+42×0.25 =18×0.25+0.25×40+42×0.25 =18+40+42×0.25=100×0.25=25;(3)解:40×1−10%×1+10%=40×0.9×1+0.1=36×1+0.1=36×1+36×0.1=36+3.6=39.6.16.(1)解:−3÷−1×0.75÷−×−6=3×47×34×73×6=18;(2)解:−×−0.1÷125×−10=−110×25×10=−5;(3)解:−72×−×÷−=723××=48×98=54.17.解:(1)2020÷202020202021=2020÷2020×2021+20202021=2020÷2020×20222021=2020×20212020×2022=20212022(214+11511+15+16+1=14+15+×15+−+14+15+×15+=14+15+415+14+15×17−14+15×15+−1715+=14+15+6×17−17+15=314+15+16−14−15−×17=13×17=12118.(1)解:−3+40+−32+−8÷−−−2.75=−3÷32−94=−3÷1=−3÷−=5;(2)解:−48×0.125+48×18+−48×÷16+−25+24+−35=−48+48−48×10×18÷−20=−480×18÷−20=3;(3)解:原式=−÷46−×−36−−13÷−13=2125÷36−1=2125×135=3125.19.(1)解:∵除法没有分配律,∴小华的解法是错误的,小明的解法是正确的;(2)∵(134−78+712)78)=(134−78+712)×−=−74×87+78×87−712×87.=−2+1−23.=−53.∴(−78)÷(134−78+712)=−35.20.(1)解:根据材料提示得,1156=112×13,∴是第12个数,故答案为:12.(2)解:11×2+12×3+13×4+⋅⋅⋅+12023×2024=1−12+12−13+13−14+⋅⋅⋅+12023−12024=1−12024=20232024,故答案为:20232024.(3)解:114×611=12×4+12×+12×6812×−=12×141416+16−18+⋅⋅⋅+12022−=12×=10114048.。
有理数的除法一、选择题(共15小题)1.两个有理数的商是正数,这两个数( )A.都是负数B.都是正数C.至少有一个是正数D.两数同号 答案:D知识点:有理数的除法 解析:解答:两数相除同号得正,反过来,两数相除得正即两数同号,所以答案为D . 分析:有理数除法法则,两数相除,同号得正,异号得负.2.如果()()110x y +÷-=,那么( ) A.0=x B.0=yC.1-=x 或1≠yD. 1-=x 且1≠y 答案:A知识点:有理数的除法 解析:解答:0除以任何一个不等于0的数,都得0,所以 即 ,0不能作分母,所以即 . 分析:注意0作除数无意义.3.若0<ac ,cab≥0,则有( ) A.b ≥0 B.b >0 C.b ≤0 D.b <0 答案:A知识点:有理数的乘法;有理数的除法 解析:解答:因为即 与 异号,又因为 即 所以 与 同号即 且可能为0. 01=+x 1-=x 01≠-y 1≠y 0<ac a c 0≥cab0≥⋅b c a c a b 0≥b ab分析:要对有理数乘除法符号法则一致性有充分的认识.4.⎪⎭⎫ ⎝⎛-522÷3×31的值为( ) A. B. C. D.答案:B知识点:有理数的乘除混合运算 解析:解答:原式. 分析:①遇乘除混合运算时,现将除法统一成乘法或自左向右直接进行计算;②将带分数换成假分数进行计算.5.下列说法中不正确的是( )倒数的两数乘积等于1D.1除以一个数,等于这个数的倒数 答案:D知识点:有理数除法 解析:解答:1除以一个不为0的数等于乘以这个数的倒数. 分析:要牢记0作除数无意义.6.n 个不等于0的有理数的积是负数,那么负因数的个数是( ) 答案:B知识点:有理数的除法 解析:522-154-4522-454-154915123131522-=⨯-=⨯⨯⎪⎭⎫ ⎝⎛-=n解答: 个不是0的数相乘,负因数的个数是偶数时,积是正数,负因数的个数是奇数时,积是负数 .分析:要重视“n 个不是0的数相乘”n 个数相乘若其中有因数为0,那么积等0.7.若2006个有理数相乘,其积为0,则这2004个数中( ) A .最多有一个数为0 B .至少有一个数为0 C .恰好有一个数为0 D .均为0 答案:B知识点:有理数的乘法 解析 :解答:几个数相乘,若其中有因数为0,那么积、等于0,所以至少有一个数为0即可. 分析:多个有理数相乘确定积的符号时要先确定因数中是否有0.8.如果甲数除以乙数的商为0,那么一定是( )A.甲、乙两数都为零B.乙数为零,而甲数不为零C.甲数为零,而乙数不为零D.乙数为零,而甲数不一定为0 答案:C知识点:有理数的除法 解析:解答:0除以任何一个不等于0的数,都得0,所以 即 ,0不能作分母,所以即 . 分析:注意0作除数无意义.9.下列说法中错误的是( )C.一个数的倒数不能等于它本身D. (≠0)的倒数是 答案:C 知识点:倒数n 01=+x 1-=x 01≠-y 1≠y a 1a a解析:解答: 的倒数是它本身,所以C 选项错误 .分析:对于A 、B 选项正确性,目前我们只能举具体的几个数来验证它的正确性,而D 选项是倒数定义的另一种叙述方式,特别的,0没有倒数.10.两数相除,如果商为正,则这两个数( )A .和为正;B .差为正;C .积为正;D .以上都不对. 答案:C知识点:有理数的加法;有理数的减法;有理数的乘法;有理数的除法解析:解答:两数相除,同号得正,异号得负,所以这两个数同号;而两数相乘,同号得正,异号得负;所以这两个数的积为正.分析:在乘法与除法运算中,结果符号的确定方面具有一致性.11.若 ,则下列式子成立的是( ) A .11a b < B .1ab < C 、1a b > D . 1ab< 答案:C知识点:有理数的大小比较 解析:解答: < <0,可取 , 则 > 排除A , 排除B , 则排除D 选项,所以选择C 选项.分析:对于此类题目出现在选择题中时,我们不妨将字母换成具体的数字进行排除,直到只剩最后一个答案时,将其选为正确答案.12.如果 ,那么 的值不可能是( )A .0B .1C .2D .-2 答案:A1±0<<b a a b 3-=a 2-=b a 1b 116>=ab 0≠ab 123>=b a a ba b +知识点:有理数的乘法;绝对值;有理数的除法 解析:解答:0ab ≠则0ab >或0ab <,当0ab >时,a 与b 同为正数,则2=+b ba a 或a 与b 同为负数,则2-=+bba a ;当0ab <时,0=+b b a a 故选A . 分析:对于a a ,当0a >时1==a a a a ;当a <1-=-=aa.13.如果 ()0a b b ÷≠的商是负数,那么( )A . 异号B . 同为正数C . 同为负数D . 同号 答案:A知识点:有理数的除法 解析:解答:两数相除同号得正,反过来,两数相除得正即两数同号,所以答案为A . 分析:有理数除法法则,两数相除,同号得正,异号得负.14.下列结论错误的是( )A .若 异号,则 <0, <0B .若 同号,则 >0, >0C .D . 答案:D知识点:有理数的除法;有理数的乘法 解析:解答:因为 所以选D .分析:A 、B 选项为有理数乘法与除法的符号法则,C 、D 选项是有理数除法符号法则在化简分数中的应用.在数轴上的位置如图所示,则下列结论正确的是( ) b a ,b a ,b a ,b a ,b a ,b a ⋅b ab a ,b a ⋅b a b a b a b a -=-=-ba b a -=--a ab b -=-ba ,A .0>+b aB .0>-b aC .0>⋅b aD .0>ba答案:B知识点:运用有理数运算解决简单问题;数轴 解析:解答:在数轴上可知:且 所以 , , , ,因此B 选项正确. 分析:能理解并应用有理数加、减、乘、除法则.二、填空题(共5小题) 16.有理数加法法则:(1)同号的两数相加,取的符号,并把相加.(2)绝对值不相等的异号两数相加,取的加数的符号,并用较大的绝对值 较小的绝对值. 互为相反数的两个数相加得. (3)一个数同0相加,仍得. 答案:(1)相同,绝对值相加; (2)绝对值较大,减去,0; (3)这个数 知识点:有理数加法 解析:解答:有理数加法法则内容. 分析:有理数加法法则内容.17.有理数的减法法则:减去一个数,等于加这个数的;字母表示:.答案:相反数;知识点:有理数减法 解析:0>>b a b a <0>+b a 0<-b a 0<-b a 0<⋅b a 0<ba()a b a b -=+-解答:有理数减法法则内容.分析:有理数减法法则内容.18.有理数的乘法法则:两数相乘,同号得,得负,并把相乘.任何数同0相乘,都得. 答案:正,异号,绝对值,0知识点:有理数的乘法解析:解答:有理数乘法法则内容.分析:有理数乘法法则内容.19.有理数的除法法则:(1)除以一个不等于0的数,等于;(2)两数相除,同号得,异号得,并把绝对值相;(3)0除以任何一个不等于0的数,都得.答案:(1)乘以这个数的倒数;(2)正,负,除;(3)0知识点:有理数除法解析:解答:有理数除法法则内容.分析:有理数除法法则内容.20.加减乘除混合运算如无括号指出的计算顺序是.答案:先算乘除再算加减知识点:有理数的混合运算解析:解答:有理数加减乘除混合运算的顺序.分析:有理数加减乘除混合运算的顺序.三、解答题(共5小题) 21.计算: (1)9)11936(÷-(2))511()4()12(-÷-÷-(3))25.0()58()32(-÷-⨯-(4)3)31(31)3(⨯-÷⨯- 答案:(1) (2) (3) (4)9知识点:有理数的除法;有理数的乘法 解析:解答:解 (1) (2)(3)原式 (4)原式分析:(1)中把93611-转化成9936361111⎛⎫-+=-- ⎪⎝⎭再把除法转化成乘法,利用运算律较为简单;有理数的乘除混合运算往往先将除法转化为乘法,再确定积的符号,最后求出结果22.一天小红和小亮两人利用温度差测量某座山峰的高度,小红在山顶测得温度是⨯-1℃,小亮此时在山脚下测得温度是5℃,已知该地区高度每增加100m ,气温大约下降℃,这座山峰的高度大约是多少米? 答案:1000米知识点:运用有理数的运算解决简单实际问题1114-25-1564-1114111491119369)11936(-=--=⨯⎪⎭⎫ ⎝⎛--=÷-256541126541)12()511()4()12(-=⎪⎭⎫ ⎝⎛⨯⨯-=⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯-=-÷-÷-156445832)4()58()32(-=⎪⎭⎫ ⎝⎛⨯⨯-=-⨯-⨯-=9333133)3(31)3(=⨯⨯⨯=⨯-⨯⨯-=解析: 解答:解:()10001006.015=⨯--(米) 答:这座山峰的高度大约是1000米.分析:先算出山顶与山脚的温度差,那么温度差是0.6的几倍,山峰的高度就是几百米.23.某探险队利用温度测量湖水的深度,他们利用仪器侧得湖面的温度是12℃,湖底的温度是5℃,已知该湖水温度每降低℃,深度就增加30米,求该湖的深度. 答案:300米知识点:运用有理数的运算解决简单实际问题 解析: 解答:解:300307.0512=⨯-(米) 答:该湖的深度为是300米.分析:先算出湖面与湖底的温度差,那么温度差是0.7的几倍,湖的深度就是30米的几倍.24.要把一笔钱寄给别人,可以从邮局汇款,也可以从银行汇款,根据邮电部公布的邮政汇款规定,每笔汇款按1%收费,最低收费为1元。
人教版初中数学七年级上册第一章《有理数》第四节《有理数的乘除法》第2课时1.4.1有理数的乘法 练习题一、选择题1.小丽做了四道题目,正确的是( )A 、(–34)×(–41)= –31 B 、–2.8+(–3.1)=5.9C 、(–1)×(+917)= 98D 、7×(–1+143)= –5212.4个有理数相乘,积的符号是负号,则这四个有理数中,正数有( )个A 、1个或3个B 、1个或2个C 、2个或4个D 、3个或4个3.欢欢发烧了,妈妈带她去看医生,结果测量出体温是39.2℃ ,用了 退烧药后,以每15分钟下降0.2℃ 的速度退烧,则两小时后,欢欢 的体温是( ) ℃。
A 、38.2B 、37.2C 、38.6D 、37.6 4.计算:–1.99×17×(-1)的结果是( )A 、33.83B 、–33.83 C.–32.83 D 、–31.83 5.互为倒数的两个数乘积是( )A 、0B 、–1C 、1D 、2 6.(–8), 45,(–7)这三个数相乘的积的符号是( ),积的绝对值是( )。
A.正B.负C.70D.-707.下列运算结果为负数的是( )A 、–11×(–2)B 、0×(–1)×7C 、(–6)–(–4)D 、(–7)+18 二、解答题8.19|3|||;320+⨯-9.0×(–1)×(–2)×(–3)×(–4)10.–173×53×(-35)11.214×(-134)×(-23)×(-87);12.(-313)×(-0.12)×(-214)×3313;13.(+12)×|-23|×214×(-513);14.(-185.8)×(-3645)×0×(-25);15、小欣到知慧迷宫去游玩,发现了一个秘密机关,机关的门口有一些写着整数的数字按纽,此时传来了一个机器人的声音“按出两个数字,积等于8”,请问小欣有多少种按法?你能一 一写出来吗?(不管顺序) 【答案】 二、选择题1.小丽做了四道题目,正确的是( D )A 、(–34)×(–41)= –31 B 、–2.8+(–3.1)=5.9C 、(–1)×(+917)= 98D 、7×(–1+143)= –521 2.4个有理数相乘,积的符号是负号,则这四个有理数中,正数有( A )个A 、1个或3个B 、1个或2个C 、2个或4个D 、3个或4个3.欢欢发烧了,妈妈带她去看医生,结果测量出体温是39.2℃ ,用了 退烧药后,以每15分钟下降0.2℃ 的速度退烧,则两小时后,欢欢 的体温是( D ) ℃。